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Abstract. If an denotes the number of compositions of n into parts in a set S, we show
that an satisfies a recurrence equation if and only if S = S1 ∪ S2 where S1 is a finite set and
S2 = {k ≥ k0 : k ≡ r1, r2, ..., rh (mod m)}.

1. Introduction

Let an denote the number of compositions of n subject to some system of constraints C.
If the constraint is using only odd parts, then an = Fn (the nth Fibonacci number). Thus,
5 = 3 + 1 + 1 = 1 + 3 + 1 = 1 + 1 + 3 = 1 + 1 + 1 + 1 + 1 has 5 = F5 compositions. If the
constraint is using only parts ≥ 2, then an = Fn−1, and if only parts 1 and 2 are allowed an
= Fn+1. All of these are mentioned in the OEIS for the Fibonacci sequence A000045 [10]. In
[6] problem 5.4.13 asks to show that an is the nth Padovan number, satisfying the recurrence
an+3 = an+1 + an, if only odd parts ≥ 3 are allowed. The Padovan numbers also count the
number of compositions into parts congruent to 2 (mod 3). These results are also mentioned
in the OEIS for the Padovan sequence A000931.

In some recent papers other constraints on the allowed compositions include: no part of a
specified size t [3] [4] [7], at least one part of size t [1], parts of size 1 and t [2], and no parts
divisible by 3 [9]. Some of these papers deal with the recurrence satisfied by an, others with
expressions of an as sums of other quantities.

In all the examples described above, except for “at least one part of size t”, the type of
constraint C is of the form requiring all parts to be chosen from a specified set S. This leads
naturally to the question: for which such sets S does an satisfy a linear, homogeneous, constant
coefficient recurrence equation? Our goal is to answer this question.

2. Generating Functions

We will approach this problem using ordinary generating functions (OGF). One of the key
properties of a recurrence sequence an is that its OGF is a rational function P (x)/Q(x) where
deg P (x) < deg Q(x) [6]. If deg P (x) ≥ deg Q(x), then an satisfies a recurrence equation
except for a finite number of initial terms.

Theorem 2.1. The number of compositions of n into parts from a set S of positive integers
satisfies a linear, homogeneous, constant coefficient recurrence equation, except possibly for
finitely many terms, if and only if S = S1 ∪ S2 where S1 is a finite set, and there are residues
r1, r2, ..., rh modulo m such that S2 = {k ≥ k0 : k ≡ r1, r2, ..., rh (mod m)}.

Proof. The number of compositions of n into exactly p parts from a set S, is the number of
solutions of: y1 + y2 + ... + yp = n, n ≥ 1, where yi ∈ S.
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The corresponding OGF is:

fp(x) = (
∑
s∈S

xs)p = f(x)p (2.1)

If an counts the number of such compositions into any number of parts, then its OGF is:∑
n>0

anx
n =

∞∑
p=1

fp(x) =
∞∑
p=1

f(x)p =
f(x)

1− f(x)
(2.2)

Thus, an satisfies a recurrence equation if and only if: f(x)
1−f(x) = P (x)

Q(x) is a rational function,

which is true if and only if f(x) = P (x)
P (x)+Q(x) is a rational function, which is true if and only if

f(x) is the OGF of a sequence which satisfies a recurrence equation except possibly for finitely
many terms. Suppose this recurrence equation is of order t. Since all of the coefficients of
f(x) are 0 or 1, there are only finitely many different blocks of length t. Hence the coefficients
of f(x) must be periodic, but not necessarily purely periodic. That is, S must be of the form
described in the theorem. �

3. Some Implications

Theorem 2.1 shows that all of the examples in the introduction satisfy a recurrence equation.
Note that the number of compositions with at least one part of size t is the same as all
compositions minus those with no parts of size t. The OGF for no parts of size t uses f(x) =∑

i>1 x
i − xt = x

1−x − xt = x−xt+xt+1

1−x , which is a rational function.
Example 1. If an counts the number of compositions with no parts of sizes t1, t2, ... , tk,

then from the proof of Theorem 2.1, the OGF for an is f(x)
1−f(x) where

f(x) =
∑
j>1

xj − xt1 − xt2 − ...− xtk =
x− xt1 + xt1+1 − xt2 + xt2+1 − ... + xtk+1

1− x
. (3.1)

Hence, the OGF for an is

x− xt1 + xt1+1 − ... + xtk+1

1− 2x + xt1 − xt1+1 + ...− xtk+1
. (3.2)

Thus, an satisfies the recurrence equation

an+tk+1 − 2an+tk + an+tk−t1+1 − ...− an = 0. (3.3)

Theorem 2.1 also proves that many types of compositions do no satisfy a recurrence equation.
For example, the number of compositions into prime numbers, squares, or Fibonacci numbers
do not satisfy a recurrence, since these sets are not of the type described in Theorem 2.1.
However, compositions into numbers which are either primes or Fibonacci numbers less than
100 are counted by a recurrence since this is a finite set.

Example 2. If bn counts the number of compositions of n into parts which are congruent
to r1, r2, ..., rh modulo m, 0 ≤ ri ≤ m− 1, then S = {s: s ≡ r1, r2, ..., rh (mod m)} and

f(x) =
∑
s∈S

xs =
h∑

i=1

∞∑
j=0

xri+jm =
h∑

i=1

xri

1− xm
=

xr1 + xr2 + ... + xrh

1− xm
. (3.4)

By Theorem 2.1, the OGF of the sequence bn is

f(x)

1− f(x)
=

xr1 + ... + xrh

1− xr1 − ...− xrh − xm
. (3.5)
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Hence, bn satisfies the recurrence equation

bn+m − bn+m−r1 − ...− bn+m−rh − bn = 0. (3.6)

Example 3. If cn counts the number of compositions of n into parts of size 2 or 3 or numbers
congruent to 2 or 4 modulo 7 and greater than 14, the function f(x) in Theorem 2.1 is

f(x) = x2 + x3 +
x16 + x18

1− x7
. (3.7)

Then the OGF for cn is

f(x)

1− f(x)
=

x2+x3−x9−x10+x16+x18

1−x7

1−x7−x2−x3+x9+x10−x16−x18

1−x7

=
x2 + x3 − x9 − x10 + x16 + x18

1− x2 − x3 − x7 + x9 + x10 − x16 − x18
. (3.8)

Thus, cn satisfies the recurrence

cn+18 − cn+16 − cn+15 − cn+11 + cn+9 + cn+8 − cn+2 − cn = 0. (3.9)

Suppose we are given a recurrence sequence an and ask if there is a type of composition which

is counted by an. As in Theorem 2.1 if
∑

n>0 anx
n = P (x)

Q(x) then
∑

s∈S xs = f(x) = P (x)
P (x)+Q(x) .

Example 4. Is there a composition counted by the Fibonacci sequence so that an = Fn for

n ≥ 1? Since
∑

n>1 Fnx
n = x

1−x−x2 = P (x)
Q(x) , f(x) = x

1−x2 =
∑

i>0 x
2i+1. Hence, an counts com-

positions into odd parts. Similarly, if we want an = Fn+1, since
∑

n>1 Fn+1x
n = x+x2

1−x−x2 = P (x)
Q(x) ,

f(x) = x + x2 so an counts compositions into parts of size 1 or 2. If an = Fn−1, since∑
n>1 Fn−1x

n = x2

1−x−x2 = P (x)
Q(x) , f(x) = x2

1−x =
∑

n>2 x
n so an counts compositions into

parts greater than or equal to 2. However, for an = Fn+2, a similar calculation leads to

f(x) = 2x+x2

1+x = 2x− x2 + x3 − x4 + · · · , which is not of the form
∑

s∈S xs.

Example 5. Is there a composition counted by the tribonacci sequence? In this case the
sequence satisfies the recurrence equation an+3 − an+2 − an+1 − an = 0 with the usual initial

values a1 = 0, a2 = 1, a3 = 1. The OGF is x2

1−x−x2−x3 so f(x) = x2

1−x−x3 = x2 +x3 +x4 +2x5 +

3x6 + · · · . Since this series has coefficients other that 0 or 1 it cannot equal
∑

s∈S xs. Thus,
there is no composition of the desired kind. However, if we change the initial values but keep

the tribonacci recurrence, so that the OGF is x+x2

1−x−x2−x3 , i.e., a1 = 1, a2 = 2, a3 = 3, then

f(x) = x+x2

1−x3 = (x + x2)
∑

i>0 x
3i =

∑
i>0(x

3i+1 + x3i+2) so S is the set of positive integers

congruent to 1 or 2 (mod 3).
There are other types of constraints that are not of the kind described in Theorem 2.1,

such as restricting the number of times specific parts can be used, or if the choice for one part
restricts the choice for another part. We hope to address compositions of such types in the
future.
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