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The Sixteenth Conference

The 16th International Conference on Fibonacci Numbers and their Applica-
tions was held on the large campus of the Rochester Institute of Technology,
situated several miles off from downtown. It hosted about 65 participants from
at least a dozen countries and all continents, northern Americans being most
represented. Besides regular and occasional participants, there were a number
of people who attended this conference for the first time. For instance, Márton,
24, from Hungary, took three flights to reach Rochester; it was his first flying
experiences, and we believe many appreciated his presence, and he himself en-
joyed the whole package of the conference. These conferences are very congenial,
being both scientific, social, and cultural events.

This one had the peculiarity of having three exceptional presentations open
to the public held on the Wednesday morning in a large auditorium filled with
local young people and students, in addition to the conference participants. The
Édouard Lucas invited lecturer, Jeffrey Lagarias, gave a broad well-applauded
historic talk which ran from antiquity to present; Larry Ericksen, painter and
mathematician, also had us travel through time and space, commenting on
often famous artwork—okay, maybe the Golden ratio appeared a few too many
times—and Arthur Benjamin, mathemagician (and mathematician) who, for
some of his magics, managed the feat of both performing and explaining without
loosing the audience a second.

Peter Anderson was the grand host and organizer—at least two of the edi-
tors wish to express their thanks to him—but many among the 65 participants
will also remember fondly Ginny Gross-Abbey and Kim Shearer, for their un-
compromising week-long help performed with competence and joy.

We also offer our sincere thank you to the Rochester Institute of Technology,
the B. Thomas Golisano College of Computing and Information Sciences, and
its Dean Andrew Sears for generously hosting our meeting and providing us
their superb facilities.

A wine and cheese reception was held on the Sunday evening, which for
many was their arrival date, an optional, memorable cruise and dinner on the
Erie Canal was organized on the Tuesday; Wednesday afternoon was off with
the possibility of visiting George Eastman’s house, now an impressive museum.
The conference banquet was held on the Thursday at a most original place,
Artisan Works, surrounded by fine art. A day-trip to Niagara Falls took place
on the last Saturday.
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Forword

The sixteenth International Conference on Fibonacci Numbers and their Appli-
cations was held in Rochester, New York, USA, July 20-26, on the campus of
the Rochester Institute of Technology.

This book contains 23 items which include a beautiful paper of Marjorie
Bicknell-Johnson on the 50+ years of the existence of the Fibonacci Association,
a compendium of problems posed, with occasional solutions, or partial solutions,
found during the problem sessions and put together by Clark Kimberling, and
21 research articles from among the 49 papers and abstracts presented at the
conference. These articles were selected and criticized by expert referees, whose
time and care brought added value to this volume. Even though Fibonacci
numbers and recurrences are the common bond to them all, the variety of topics
and creativity of the papers compiled herein, is a testimony to the liveliness of
this area of mathematics.

It is our belief that the investigations reported in these proceedings, the 15th
such proceedings emanating from this international conference, will stir up the
curiosity of a number of researchers.

Peter G. Anderson
Christian Ballot
William Webb
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THE FIBONACCI ASSOCIATION: HISTORICAL SNAPSHOTS

MARJORIE BICKNELL-JOHNSON

Abstract. The Fibonacci Quarterly is now in its 52nd year of publication. V. E. Hoggatt,
Jr., was editor for 18 years; G. E. Bergum, also editor for 18 years; and current editor, Curtis
Cooper, 1998 to date. Marjorie Bicknell-Johnson was secretary of the Fibonacci Association
from its beginning until 2010.

This article gives a short history of the Fibonacci Association and some vignettes to bring
that history to life.

1. Historical Snapshots and Rambles

The first Fibonacci Quarterly, published in February 1963, had a subscription rate of $4.00
per year, and its Editor, Verner E. Hoggatt, Jr., held that position for L7 years. Vern’s
friends told him the Quarterly wouldn’t last three years. Undaunted, he kept a mental list of
“backsliders” who had not renewed their subscriptions and contacted each one personally. He
persuaded, cajoled, and implored them so much that, in the end, it was impossible to say no.

Vern corresponded and made friends with mathematicians from all over the world. He once
hosted the world-famous mathematician Paul Erdös for a month. Erdös arrived with one small
suitcase, filled with silk underwear (because of allergies he was said to have). I met him, but
he much preferred to talk to Vern. I found him strange; he had no home, no family, and all
of his possessions were in his suitcase. I think he found me strange as well, visiting a college
professor with my two little “epsilons,” the Erdös word for children. Erdös and Vern worked
on dozens of problems during that time and wrote one paper [6] together, which I typed. As
many of you may know, it was considered a great honor to have published a paper with Erdös,
so much so that on Google, one can find the Erdös number of those who wrote with Erdös:
1; those who wrote with someone who wrote with Erdös: 2; and so on. So, Vern has Erdös
number 1, while Jerry Bergum and I each have Erdös number 2.

The Managing Editor, Brother Alfred Brousseau, who was equally positive and enthusiastic
about anything dealing with Fibonacci numbers, typed the first issue of the Quarterly and kept
track of subscriptions and the bank account. He played the accordion and loved to lead group
singing. In tune with his personality, he wrote the ballad, “Do What Comes Fibonaturally,” to
the melody of “The Blue-Tail Fly.” Additionally, he compiled a bibliography of 700 Fibonacci
references ranging from recreational to serious research, quite a feat in pre-computer times,
and collected cones from every species of pine found in California to illustrate the Fibonacci
patterns found in spirals of their scales. He inspired Vern to grow a large sunflower, his
so-called Lucas sunflower, which had 76 clockwise spirals and 47 counterclockwise ones.

As one of Professor Hoggatt’s students, I came on board in 1962. He was well liked by
students at San Jose State College; they nicknamed him “Professor Fibonacci,” and I soon
found out why: he took any and every opportunity to lecture on the Fibonacci sequence. We
all loved it.
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THE FIBONACCI QUARTERLY

Dr. Hoggatt—I called him that as his student—brought unusual problems to us for home-
work. A curiosa in Scripta Mathematica [7] claimed that, if the nine positive digits are ar-
ranged in a square array, the non-negative determinant values range from 0 through 512 but
with a couple dozen missing values. So we were each assigned to write and evaluate 20 such
determinants—find those missing values, or show that they were indeed impossible. One
student found a “missing value” and another programmed a computer to do the job, but com-
puters were very new and he couldn’t prove his algorithm. I loved to calculate things—no
calculator or computer, thank you—but I wasn’t going to do the 5,040 distinct determinants
possible. There are 9! ways to arrange the nine digits; removing those equivalent by transpose,
row exchange, or column exchange, we have 9!/(2 · 3! · 3!) = 5040. Instead, I considered all
arrangements of the form

S = a · b · c+ d · e · f + g · h · i

for the digits 1 through 9 and made a table of the 280 possible values for S. Of course,
subtracting two of these values gives a possible determinant value, provided that the two
expressions can co-exist in the same square array. Thus, I had every value that could occur
as well as one or more determinants yielding that value. This took me all of spring break but
it became the first paper [1] I wrote with the master.

After that, he asked me to call him Vern and began sending mathematical correspondence to
me, always signed VEH. He kept me busy with proofreading and rewriting papers from foreign
authors who had good ideas but no command of English grammar. I helped to package up
and mail reprints to authors, refereed articles submitted to the Quarterly, and wrote rejection
letters, which always thanked the person for his submission and suggested how to rewrite the
paper. Hoping I would follow in his footsteps, Vern named me Co-Editor of the journal for the
three years 1973–1975, but as a high school teacher, I had few contacts in Academia. When I
married Frank Johnson in 1976, Vern said he felt as though his right hand had been cut off,
since I changed direction in my life and spent less time “Fibonaturally.”

Since the years 1963–1980 are described in detail [3, 4, 2, 5], I will give one digression and
then skip to events following Vern’s sudden death.

Vern preferred to work at home at the executive desk in his book-lined study. He wrote
several letters everyday in his big scrawling hand and without making copies. He kept ev-
erything in his head: addresses, telephone numbers, and ongoing correspondence with other
mathematicians. At one point, he was working on fifteen research papers at once while su-
pervising several graduate mathematics projects and master theses in progress. He carried on
such a prolific correspondence on Fibonacci matters that he often wrote fifty letters in one
week and typically slept only four hours a night.

I, often with my two children in tow, went to see Vern once or twice a week for fifteen years.
I wrote 47 (or L8, as he would have counted them) articles with him as co-author, mostly on
properties of Pascal’s triangle, convolution arrays, and representations, all related to Fibonacci
numbers in some way. I typed all of Vern’s papers and a book manuscript: he never learned
to type. As an aside, for all this work, I used an Olympia standard manual typewriter with π
on one key, very cool for the time; does anyone even remember manual typewriters?

While I lived only two miles away, each week I received two or three letters, all eight to ten
pages long, all handwritten, all on mathematics and signed VEH, because he wanted to put
his thoughts on paper. He would call me for feedback, often before I had received the letters.

One letter began, “Dear Marjorie, Of course you remember Hilbert’s Tenth Problem.” Of
course I did not—who the heck was Hilbert? I couldn’t look it up on Google in those days.
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THE FIBONACCI ASSOCIATION: HISTORICAL SNAPSHOTS

It turned out that the famous German mathematician David Hilbert posed a list of twenty-
three unsolved mathematics problems to the Paris Conference of the International Congress
of Mathematicians in 1900. In 1970, Yuri Matiyasevich utilized a method involving Fibonacci
numbers to show that solutions of Diophantine equations may grow exponentially and used
that with earlier work by Julia Robinson, Martin Davis, and Hilary Putnam to prove Hilbert’s
tenth problem unsolvable. Note the key words: Fibonacci numbers.

In 1978, Frank and I found the statue of Fibonacci in Pisa, Italy, per Vern’s request. The
statue is larger than life-size; Frank climbed onto a rickety 13-foot scaffolding to get a portrait
shot. We had it framed and it hung in Vern’s office for many years. In fact, it’s still there,
as well as his built-in walnut bookcases with his collection of math books, because his widow
Herta has left it that way. That same portrait graces the Fibonacci Association’s webpage.
In July 1980, Frank and I took thirty high school students to Europe for a month. I knew
something was amiss when I returned to find only two letters in my mailbox. The next
morning, I called Vern and learned that he had died the day before. I was shattered; Vern was
my mathematical mentor who liked to reflect his ideas off me. It was the saddest time of my
life. I felt as though I had lost my father. For months, I could not utter the word Fibonacci
without choking up. I kept dreaming that I received a letter from Vern, with the usual cryptic
PS scrawled on the envelope, but the envelope was empty.

When Vern died suddenly in 1980, his files were in disarray, and that created a fragile time
for the Fibonacci Quarterly. Soon after Vern’s death, Gerald E. Bergum, then Co-Editor of
the Quarterly, came to Santa Clara from South Dakota and stayed with my husband and me
long enough to bond with my family.

Jerry and I made several visits to Vern’s home and cleaned out his desk and his four-
drawer filing cabinet. Jerry shipped several cartons of manuscripts home to South Dakota.
He wrote to each author because there was no way to tell if the paper submitted was accepted
for publication, returned for revision, rejected, or merely ignored. Had Jerry not stepped in
and reorganized everything with a strong hand, the Quarterly would not be publishing today.
Thus it was that, in the fall of 1980, the Fibonacci Quarterly moved to South Dakota State
University with Editor Gerald E. Bergum for a term of 18 years. His daughters Jennifer and
Patty served as secretaries and typists for the Quarterly, and his wife Shirley helped with
registration at conferences.

2. Just the Facts, Ma’am: A Brief History of the Fibonacci Association

The Fibonacci Association is a nonprofit 501(c)(3) corporation, incorporated in 1962 by
Verner E. Hoggatt, Jr., I. Dale Ruggles, and Brother U. Alfred. Dale Ruggles was Vern’s
officemate at San Jose State; he set up the incorporation paperwork and served on the Editorial
Board for seven years. Brother U. Alfred, who changed his name to Brother Alfred Brousseau,
served on the Editorial Board, edited and wrote many articles to interest the beginner, and
managed subscriptions and association money until his retirement in 1975.

Verner E. Hoggatt, Jr. was Editor of The Fibonacci Quarterly 1963–1980; Gerald E. Bergum,
1980-1998; and Curtis Cooper, 1998 to date. Brother Alfred Brousseau was treasurer 1963–
1975; Leonard Klosinski, 1976–1979; Marjorie Bicknell-Johnson, 1979–1998; and Peter G.
Anderson, 1998 to date. Marjorie Bicknell-Johnson was secretary 1963–2010; current secretary,
Art Benjamin, 2010 to date.

The first official meeting of the Board of Directors of the Fibonacci Association was held at
San Jose State College on January 20, 1968, with Brother Alfred Brousseau presiding. Other
board members present: Verner E. Hoggatt, Jr.; G. L. Alexanderson, Mathematics Department
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Chairman, Santa Clara University; George Ledin, Jr., now Professor of Computer Science at
Sonoma State University; and Marjorie Bicknell, Adrian C. Wilcox High School.

Vern and Brother Alfred organized informal half-day Fibonacci meetings once or twice a
year from 1962 as well as presenting lectures at all local and state conferences for mathematics
teachers. A Fibonacci Open House was held at University of San Francisco on January 18,
1969, with the morning devoted to high school students and the afternoon for Fibonacci
aficionados; I arranged for mailing invitations to all high schools within 100 miles of San
Francisco. Vern corresponded with mathematicians all around the world and dreamed about
having an international Fibonacci conference. Unfortunately, the first conference came too
late for him to enjoy it.

In 1984, Andreas N. Philippou organized the Fibonacci Association’s first international
conference in Patras, Greece. The International Conferences on Fibonacci Numbers and Their
Applications have been held biennially for 30 years.

• 1984 Patras, Greece
• 1986 San Jose State, San Jose, California
• 1988 Pisa, Italy
• 1990 Wake Forest, North Carolina
• 1992 St. Andrews University, Scotland
• 1994 Washington State, Pullman, Washington
• 1996 Technische Universität, Graz, Austria
• 1998 Rochester Institute of Technology, Rochester, New York
• 2000 Luxembourg City, Luxembourg
• 2002 North Arizona University, Flagstaff, Arizona
• 2004 Technische Universität, Braunschweig, Germany
• 2006 San Francisco State, San Francisco, California
• 2008 Back to University of Patras, Greece
• 2010 Universidad Nacional Autónoma de México, Morelia, México
• 2012 Eszterházy Károly College, Eger, Hungary
• 2014 Back to Rochester Institute of Technology
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PROBLEM PROPOSALS

COMPILED BY CLARK KIMBERLING

These fourteen problems were posed by participants of the Sixteenth International Con-
ference on Fibonacci Numbers and Their Applications, Rochester Institute of Technology,
Rochester, New York, July 24, 2014. A few solutions and partial solutions, received during
August-December, are included.

Problem 1, posed by Marjorie Johnson
Prove or disprove that the only Pythagorean triples containing exactly two Fibonacci num-

bers are 3, 4, 5 and 5, 12, 13.

Problem 2, posed by Heiko Harborth and Jens-P. Bode
Two players A and B choose alternatingly an integer. Does there exist a strategy for A

to choose integers n, n + 2, n + 3, and n + 5 for some n, or, equivalently, does there exist a
strategy for B to prevent A from this objective?

Problem 3, posed by Clark Kimberling
Observe that

1/6 + 1/7 + 1/8

< 1/9 + · · ·+ 1/13

< 1/14 + · · ·+ 1/21

< 1/22 + · · ·+ 1/34

Let H(n) = 1/1 + 1/2 + · · · + 1/n, so that the observation can be written using Fibonacci
numbers as

H(8)−H(5)

< H(13)−H(8)

< H(21)−H(13)

< H(34)−H(21)

More generally, if x ≤ y, let

a(1) = least k such that H(y)−H(x) < H(k)−H(y);

a(2) = least k such that H(a(1))−H(y) < H(k)−H(a(1));

a(n) = least k such that H(a(n− 1))−H(a(n− 2))

< H(k)−H(a(n− 1)),

for n ≥ 3. Prove that if (x, y) = (5, 8), then a(n) = F (n + 6), and determine all (x, y) for
which (a(n)) is linearly recurrent.

Problem 4, posed by Peter Anderson
5
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Let un+1 = un + un−k, for n ≥ k, where ui = 0 for i = 0, 1, . . . , k − 1 and uk = 1. Let
α be the largest real root of the companion polynomial. For k = 3, show how to obtain the
Bergman representation of every positive integer. For k > 4, show that there is no finite
Bergman representation of 2.

Problem 5.1, posed by Dale Gerdemann (problem 5, version 1, as proposed
in Rochester)

In “Bergman-Fibonacci” representation,

1 = 1.0 = 1 + 0

2 = 1.01 = 1 + 1

3 = 10.01 = 2 + 1

4 = 101.01 = 3 + 1

5 = 1000.1001 = 3 + 2.

What is the ratio of the values of the positive digits to the value of the negative digits? Does
it approach a limit?

Empirical solution by Margaret P. Kimberling, Lynda J. Martin, and Peter J.
C. Moses. “Bergman-Fibonacci” representations use base ϕ = (1 +

√
5)/2 with ϕn replaced

by Fn+1, so that the five examples are interpreted as

1 = F1 + F0 = 1 + 0

2 = F2 + F−1 = 1 + 1

3 = F3 + F−1 = 2 + 1

4 = F3 + F1 + F−1 = 3 + 1

5 = F4 + (F0 + F−3) = 3 + 2.

Thus each n has a representation of the form x.y = u+ v, where u and v are the positive part
and negative part, respectively. We claim that the ratios are given by

u/v = u(n)/v(n) = (1 + k)/(n− k − 1),

where k = b(n− 1)/(3− ϕ)c , and that lim
n→∞

u(n)/v(n) = ϕ+ 1.

The claim is based on the following Mathematica code, which finds the Bergman-Fibonacci
representation of n, using the first 1000 base 10 digits of ϕ:

phiBase[n ] := Last[#] - Flatten[Position[First[#], 1]] &
[RealDigits[n, GoldenRatio, 1000]];

To see the representation for an example, say n = 12, add this line of code:

test = 12; SplitBy[phiBase[test] + 1, # > 0 &]

which shows {{6}, {0,−2,−1}}, i.e.,

F6 + (F0 + F−2 + F−3) = 8 + [0 + (−1) + 5] = 12.

6 VOLUME 52, NUMBER 5
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In this example, u = 8 and v = 0 + (−1) + 5 = 4. The code can be extended to obtain

2 10.01 1/1
3 100.01 2/1
4 101.01 3/1
5 1000.1001 3/2
6 1010.0001 4/2
7 10000.0001 5/2
8 10001.0001 6/2
9 10010.0101 6/3
10 10100.0101 7/3
11 10101.0101 8/3
12 100000.101001 8/4
13 100010.001001 9/4
14 100100.001001 10/4
15 100101.001001 11/4
16 101000.100001 11/5

The denominators in column 3 form the sequence (1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, . . .), of which the
difference sequence is (0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, . . .), which appears to be the sequence indexed
in OEIS [2] as A221150, authored by Neil Sloane in 2013. Information given at A221150
enables use to find v(n) = n+ b(n− 1)/(ϕ− 3)c . The difference sequence for the numerators
appears to be the binary complement of A221150, (1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, . . .),
leading to u(n) = 1+ b(n− 1)/(3− 3ϕ)c . The fractions u/v for 2 ≤ n ≤ 60 and 2 ≤ n ≤ 1000
are depicted here:

u/v for 2 ≤ n ≤ 60

DECEMBER 2014 7
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u/v for 2 ≤ n ≤ 1000

As a somewhat randomly selected example take n = 46792386. Then SplitBy[phiBase[test]
+ 1, # > 0 &] gives

{{37, 35, 28, 26, 23, 19, 17, 13, 11, 9, 6, 4},
{0,−5,−7,−9,−11,−15,−17,−22,−27,−33,−35}},

which represents

u = F37 + F35 + F28 + F26 + F23 + F19 + F17 + F13 + F11

+ F9 + F6 + F4

= 33859288;

v = F0 + F−5 + F−7 + F−9 + F−11 + F−15 + F−17 + F−22 + F−27
+ F−33 + F−35
= 12933098.

It can now be checked that u/v in this case agrees with the asserted formula. Finally, it is
easy to check that if u(n) and v(n) are as asserted, then lim

n→∞
u(n)/v(n) = ϕ+ 1.

References.
[1] Bergman, G. A number system with an irrational base, Mathematics Magazine 31 (1957-

58) 98-110.
[2] Online Encyclopedia of Integer Sequences, https://oeis.org/

Partial solution by Dale Gerdemann. This is a partial proof of the following statement:
In Bergman-Fibonacci representation (golden ratio base with each ϕn replaced by fn, where
f0 = 1, f1 = 1, fn = fn−1 + fn−2, fn = fn+2 − fn−1), the ratio of the positively indexed
Fibonacci numbers to the negatively indexed Fibonacci numbers converges to ϕ + 1. I limit
myself here to proving the weaker statement that if this sequence converges, then it converges
to ϕ+1. My strategy is to find a convergent subsequence consisting of the simplest Bergman-
Fibonacci representations and then to employ this basic fact about limits: Every subsequence
of a convergent sequence converges, and its limit is the limit of the original sequence.
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The simplest Bergman-Fibonacci representations are for the odd-indexed Lucas numbers,
and the second simplest are for the even indexed Lucas numbers, where the Lucas numbers
are indexed here starting with L0 = −1 and L1 = 2:

L2n−1 = f2n−2 + f−2n+2

L2n = f2n−2 + f2n−4 + · · ·+ f0 + · · ·+ f−2n+4 + f−2n+2.

For an inductive proof, note that these two statements are true for the following base case:
L4 = f2 + f0 + f−2. For the inductive steps, note that

L2n+1 = L2n−1 + L2n

= 2f2n−2 + f2n−4 + · · ·+ f0 + · · ·+ f−2n+4 + 2f−2n+2

= f2n + f−2n
L2n+2 = L2n+1 + L2n

= f2n + f2n−2 + · · ·+ f0 + · · ·+ f−2n+2 + f−2n.

Now consider the positive-indexed to negative-indexed ratio for the subsequence of odd-indexed
Lucas numbers:

. . .
f2n−2
f−2n+2

,
f2n
f−2n

,
f2n+2

f−2n−2
, . . . .

Since the denominators are even-indexed, the negative indexing can be eliminated:

. . .
f2n−2
f2n−4

,
f2n
f2n−2

,
f2n+2

f2n
, . . . .

Now, as is well known, the ratio of adjacent Fibonacci numbers converges to ϕ, so that the
ratio of these two-apart Fibonacci numbers converges to ϕ2 = ϕ+ 1.

Problem 5.2, posed by Dale Gerdemann (problem 5, version 2)
Golden ratio base differs from more familiar integer bases in that it uses both positive and

negative powers of the base to represent an integer. For example, the number m = 100 is
represented as the sum

ϕ9 + ϕ6 + ϕ3 + ϕ+ ϕ−4 + ϕ−7 + ϕ−10,

where ϕ = (1 +
√

5)/2. Here the contribution of the positive powers is much greater than the
contribution of the negative powers. Note what happens, however, when the powers of ϕ are
replaced by corresponding Fibonacci numbers (using the combinatorial definition: f0 = 1,
f1 = 1, fn = fn−1 + fn−2, fn = fn+2 − fn−1):

f9 + f6 + f3 + f1 + f−4 + f−7 + f−10
= 55 + 13 + 3 + 1 + 2− 8 + 34

= 100

This replacement does not change the sum, which remains 100. However, the negatively
indexed Fibonacci numbers play a larger role than the corresponding negative powers in golden
ratio base. Here the positively indexed Fibonacci numbers sum to 72, the negative ones sum
to 28, and the ratio 72/28 = 2.571... . Prove that as m increases, this ratio approaches ϕ+ 1.

Problem 6, posed by Curtis Cooper
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The following two statements are true: If g5 = 2, then

3
√

5g2 + 1 + 3
√

35g2 + g − 43
3
√

5g2 + 1− 3
√

35g2 + g − 43
=

2 + g − g2
−g + g2

,

and if g7 = 2, then

5
√

15g3 + 11g2 + 15g + 12 + 5
√
−270g4 − 259g3 + 346g2 + 315g + 14

5
√

15g3 + 11g2 + 15g + 12− 5
√
−270g4 − 259g3 + 346g2 + 315g + 14

=
2 + g − g2
−g + g2

.

Find similar true statements for gk = 2 where k ≥ 9 is an odd integer.

Solutions by Sam Northshield for k = 7, 9, 11, and 13. For k = 7, we present a solution
distinct from the one stated just above (g4 does not appear in our new solution).

5
√
A+ 5

√
B

5
√
A− 5

√
B

=
2 + g − g2
−g + g2

if g7 = 2,

A = −15g3 − 6239g2 + 255g − 6438,

B = 112561g3 + 20246g2 − 160155g − 6836.

7
√
A+ 7

√
B

7
√
A− 7

√
B

=
2 + g − g2
−g + g2

if g9 = 2,

A = 8980553g4 + 7941290g3 + 15149890g2 + 6386905g + 11823140,

B = −45991056g4 − 420491442g3 − 440508591g2 + 579500187g + 511466434.

9
√
A+ 9

√
B

9
√
A− 9

√
B

=
2 + g − g2
−g + g2

if g11 = 2,

A = a5g
5 + a4g

4 + a3g
3 + a2g

2 + a1g + a0,

B = b5g
5 + b4g

4 + b3g
3 + b2g

2 + b1g + b0,

b5 = −2832370277, b4 = 2254685169, b3 = 4298350067,

b2 = −4610451384, b1 = −2556248098, b0 = 3738894258,

a5 = 1050574, a4 = −915414, a3 = 9829317,

a2 = −12489450, a1 = 8175912, a0 = −8267688.

11
√
A+ 11

√
B

11
√
A− 11

√
B

=
2 + g − g2
−g + g2

if g13 = 2,
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A = a6g
6 + a5g

5 + a4g
4 + a3g

3 + a2g
2 + a1g + a0,

B = b6g
6 + b5g

5 + b4g
4 + b3g

3 + b2g
2 + b1g + b0,

b6 = 18362391990345, b5 = 10955091993365, b4 = −54313592877440,

b3 = −15431135576532, b2 = 68772473586419, b1 = 5062921298005,

b0 = −36107722357990, a6 = −22949055914, a5 = 10769387302,

a4 = −30534819159, a3 = 46896418382, a2 = −29067883130,

a1 = 33833389975, a0 = −6861047820.

13
√
A+ 13

√
B

13
√
A− 13

√
B

=
2 + g − g2
−g + g2

if g15 = 2,

A = a7g
7 + a6g

6 + a5g
5 + a4g

4 + a3g
3 + a2g

2 + a1g + a0,

B = b7g
7 + b6g

6 + b5g
5 + b4g

4 + b3g
3 + b2g

2 + b1g + b0,

b7 = 124297024336997477790866, b6 = 43189622456246393414224,

b5 = −258642712235742814743726, b4 = −136428165027671534593750,

b3 = 213681762408969527031250, b2 = 199976876120553414562602,

b1 = −70774416610255087951747, b0 = −129089005248346771092897,

a7 = 59165301272956037525, a6 = 40996615699845889982,

a5 = 152969005301622874489, a4 = 53665185894144140125,

a3 = 148453810204496210375, a2 = 33066388703204638925,

a1 = 63819073735217372000, a0 = 2337520804186801675.

Method: I used Maple, which handles large integers easily.
1) Find remainder of

(1 + g − g2)2n−1(angn + ...+ a0)

upon division by g2n+1 − 2 (where g and all the ai’s are indeterminate). The result is a
polynomial, in g, of degree 2n with each coefficient bj a linear combination of the ai’s.

2) Solving b2n = ... = bn+1 = 0 and bn = k gives, for the right choice of k, relatively prime
integers a0, ..., an.

3) Letting A(g) =
∑
aig

i, and letting B(g) =
∑
big

i be the remainder of (1+g−g2)2n−1A(g)
upon division by g2n+1 − 2, implies

(1 + g − g2)2n−1A(g) = (g2n+1 − 2)P (g) +B(g)

for some polynomial P (g). If g2n+1 = 2, then

B(g)/A(g) = (1 + g − g2)2n−1

or, equivalently,
2n−1
√
A(g) + 2n−1

√
B(g)

2n−1
√
A(g)− 2n−1

√
B(g)

=
2 + g − g2
−g + g2

.
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Problem 7, posed by Sam Northshield
Let

f(n+ 1) =

n∑

k=0

σSF (k)σSF (n−k),

where σ = (1 + i
√

3)/2, and SF (k) is the number of terms in the Zeckendorf representation of
k. The sequence f begins:

1, 1, 2, 3, 2, 4, 3, 3, 6, 4, 6, 6, 4, 8, 6, 7, . . .

and is integer-valued. Define σ(n) = bnϕ+ 1/ϕc , where ϕ = (1 +
√

5)/2 and τ(n) =⌊
nϕ2 + ϕ

⌋
, so that these sequences are a complementary pair. Prove or disprove the following

chain of inequalities:

f(τ(n)) ≥ f(
⌊
nϕ2

⌋
) ≥ f(bnϕc) ≥ f(σ(n)) ≥ f(n) ≥ 0.

Also, what does the sequence f count?

Problem 8, posed by Larry Ericksen

Let pi =

Ji∑

j=0

cj10j be the decimal representation of the ith prime, and let ri =

Ji∑

j=0

10Ji−jcj

be the number obtained by reversing the digits. For what primes pi is ri + pi a square and
ri − pi a cube? Example: for pi = 47 and ri = 74, we have ri + pi = 112 and ri − pi = 33.

Problem 9, posed by Patrick Dynes
It is known that the sequence of Fibonacci numbers modulo q, where q ∈ Z+, repeats with

period π(q), known as the Pisano period. Given integers 0 ≤ r < q and n, let S(q, r, n) =
{Fi : i ≤ n and Fi ≡ r (mod q)}. How well can we approximate |S(q, r, n)|? Is it possible
to develop an asymptotic formula for |S(q, r, n)| that becomes more precise as q and n grow
arbitrarily large?

Problem 10, posed by Russell Hendel
Let {an,i}n≥0, 1 ≤ i ≤ m, be a collection of m linear homogeneous recursive nondecreasing

sequences with constant coefficients. Define the merged sequence as the sequence formed by
arranging in nondecreasing order the set-theoretic union of these sequences. Define the weight,

w, of a sequence {Gn}n≥0 satisfying

p∑

i=0

biGn−i = 0 by wG =

p∑

i=0

|bi| .

Problem: Under what conditions does the merged sequence have a lesser order or lesser
weight than all contributing sequences?

Example 1. For i ≥ 0, let Hi = F2i and Ji = F2i+1. The merged sequence is the Fibonacci
sequence, of order 2 and weight 2, whereas H and J each have order 2 and weight 4, since
Hn = 3Hn−1−Hn−2 and Jn = 3Jn−1−Jn−2 This example is generalizable since subsequences
whose indices form arithmetic progressions inherit recursivity [1].

Example 2. For i ≥ 0, let H2i = Fi and H2i+1 = 0, and similarly, let J2i+1 = Fi and
J2i = 0. The merged sequence, G, satisfies G2i = G2i+1 = Fi. All three sequences, H, J, and
G, satisfy the recursion Kn = Kn−2 +Kn−4 of order 4 and hence have the same weight.

Reference. [1] Russell Jay Hendel, “Factorizations of sums of F (aj − b)”, The Fibonacci
Quarterly, 45 (2007) 128-133.
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Problem 11, posed by Michael Wiener
Given a prime p > 3 and 1 < κ < p− 1, we call a sequence (an)n in Fp a Φκ-sequence if it

is periodic with period p− 1 and satisfies the linear recurrence an + an+1 = an+κ with a0 = 1.
Such a sequence is said to be a complete Φκ-sequence if in addition

{a0, a1, . . . , ap−2} = {1, . . . , p− 1}.
For instance, every primitive root b mod p generates a complete Φκ-sequence an = bn for
some (unique) κ. In 1992 Brison [1] proved that for prime.p > 3, every complete Fibonacci
sequence (κ = 2) in Fp is generated by a Fibonacci primitive root (i.e. a root of x2 − x − 1
that is also a primitive root in Fp). In 2007, Gil, Weiner and Zara [2] studied the Padovan
case (κ = 3) and related cases. In particular, they proved that when x3−x−1 has fewer than
three distinct roots in Fp, then every complete Padovan sequence is generated by a Padovan
primitive root. However, in the case of three distinct roots, they proved this result only for
certain primes and conjectured that the statement holds for every p.

1. Given a prime p > 3, prove that a Φ3-sequence is complete if and only if an = bn, where
b is a primitive root in F3 that satisfies b3 = b+ 1.

2. Prove, more generally, that if prime p > 3 and any 1 < κ < p− 1, then a Φκ-sequence is
complete if and only if an = bn, where b is a primitive root in Fp that satisfies bκ = b+ 1.

References.
[1] Brison, Owen, “Complete Fibonacci sequences in finite fields”, The Fibonacci Quarterly

30 (1992), no. 4, 295-304.
[2] J. Gil, M. Weiner, and C. Zara, “Complete Padovan sequences in finite fields”, The

Fibonacci Quarterly 45 (2007), no. 1, 64–75.

Problem 12, posed by Clark Kimberling
Let S be the set generated by these rules: 1 ∈ S, and if x ∈ S, then 2x ∈ S and 1− x ∈ S;

so that S grows in generations:

g(1) = {1}, g(2) = {0, 2}, g(3) = {−1, 4}, g(4) = {−3,−2, 8}, . . .
Prove or disprove that each generation contains at least one Fibonacci number or its negative.

Problem 13, posed by Marjorie Johnson
Prove that the Fibonacci representations of squares of even subscripted Fibonacci numbers

end with 0001; and that the odd subscripted end with 000101. (Hint, consider sums of
Fibonacci numbers having subscripts of the form 4j or 4j + 2.) More difficult and more
interesting: find all integers M such that M2 ends in 0.

Problem 14, posed by Ron Knott, solved by Sam Northshield
As an infinite Mancala game, suppose a line of pots contains pebbles, 1 in the first, 2 in the

second, and n in the nth, without end. The pebbles are taken from the leftmost non-empty
pot and added, one per pot, to the pots to the right. Prove that the number of pebbles in
pot n as it is emptied is bnϕc , where ϕ is the golden ratio, (1 +

√
5)/2. (This is a variation on

a comment by Roland Schroeder on the lower Wythoff sequence; see A000201 in the Online
Encyclopedia of Integer Sequences.)

Solution by Sam Northshield. Starting with the positive integers, repeat the following
procedure:

* Remove the first entry to create a new row.

DECEMBER 2014 13



THE FIBONACCI QUARTERLY

* If that number was n, then add 1 to each of the first n entries in the new row, obtaining

1 2 3 4 5 6 7 8 9 10 11 12 . . .
3 3 4 5 6 7 8 9 10 11 12 . . .

4 5 6 6 7 8 9 10 11 12 . . .
6 7 7 8 8 9 10 11 12 . . .

Lemma.
2n− bnϕc =

⌊
n/ϕ2

⌋
= min{j :

⌊
jϕ2
⌋
≥ n}.

Proof. The first equality is obvious from 2− ϕ = 1/ϕ2. To prove the second, note that
⌊
n/ϕ2

⌋
< n/ϕ2 ⇒

⌊
n/ϕ2

⌋
ϕ2 < n⇒

⌊⌊
n/ϕ2

⌋
ϕ2
⌋
< n

and
n/ϕ2 <

⌈
n/ϕ2

⌉
⇒
⌈
n/ϕ2

⌉
ϕ2 > n⇒

⌊⌈
n/ϕ2

⌉
ϕ2
⌋
≥ n.

Theorem. Let dn denote the first term in the nth row of the array above. Then dn = bnϕc .
Proof. We see that the dj−1 ones added to the jth row contribute 1 to the value of dn if

j + dj−1 − 1 ≥ n. That is,

dn = n+ |{j ≤ n : j + dj−1 − 1 ≥ n}|
or equivalently,

dn = n+ |{j < n : j + dj−1 ≥ n}|
Since dn is strictly increasing, we arrive at the recursive formula

dn = 2n−min{j : dj + j ≥ n},
of which the solution is unique (given that d1 = 1) and so it is enough to show that bnϕc
satisfies it; i.e., that

bnϕc = 2n−min{j : bjϕc+ j ≥ n}.
Since bjϕc+ j =

⌊
jϕ2
⌋
, the lemma applies and the proof of the theorem is finished.

E-mail address: ck6@evansville.edu

University of Evansville, Evansville, IN
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EXTENDED FIBONACCI ZECKENDORF THEORY

PETER G. ANDERSON

Abstract. We review the well-known and less well-known properties of the two-way infinite
Fibonacci Zeckendorf array, namely every positive integer occurs exactly once in the right
half (Zeckendorf’s theorem), every integer occurs exactly once in a left portion with a ragged
boundary (Bunder’s theorem), and every pair of positive integers occurs as adjacent entries
exactly once (Morrison’s theorem). We refine the third statement and show how to locate the
given pairs in the array.

1. The Extended Zeckendorf Array

Table 1 shows the upper left-hand corner of the infinite Fibonacci Zeckendorf array [4, 5, 6].
The top row consists of the Fibonacci numbers starting 1, 2, 3, . . .. Each subsequent row
begins with the smallest positive integer that has not yet appeared (the numbers in each row
are strictly increasing, so this poses no problem). If a number has Zeckendorf representation
[7]
∑
ciFi, then the number to its right in the table is

∑
ciFi+1. Each row in this array clearly

follows the Fibonacci recurrence rule: ai,j = ai,j−1 + ai,j−2. It follows immediately that the
infinite table contains every positive integer once and only once.

This array is closely connected to the well-known Theorem of Zeckendorf [7].

Theorem 1.1. Every positive integer n is uniquely a finite sum
∑

k≥2 ckFk with ck ∈ {0, 1}
and ck + ck+1 ≤ 1, for all k.

Each row of Table 1 can be extended arbitrarily far to the left via precurrence: ai,j =
ai,j+2− ai,j+1. Table 2 shows a fragment of Table 1 precursed several columns. The unshaded
right two columns in Table 2 are the initial two columns of Table 1. The unshaded left portion
of Table 2 corresponds to those numbers expressed in the table as sums consisting only of
Fibonacci numbers with negative subscripts. Bunder [3] showed that every non-zero integer
has a unique representation as a sum of Fibonacci numbers with negative subscripts, no two
consecutive. He also provided an algorithm to produce such sums.

The present paper deals with Extended Fibonacci Zeckendorf (EZ) representations in which
we express integers as sums of non-consecutive Fibonacci numbers without restriction on the
signs of the subscripts. It is easy to see that without some rules there are an infinite number
of ways to express any integer (if k is even Fk = −F−k, so there are an infinite number of
representations of zero).

The Main Result (Theorem 2.11) is that given any pair of positive integers, a and b, there
is an Extended Zeckendorf representation a =

∑
ckFk such that b =

∑
ckFk+1. Section 3

discusses methods of determining the {ck}. (Theorem 2.11 is slightly stronger than stated
here.)
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Table 1. The Fibonacci Zeckendorf array.

1 2 3 5 8 13 21 34 55 89
4 7 11 18 29 47 76 123 199 322
6 10 16 26 42 68 110 178 288 466
9 15 24 39 63 102 165 267 432 699
12 20 32 52 84 136 220 356 576 932
14 23 37 60 97 157 254 411 665 1076
17 28 45 73 118 191 309 500 809 1309
19 31 50 81 131 212 343 555 898 1453
22 36 58 94 152 246 398 644 1042 1686
25 41 66 107 173 280 453 733 1186 1919
27 44 71 115 186 301 487 788 1275 2063
30 49 79 128 207 335 542 877 1419 2296
33 54 87 141 228 369 597 966 1563 2529
35 57 92 149 241 390 631 1021 1652 2673
38 62 100 162 262 424 686 1110 1796 2906
40 65 105 170 275 445 720 1165 1885 3050
43 70 113 183 296 479 775 1254 2029 3283

Table 2. The precursed Fibonacci Zeckendorf array. The unshaded portion
on the right repeats the first two columns of the array of Table 1. The unshaded
portion on the left contains the numbers represented by sums of only negatively
subscripted Fibonacci numbers.

89 -55 34 -21 13 -8 5 -3 2 -1 1 0 1 1 2
123 -76 47 -29 18 -11 7 -4 3 -1 2 1 3 4 7
68 -42 26 -16 10 -6 4 -2 2 0 2 2 4 6 10
102 -63 39 -24 15 -9 6 -3 3 0 3 3 6 9 15
136 -84 52 -32 20 -12 8 -4 4 0 4 4 8 12 20
81 -50 31 -19 12 -7 5 -2 3 1 4 5 9 14 23
115 -71 44 -27 17 -10 7 -3 4 1 5 6 11 17 28
60 -37 23 -14 9 -5 4 -1 3 2 5 7 12 19 31
94 -58 36 -22 14 -8 6 -2 4 2 6 8 14 22 36
128 -79 49 -30 19 -11 8 -3 5 2 7 9 16 25 41
73 -45 28 -17 11 -6 5 -1 4 3 7 10 17 27 44
107 -66 41 -25 16 -9 7 -2 5 3 8 11 19 30 49
141 -87 54 -33 21 -12 9 -3 6 3 9 12 21 33 54
86 -53 33 -20 13 -7 6 -1 5 4 9 13 22 35 57
120 -74 46 -28 18 -10 8 -2 6 4 10 14 24 38 62
65 -40 25 -15 10 -5 5 0 5 5 10 15 25 40 65
99 -61 38 -23 15 -8 7 -1 6 5 11 16 27 43 70
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Table 3. Bergman’s φnary representation of some small integers. The • is the
analog of a traditional radix point. Columns are labeled with powers of φ and
also with Fibonacci numbers.

5 3 2 1 1 • 0 1 -1 2
φ4 φ3 φ2 φ 1 • φ−1 φ−2 φ−3 φ−4

1: 1 •
2: 1 0 • 0 1
3: 1 0 0 • 0 1
4: 1 0 1 • 0 1
5: 1 0 0 0 • 1 0 0 1
6: 1 0 1 0 • 0 0 0 1
7: 1 0 0 0 0 • 0 0 0 1
8: 1 0 0 0 1 • 0 0 0 1
9: 1 0 0 1 0 • 0 1 0 1
10: 1 0 1 0 0 • 0 1 0 1
11: 1 0 1 0 1 • 0 1 0 1

2. Extended Zeckendorf representations

Bergman [2] introduced the representation of non-negative integers using the irrational base

φ = 1+
√
5

2 where

n =
∞∑

−∞
ckφ

k (2.1)

is a finite sum (i.e., Laurent polynomial) with ck ∈ {0, 1} and ck + ck+1 ≤ 1, for all k, as in
the Zeckendorf and Bunder representations above. The relation

φk+1 = φk + φk−1, for all k (2.2)

yields carrying-and-borrowing rules for this notation. This is also known as the φnary number
system.

The extension of Bergman’s results to φnary representations of positive numbers bφ+ a, a
and b integers, will yield our main result.

The process of determining φnary representations is based on two observations of Bergman’s.
(In the following observations, n is a positive integer.)

Observation 2.1. If there is a finite sum n =
∑
ckφ

k with ck ∈ {0, 1}, for all k, then there
is a finite sum n =

∑
dkφ

k with dk ∈ {0, 1}, and dk + dk+1 ≤ 1, for all k.

Observation 2.2. If there is a finite sum n =
∑
ckφ

k with ck ∈ {0, 1}, for all k, then there
is a finite sum n =

∑
dkφ

k with dk ∈ {0, 1}, for all k, and d0 = 0.

These are proved by straightforward applications of the carrying-and-borrowing principle.
Bergman’s theorem, that every non-negative integer has a representation as in Equation

(2.1), follows by induction from these two observations, starting with φ0 = 1. Table 2 shows
the φnary representation of integers 1–11 written to mimic binary representation. Each column
is labeled with the φk and also with Fk+1 per Proposition 2.5.

For Proposition 2.4, we need a third observation corresponding to Bergman’s two:
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Observation 2.3. If there is a finite sum n =
∑
ckφ

k, with ck ∈ {0, 1}, for all k, then there
is a finite sum n =

∑
dkφ

k with dk ∈ {0, 1}, for all k, and d0 = 1.

Proposition 2.4. Bergman’s φnary representation of non-negative integers is unique.

Proof. Bergman’s mechanism of adding 1 to the representation of n to get the representation
of n+ 1 can be easily reversed using Observation 2.3, along with the trivial observation that
for positive n =

∑
ckφ

k (the Bergman representation), for at least one k ≥ 0, ck = 1. �
Proposition 2.5. When n =

∑
ckφ

k is Bergman’s φnary representation of n then

n =
∑

ckFk+1 (2.3)

Proof. Bergman’s mechanism of adding φ0 = 1 to the representation of n to get the repre-
sentation of n + 1 is unchanged when the powers of φ are replaced by the Fibonacci num-
bers. We replace φ0 with F1 and, generally, φk with Fk+1. (However, it is important to
regard numbers such as · · · , F2, F1, F0, F−1, · · · as Fibonacci numbers with generic subscripts,
· · · , Fk+2, Fk+1, Fk, Fk−1, · · · .) �

We call Eq. (2.3) the Bergman-Zeckendorf (BZ) representation of n.

Proposition 2.6. If n =
∑
ckFk+1 is the BZ representation of n, then 0 =

∑
ckFk.

Proof. Replace the notion of repeatedly adding F1 = 1 in the proof of Proposition 2.5 by
adding F0 = 0. �

In Proposition 2.6, we have Bergman’s representation of φ−1 corresponding to an EZ rep-
resentation of zero. We exploit this below.

Proposition 2.7. The EZ representations of zero given in Theorem 2.6 are the only EZ
representations of zero.

Proof. Suppose 0 =
∑
ckFk is an EZ, specifically a finite sum. For sufficiently large m, the

number um =
∑
ckFk+m will be positive, because the Fibonacci numbers {Fk+m} must all be

positive. Consequently, the sequence {um}∞m=0, which obeys the Fibonacci recurrence, must
satisfy u1 = u2 > 0, and EZ representation we have for u1 must be its BZ representation. �

The following propositions extend Bergman’s representation to numbers of the form bφ+a.
In the following, u0 and u1 are integers, and un+1 = un + un−1 for all n.

Proposition 2.8. If u1φ+ u0 > 0, there exists n0 such that for any n ≥ n0 we have un > 0.

Proof. Use the matrix form of the Fibonacci recurrence, (un+1, un) = (un, un−1)
(

1 1
1 0

)
. The

positive eigenvalue of the matrix, (1 +
√

5)/2, corresponds to the eigenvector (φ, 1). Conse-
quently, if the scalar product u1φ + u0 = (u1, u0) · (φ, 1) > 0 and n is sufficiently large, then

the components of the vector(un+1, un) = (u1, u0)

(
1 1
1 0

)n

will be positive. �

Proposition 2.9. We have (u1φ+ u0)φ
n = un+1φ+ un.

Proof. This follows immediately from φ2 = φ+ 1. �
Proposition 2.10. If bφ+ a > 0, a and b integers, there is a φnary representation of bφ+ a.

Proof. Let Bφ + A = (bφ + a)φn = bφn+1 + aφn and n be large enough so A > 0, B > 0.
Bφ+A has φnary representation

∑
ckφ

k. Consequently, bφ+ a =
∑
ck−nφk. �
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We may now give the refined statement and proof of our main result.

Theorem 2.11. If bφ+a > 0, a and b integers, there is an Extended Zeckendorf representation
a =

∑
ckFk such that b =

∑
ckFk+1.

Proof. Because φnary representations of φ−1 correspond to EZ representations of zero, and
F1 = F−1 = 1, the desired coefficients are in the φnary representation bφ−1 + aφ−2 =

∑
ckφ

k.
This can be achieved by a minor modification of the above. �

3. Illustrations and Finding the Coefficients

Below are terms of sequences defined using the Fibonacci recurrence with initial values
(a, b) of (6, 5) and (5, 6). The initial numbers in each list are expressed as sums of Fibonacci
numbers using the usual Zeckendorf expansion. Eventually, at (27, 43) in the left example,
(17, 28) in the right, the expansion of the second value in the pair is clearly the Fibonacci shift
of the first. From that point on, the list reverses (using precursion) back to the starting pair
of values. During this reversal, the Fibonacci numbers in the right-hand summations are also
precursed, leading to the desired expansion of 5 as the shift of 6 and vice versa.

6 = 1 + 5 5 = 5
5 = 5 + 6 = 1 + 5
11 = 3 + 8 11 = 3 + 8
16 = 3 + 13 17 = 1 + 3 + 13
27 = 1 + 5 + 21 28 = 2 + 5 + 21
43 = 1 + 8 + 34 17 = 1 + 3 + 13
27 = 1 + 5 + 21 11 = 1 + 2 + 8
16 = 0 + 3 + 13 6 = 0 + 1 + 5
11 = 1 + 2 + 8 5 = 1 + 1 + 3
5 = -1 + 1 + 5
6 = 2 + 1 + 3

Notice that the pairs of values (6, 5) and (5, 6) are in the shaded regions of Table 2.
The above may be thought of as an algorithm—admittedly inefficient—for locating the

coefficients of Theorem 2.11.
A second—also inefficient—algorithm is to determine the φnary representation

bφ−1 + aφ−2 =
∑

ciφ
i (3.1)

The coefficients {ci} of Eq. 3.1 are again those of Theorem 2.11.
A third algorithm, in the spirit of the greedy change-making algorithm to find the usual

Zeckendorf coefficients, is as follows.
We are given (a, b) such that a+ bφ > 0. Iteratively, locate the largest n such that [(a, b)−

(Fn, Fn+1)] · (1, φ) ≥ 0 and replace (a, b) with the difference (a, b)− (Fn, Fn+1). Terminate the
algorithm when (a, b) = (0, 0).

Below, we use this algorithm on our example pairs (6, 5) and (5, 6).
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(Fn Fn+1) (a b) a+ bφ
(6 5) 14.09017

(6 5) - (3 5) = (3 0) 3.00000
(6 5) - (5 8) = (1 -3) -3.85410

(3 0) - (1 1) = (2 -1) 0.38197
(3 0) - (1 2) = (2 -2) -1.23607

(2 -1) - (2 -1) = (0 0) 0.00000
(2 -1) - (-1 1) = (3 -2) -0.23607

(Fn Fn+1) (a b) a+ bφ
(5 6) 14.70820

(5 6) - (3 5) = (2 1) 3.61803
(5 6) - (5 8) = (0 -2) -3.23607

(2 1) - (1 1) = (1 0) 1.00000
(2 1) - (1 2) = (1 -1) -0.61803

(1 0) - (1 0) = (0 0) 0.00000
(1 0) - (0 1) = (1 -1) -0.61803

4. Generalizations to Other Recurrences: Success and Failure

Now consider k-th order “generalized Fibonacci sequences” of the form un =
∑k

i=1Riun−i,
starting with k initial values 0, . . . , 0, 1.

Zeckendorf representations and arrays exist, for these sequences, as above. That is, the
initial row of the array is the sequence ai,j = uj suitable shifted so the first two elements are
1 and an integer larger than 1. Subsequent rows begin with the smallest number that has
not yet appeared, with the elements of that row being Zeckendorf shifts of the first element.
These arrays contain each positive integer exactly once. (Zeckendorf representations based
on this recurrence are, as with the Fibonacci case, determined by the greedy change-making
algorithm.)

The k-bonacci numbers for which {Ri} = (1, 1, . . . , 1) were addressed in [1], which proved
the analogy of Theorem 2.11: a sequence of k positive numbers (a1, . . . , ak) possesses a k-
bonacci extended Zeckendorf representation for each ai such that the representation of ai+i is
the shift of that of ai, for all 1 ≤ i < k.

However, for the case of {Ri} = (1, 0, . . . , 0, 1) the φnary representation theory does not
apply, starting with k = 4: un = un−1 + un−4. This sequence begins

0, 0, 0, 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 95, 131, 181, 250, 345, 476, 657, 907, . . .

The Bergman/Zeckendorf coefficients {ci} for this sequence require

• ci ∈ {0, 1}.
• Every non-zero ci is preceded by and followed by at least three zeros.
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There is no finite Bergman representation for 2 or 1 + φ. That is, the sequences {2ui} and
{ui + ui+1} are not in the Zeckendorf array.

For the k = 5, the periodic sequence, S, with period five,

0, 1, 1, 0,−1,−1, . . .

satisfies un = un−1 + un−5. The Zeckendorf array for this sequence, as usual, contains every
positive integer exactly once. The sum of two sequences that satisfies a given recurrence will
also satisfy that recurrence, so the sum of S with any row, R, of the Zeckendorf array will be
eventually positive, yet will contain infinitely many values in common with R.
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PULSATED FIBONACCI RECURRENCES

KRASSIMIR T. ATANASSOV, DARYL R. DEFORD, AND ANTHONY G. SHANNON

Abstract. In this note we define a new type of pulsated Fibonacci sequence. Properties are
developed with a successor operator. Some examples are given.

1. Introduction

The motivation for this work goes back to some research of Hall [9], Neumann [14], and
Stein [19] on finite models of identities. In order to answer the question of whether every
member of a variety is a quasi–group given that every finite member is, Stein [18] found it
necessary to examine the intersection of Fibonacci sequences.

Subba Rao [20, 21], Horadam [10], and Shannon [17] investigated the intersection of Fi-
bonacci and Lucas sequences and their generalizations with asymptotic proofs, while Péter Kiss
adopted a different approach and supplied many relevant historical references [11]. Atanassov
developed coupled recursive sequence which had some obvious intersections [1, 5]. Not con-
sidered here are various sequences, such as diatomic sequences, which by their very definitions
intersect with many other sequences [14].

In this paper, following previous research (see [2, 3, 4]), a new type of pulsated Fibonacci
sequence is developed: ‘pulsated’ because, in a sense, these sequences expand and contract
with regular movements.

2. Definitions

Let a, b, and c be three fixed real numbers. Let us construct the following two recurrent
sequences, {αn} and {βn} with initial conditions:

α0 = β0 = a, (2.1)

α1 = 2b, (2.2)

β1 = 2c, (2.3)

satisfying the combined recurrence relations:

α2k = β2k = α2k−2 +
α2k−1 + β2k−1

2
, (2.4)

α2k+1 = α2k + β2k−1, (2.5)

β2k+1 = β2k + α2k−1, (2.6)

for every natural number k ≥ 1. We refer to this pair of intertwined sequences as the
(a; 2b; 2c)–Pulsated Fibonacci sequence. The first values of the sequence are given in the
following table:

Key words and phrases. Fibonacci Sequence, Systems of Recurrences, Successor Operator.
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Table 1. Initial values for the (a; 2b; 2c)–Pulsated Fibonacci sequence.

n α2k+1 α2k = β2k β2k+1

0 – a –
1 2b – 2c
2 – a+ b+ c –
3 a+ b+ 3c – a+ 3b+ c
4 – 2a+ 3b+ 3c –
5 3a+ 6b+ 4c – 3a+ 4b+ 6c
6 – 5a+ 8b+ 8c –
7 8a+ 12b+ 14c – 8a+ 14b+ 12c
8 – 13a+ 21b+ 21c –

Theorem 2.1. For every natural number k ≥ 1, with the elements of the Fibonacci sequence
denoted {Fn},

α2k = β2k = F2k−1a+ F2kb+ F2kc, (2.7)

α4k−1 = F4k−2a+ (F4k−1 − 1)b+ (F4k−1 + 1)c, (2.8)

β4k−1 = F4k−2a+ (F4k−1 + 1)b+ (F4k−1 − 1)c, (2.9)

α4k+1 = F4ka+ (F4k+1 + 1)b+ (F4k+1 − 1)c, (2.10)

β4k+1 = F4ka+ (F4k+1 − 1)b+ (F4k+1 + 1)c. (2.11)

Proof. We proceed by mathematical induction. Obviously, for k = 1 the assertion is valid.
Let us assume that for some natural number k ≥ 1, (2.7)–(2.11) hold. For the natural number
k + 1, first, we check that

α4k+2 (2.12)

= β4k+2 (2.13)

= α4k +
α4k+1+β4k+1

2 (2.14)

= F4k−1a+ F4kb+ F4kc+
F4ka+(F4k+1+1)b+(F4k+1−1)c+F4ka+(F4k+1−1)b+(F4k+1+1)c

2 (2.15)

= F4k−1a+ F4kb+ F4kc+ F4ka+ F4k+1b+ F4k+1c. (2.16)

Secondly, we check that

α4k+1 (2.17)

= α4k+2 + β4k+1 (2.18)

= F4k+1a+ F4k+2b+ F4k+2c+ F4ka+ (F4k+1 − 1)b+ (F4k+1 + 1)c (2.19)

= F4k+2a+ (F4k+3 − 1)b+ (F4k+3 + 1)c. (2.20)

All of the other equalities are checked analogously. �
For example, when c = −b, the Pulsated Fibonacci sequence has the form shown in Table

2, while when c = b we obtain Table 3.
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Table 2. Initial values for the (a; 2b;−2b)–Pulsated Fibonacci sequence.

n α2k+1 α2k = β2k β2k+1

0 – a –
1 2b – −2b
2 – a –
3 a− 2b – a+ 2b
4 – 2a –
5 3a+ 2b – 3a− 2b
6 – 5a –
7 8a− 2b – 8a+ 2b
8 – 13a –

Table 3. Initial values for the (a; 2b; 2b)–Pulsated Fibonacci sequence.

n α2k+1 α2k = β2k β2k+1

0 – a –
1 2b – 2b
2 – a+ 2b –
3 a+ 4b – a+ 4b
4 – 2a+ 6b –
5 3a+ 10b – 3a+ 10b
6 – 5a+ 16b –
7 8a+ 26b – 8a+ 26b
8 – 13a+ 42b –

Where the coefficients can be easily derived from the result of Theorem 1 by substitution.

3. Discussion

We note that the recursive definitions of α and β may be rewritten in the following form:

αk =

{
αk−2 +

αk−1+βk−1

2 k ≡ 0 (mod 2)

αk−1 + βk−2 k ≡ 1 (mod 2)
(3.1)

and

βk =

{
αk−2 +

αk−1+βk−1

2 k ≡ 0 (mod 2)

βk−1 + αk−2 k ≡ 1 (mod 2)
(3.2)

This interpretation permits the statement of this problem in terms of the successor operator
method introduced by DeTemple and Webb in [7]. Thus, we may define helper sequences

wn = α2n, (3.3)

xn = α2n+1, (3.4)

yn = β2n, (3.5)

zn = β2n+1. (3.6)
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This allows us to rewrite (3.1) and (3.2) as

wn = yn = wn−1 + 1
2xn−1 + 1

2zn−1, (3.7)

xn = wn + zn−1, (3.8)

zn = yn + xn−1. (3.9)

Which in terms of the successor operator E gives the following linear system of sequences:



E − 1 −1
2 0 −1

2
−E E 0 −1
−1 −1

2 E −1
2

0 −1 −E E







wn
xn
yn
zn


 =




0
0
0
0


 . (3.10)

Thus, the determinant of this system gives the characteristic polynomial of a recurrence
relation that annihilates all of the sequences. The determinant is equal to E(E3−2E2−2E+1)
and hence the sequences {wn}, {xn}, {yn} and {zn} all satisfy the third order homogeneous,
linear recurrence relation

tn = 2tn−1 + 2tn−2 − tn−3. (3.11)

This recurrence (3.11) has eigenvalues {−1, 3±
√
5

2 }, and, with initial values of unity yields
the ‘coupled’ sequence {1, 1, 1, 3, 7, 19, 49, 129, 337, . . .} [6]. This sequence appears in the OEIS
as A061646, with a variety of combinatorial interpretations [16]. Additionally, the polynomial
factors further as E(E+ 1)(E2−3E+ 1). From this factorization the sequence {wn} and {yn}
(the even α and β terms) satisfy the second order relation

tn = 3tn−1 − tn−2, (3.12)

which is also satisfied by alternate terms of the Fibonacci sequence (A001519 and A001906
[16]).

Finally, putting the sequences back together we would expect to need a sixth order recur-
rence. Instead, we find that both of the original αn and βn sequences satisfy the fourth order
recurrence

tn = tn−1 + tn−3 + tn−4. (3.13)

This recurrence (3.13) has roots {±i, 1±
√
5

2 } and with unit initial values yields the sequence
{1, 1, 1, 1, 3, 5, 7, 11, 19, 31, 49, 79, 129, . . .}, contained in the OEIS as A126116 [16], of which
the couple sequence above is a subsequence. The connections among all these sequence are

not surprising since, as is well known, i2 = −1 and
(
1+
√
5

2

)2
= 3+

√
5

2 , and so on.

4. Concluding Comments

In summary then, we have that the given recursive sequences satisfy the following recur-
rences:

Sequence Recurrence Relation
αn and βn tn = tn−1 + tn−3 + tn−4
wn = α2n = β2n = yn tn = 3tn−1 − tn−2
xn = α2n+1 and zn = β2n+1 tn = 2tn−1 + 2tn−2 − tn−3

The two sequences discussed in [2, 3] we called 2–Pulsated Fibonacci sequences (from
(a;b) and (a;b;c)–types). In [4] they were extended to what were called s–Pulsated Fi-
bonacci sequences, where s ≥ 3. In future research, it is planned to extend the present
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2–Pulsated Fibonacci sequences from (a; 2b; 2c)–type, to s–Pulsated Fibonacci sequences from
(a; 2b1; . . . , 2bs)–type. Other related possibilities for research concern

• conjectures on the number of distinct prime divisors of these sequences [13, 22],
• connections with geometry [6, 8, 12].
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COMBINATORIAL PROOFS OF FIBONOMIAL IDENTITIES

ARTHUR T. BENJAMIN AND ELIZABETH REILAND

Abstract. Fibonomial coefficients are defined like binomial coefficients, with integers re-
placed by their respective Fibonacci numbers. For example,

(
10
3

)
F

= F10F9F8
F3F2F1

. Remarkably,(
n
k

)
F

is always an integer. In 2010, Bruce Sagan and Carla Savage derived two very nice
combinatorial interpretations of Fibonomial coefficients in terms of tilings created by lattice
paths. We believe that these interpretations should lead to combinatorial proofs of Fibonomial
identities. We provide a list of simple looking identities that are still in need of combinatorial
proof.

1. Introduction

What do you get when you cross Fibonacci numbers with binomial coefficients? Fibono-
mial coefficients, of course! Fibonomial coefficients are defined like binomial coefficients, with
integers replaced by their respective Fibonacci numbers. Specifically, for n ≥ k ≥ 1,

(
n

k

)

F

=
FnFn−1 · · ·Fn−k+1

F1F2 · · ·Fk

For example,
(
10
3

)
F

= F10F9F8
F3F2F1

= 55·34·21
1·1·2 = 19,635. Fibonomial coefficients resemble binomial

coefficients in many ways. Analogous to the Pascal Triangle boundary conditions
(
n
1

)
= n and(

n
n

)
= 1, we have

(
n
1

)
F

= Fn and
(
n
n

)
F

= 1. We also define
(
n
0

)
F

= 1.

Since Fn = Fk+(n−k) = Fk+1Fn−k + FkFn−k−1, Pascal’s recurrence
(
n
k

)
=
(
n−1
k

)
+
(
n−1
k−1
)

has
the following analog.

Identity 1.1. For n ≥ 2,
(
n

k

)

F

= Fk+1

(
n− 1

k

)

F

+ Fn−k−1

(
n− 1

k − 1

)

F

.

As an immediate corollary, it follows that for all n ≥ k ≥ 1,
(
n
k

)
F

is an integer. Interesting
integer quantities usually have combinatorial interpretations. For example, the binomial co-
efficient

(
a+b
a

)
counts lattice paths from (0, 0) to (a, b) (since such a path takes a+ b steps, a

of which are horizontal steps and the remaining b steps are vertical). As described in [1] and
elsewhere, the Fibonacci number Fn+1 counts the ways to tile a strip of length n with squares
(of length 1) and dominos (of length 2). As we’ll soon discuss, Fibonomial coefficients count,
appropriately enough, tilings of lattice paths!

2. Combinatorial Interpretations

In 2010 [9], Bruce Sagan and Carla Savage provided two elegant counting problems that are
enumerated by Fibonomial coefficients. The first problem counts restricted linear tilings and
the second problem counts unrestricted bracelet tilings as described in the next two theorems.

28



COMBINATORIAL PROOFS OF FIBONOMIAL IDENTITIES

Theorem 2.1. For a, b ≥ 1,
(
a+b
a

)
F

counts the ways to draw a lattice path from (0, 0) to (a, b),
then tile each row above the lattice path with squares and dominos, then tile each column below
the lattice path with squares and dominos, with the restriction that the column tilings are not
allowed to start with a square.

Let’s use the above theorem to see what
(
6
3

)
F

= F6F5F4
F1F2F3

= 8·5·3
1·1·2 = 60 is counting. There are(

6
3

)
= 20 lattice paths from (0, 0) to (3, 3) and each lattice path creates an integer partition

(m1,m2,m3) where 3 ≥ m1 ≥ m2 ≥ m3 ≥ 0, where mi is the length of row i. Below the path
the columns form a complementary partition (n1, n2, n3) where 0 ≤ n1 ≤ n2 ≤ n3 ≤ 3. For
example, the lattice path below has horizontal partition (3, 1, 1) and vertical partition (0, 2, 2).
The first row can be tiled F4 = 3 ways (namely sss or sd or ds where s denotes a square
and d denotes a domino). The next rows each have one tiling. The columns, of length 0, 2
and 2 can only be tiled in 1 way with the empty tiling, followed by tilings d and d since the
vertical tilings are not allowed to begin with a square. For another example, the lattice path
associated with partition (3, 2, 2) (with complementary vertical partition (0, 0, 2)) can be tiled
12 ways. These lattice paths are shown below.

(0,0)

(3,3)

3 ways

1 way

1 way

1

w
a
y

1

w
a
y

(0,0)

(3,3)

3 ways

2 ways

2 ways

1

w
a
y

Figure 1. The rows of the lattice path (3, 1, 1) can be tiled 3 ways. The
columns below the lattice path, with vertical partition (0, 2, 2) can be tiled 1
way since those tilings may not start with squares. This lattice path contributes
3 tilings to

(
6
3

)
F

. The lattice path (3, 2, 2) contributes 12 tilings to
(
6
3

)
F

.

The lattice path associated with (3, 1, 0) has no legal tilings since its vertical partition is
(1, 2, 2) and there are no legal tilings of the first column since it has length 1. There are
10 lattice paths that yield at least one valid tiling. Specifically, the paths associated with
horizontal partitions (3, 3, 3), (3, 2, 2), (3, 1, 1), (3, 0, 0), (2, 2, 2), (2, 1, 1), (2, 0, 0), (1, 1, 1),
(1, 0, 0), (0, 0, 0) contribute, respectively, 27 + 12 + 3 + 3 + 8 + 2 + 2 + 1 + 1 + 1 = 60 tilings

to
(
6
3

)
F

.

More generally, for the Fibonomial coefficient
(
a+b
a

)
F

, we sum over the
(
a+b
a

)
lattice paths

from (0, 0) to (a, b) which corresponds to an integer partition (m1,m2, . . . ,mb) where a ≥
m1 ≥ m2 · · · ≥ mb ≥ 0, and has a corresponding vertical partition (n1, n2, . . . , na) where
0 ≤ n1 ≤ n2 · · · ≤ na ≤ b. Recalling that F0 = 0 and F−1 = 1, this lattice path contributes

Fm1+1Fm2+1 · · ·Fmb+1 Fn1−1Fn2−1 · · ·Fna−1

tilings to
(
a+b
a

)
F

.
The second combinatorial interpretation of Fibonomial coefficients utilizes circular tilings,

or bracelets. A bracelet tiling is just like a linear tiling using squares and dominos, but bracelets
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also allow a domino to cover the first and last cell of the tiling. As shown in [1], for n ≥ 1, the
Lucas number Ln counts bracelet tilings of length n. For example, there are L3 = 4 tilings of
length 3, namely sss, sd, ds and d′s where d′ denotes a domino that covers the first and last
cell. Note that L2 = 3 counts ss, d and d′ where the d′ tiling is a single domino that starts
at cell 2 and ends on cell 1. For combinatorial convenience, we say there are L0 = 2 empty
tilings. The next combinatorial interpretation of Sagan and Savage has the advantage that
there is no restriction on the vertical tilings.

Theorem 2.2. For a, b ≥ 1, 2a+b
(
a+b
a

)
F

counts the ways to draw a lattice path from (0, 0) to
(a, b), then assign a bracelet to each row above the lattice path and to each column below the
lattice path.

Specifically, the lattice path from (0, 0) to (a, b) that generates the partition (m1,m2, . . . ,mb)
above the path and the partition (n1, n2, . . . , na) below the path contributes

Lm1Lm2 · · ·Lmb
Ln1Ln2 · · ·Lna

bracelet tilings to 2a+b
(
a+b
a

)
F

. Note that each empty bracelet contributes a factor of 2 to this
product. For example, the lattice path from (0, 0) to (3, 3) with partition (3, 1, 1) above the
path and (0, 2, 2) below the path contributes L3L1L1L0L2L2 = 72 bracelet tilings enumerated

by 26
(
6
3

)
F

= 64 × 60 = 3840.

(0,0)

(3,3)

L3 = 4 ways

1 way

1 way

3

ways

3

ways

L0 = 2 ways

Figure 2. The rows above the lattice path can be tiled with bracelets in 4
ways and the columns below the path can be tiled with bracelets in L0L2L2 =
2 × 3 × 3 = 18 ways. This contributes 72 bracelet tilings to 26

(
6
3

)
F

= 3840.

In their paper, Sagan and Savage extend their interpretation to handle Lucas sequences,
defined by U0 = 0, U1 = 1 and for n ≥ 2, Un = aUn−1 + bUn−2. Here Un+1 enumerates the
total weight of all tilings of length n where the weight of a tiling with i squares and j dominos
is aibj . (Alternatively, if a and b are positive integers, Un+1 counts colored tilings of length n
where there are a colors for squares and b colors for dominos.) Likewise the number of weighted
bracelets of length n is given by Vn = aVn−1 + bVn−2 with initial conditions V0 = 2 and V1 = a
(so the empty bracelet has a weight of 2). This leads to a combinatorial interpretation of
Lucasnomial coefficients

(
n
k

)
U

, defined like the Fibonomial coefficients. For example,
(

10

3

)

U

=
U10U9U8

U1U2U3
.

Both of the previous combinatorial interpretations work exactly as before, using weighted (or
colored) tilings of lattice paths.
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3. Combinatorial Proofs

Now that we know what they are counting, we should be able to provide combinatorial
proofs of Fibonomial coefficient identities. For example, Identity 1.1 can be rewritten as
follows.

Identity 3.1. For m,n ≥ 1,
(
m+ n

m

)

F

= Fm+1

(
m+ n− 1

m

)

F

+ Fn−1

(
m+ n− 1

m− 1

)

F

.

Combinatorial Proof: The left side counts tilings of lattice paths from (0, 0) to (m,n). How
many of these tiled lattice paths end with a vertical step? As shown below, in all of these
lattice paths, the first row has length m and can be tiled Fm+1 ways. The rest depends on the
lattice path from (0, 0) to (m,n − 1). Summing over all possible lattice paths from (0, 0) to

(m,n− 1) there are
(
m+n−1

m

)
F

tiled lattice paths for the rest of the lattice. Hence the number

of tiled lattice paths ending in a vertical step is Fm+1

(
m+n−1

m

)
F

.

(0, 0)

(m,n)

(m,n− 1)
Fm+1 ways

(
m+ n− 1

m

)

F

ways

Figure 3. There are Fm+1

(
m+n−1

m

)
F

tiled lattice paths that end with a vertical step.

How many tiled lattice paths end with a horizontal step? In all such paths, the last column
has length n and can be tiled Fn−1 ways (beginning with a domino). Summing over all lattice

paths from (0, 0) to (m−1, n) there are
(
m+n−1
m−1

)
F

tiled lattice paths for the rest of the lattice.

Hence the number of tiled lattice paths ending in a horizontal step, as illustrated below, is
Fn−1

(
m+n−1
m−1

)
F

.

(0, 0)

(m− 1, n) (m,n)

(
m+ n− 1

m− 1

)

F

ways

Fn−1

ways

domino

Figure 4. There are Fn−1
(
m+n−1
m−1

)
F

tiled lattice paths that end with a hori-

zontal step.
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Combining the two previous cases, the total number of tiled lattice paths from (0, 0) to

(m,n) is Fm+1

(
m+n−1

m

)
F

+ Fn−1
(
m+n−1
m−1

)
F
. �

Replacing linear tilings with bracelets and removing the initial domino restriction for vertical
tilings, we can apply the same logic as before to get

2m+n

(
m+ n

m

)

F

= 2m+n−1Lm

(
m+ n− 1

m

)

F

+ 2m+n−1Ln

(
m+ n− 1

m− 1

)

F

.

Dividing both sides by 2m+n−1 gives us

Identity 3.2. For m,n ≥ 1,

2

(
m+ n

m

)

F

= Lm

(
m+ n− 1

m

)

F

+ Ln

(
m+ n− 1

m− 1

)

F

.

In full disclosure, Identities 3.1 and 3.2 are used by Sagan and Savage to prove their combi-
natorial interpretations, so it is no surprise that these identities would have easy combinatorial
proofs. The same is true for the weighted (or colorized) version of these identities for Lucas-
nomial coefficients.

Identity 3.3. For m,n ≥ 1,(
m+ n

m

)

U

= Um+1

(
m+ n− 1

m

)

U

+ Un−1

(
m+ n− 1

m− 1

)

U

.

Identity 3.4. For m,n ≥ 1,

2

(
m+ n

m

)

U

= Vm

(
m+ n− 1

m

)

U

+ Vn

(
m+ n− 1

m− 1

)

U

.

By considering the number of vertical steps that a lattice path ends with, Reiland [8] proved

Identity 3.5. For m,n ≥ 1,
(
m+ n

m

)

F

=

n∑

j=0

F j
m+1Fn−j−1

(
m− 1 + n− j

m− 1

)

F

Combinatorial Proof: We count the tiled lattice paths from (0, 0) to (m,n) by considering the
number j of vertical steps at the end of the path, where 0 ≤ j ≤ n. Such a tiling begins

with j full rows, which can be tiled F j
m+1 ways. Since the lattice path must have a horizontal

step from (m− 1, n− j) to (m,n− j), the last column will have height n− j and can be tiled
(without starting with a square) in Fn−j−1 ways. The rest of the tiling consists of a tiled lattice

path from (0, 0) to (m− 1, n− j) which can be created in
(
m−1+n−j

m−1
)
F

ways. (Note that when

j = n− 1, the summand is 0, since F0 = 0, as is appropriate since the last column can’t have
height 1 without starting with a square; also, when j = n, F−1 = 1, so the summand simplifies

to Fn
m+1, as required.) All together, the number of tilings is

∑n
j=0 F

j
m+1Fn−j−1

(
m−1+n−j

m−1
)
F

,

as desired.
�

By the exact same logic, using bracelet tilings, we get

Identity 3.6. For m,n ≥ 1,

2m+n

(
m+ n

m

)

F

=

n∑

j=0

Lj
mLn−j2m+n−1−j

(
m− 1 + n− j

m− 1

)

F
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Replacing F with U and replacing L with V , the last two identities are appropriately
colorized as well.

4. Open Problems

What follows is a list of Fibonomial identities that are still in need of combinatorial proof.
Some of these identities have extremely simple algebraic proofs (and some hold for more
general sequences than Fibonomial sequences) so one would expect them to have elementary
combinatorial proofs as well.

Many simple identities appear in Fibonacci Quarterly articles by Gould [4, 5].

(
n

k

)

F

(
k

j

)

F

=

(
n

j

)

F

(
n− j

k − j

)

F

(
n

k

)

F

=
n∑

j=k

Fj − Fj−k
Fk

(
j − 1

k − 1

)

F

Fk

(
n

k

)

F

= Fn

(
n− 1

k − 1

)

F

= Fn−k+1

(
n

k − 1

)

F

Here is another basic identity for generalized binomial coefficients, first noted by Fontené
[3] and further developed by Trojovský [10]

(
n

k

)

F

−
(
n− 1

k

)

F

=

(
n− 1

k − 1

)

F

Fn − Fk

Fn−k
.

Here are some alternating sum identities, provided by Lind [7] and Cooper and Kennedy
[2], respectively, that might be amenable to sign-reversing involutions:

k+1∑

j=0

(−1)j(j+1)/2

(
k + 1

j

)

F

(
n− 1

k

)

F

= 0.

k∑

j=0

(−1)j(j+1)/2

(
k

j

)

F

F k−1
n−j = 0.

Here are some special cases of very intriguing formulas that appear in a recent paper by
Kilic, Akkus and Ohtsuka [6].

2n+1∑

k=0

(
2n+ 1

k

)

F

=
n∏

k=0

L2k

2n∑

k=0

(−1)k
(

4n

2k

)

F

= (−1)n
2n∏

k=1

L2k−1

We have just scratched the surface here. There are countless others!
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BENFORD BEHAVIOR OF ZECKENDORF DECOMPOSITIONS

ANDREW BEST, PATRICK DYNES, XIXI EDELSBRUNNER, BRIAN MCDONALD, STEVEN J.
MILLER, KIMSY TOR, CAROLINE TURNAGE-BUTTERBAUGH, AND MADELEINE WEINSTEIN

Abstract. A beautiful theorem of Zeckendorf states that every integer can be written
uniquely as the sum of non-consecutive Fibonacci numbers {Fi}∞i=1. A set S ⊂ Z is said to
satisfy Benford’s law if the density of the elements in S with leading digit d is log10 (1 + 1

d
).

We prove that, as n → ∞, for a randomly selected integer m in [0, Fn+1) the distribution
of the leading digits of the Fibonacci summands in its Zeckendorf decomposition converge
to Benford’s law almost surely. Our results hold more generally; instead of looking at the
distribution of leading digits of summands in Zeckendorf decompositions, one obtains simi-
lar theorems concerning how often values in sets with positive density inside the Fibonacci
numbers are attained in these decompositions.
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1. Introduction

1.1. History.

The Fibonacci numbers have fascinated professional mathematicians and amateurs for cen-
turies. The purpose of this article is to review the connection between two interesting results,
namely Zeckendorf’s theorem and Benford’s law of digit bias, and to discuss density results
that arise in special subsets of the Fibonacci numbers.

A beautiful theorem due to Zeckendorf [28] states that every positive integer may be written
uniquely as a sum of non-adjacent Fibonacci numbers. The standard proof is by straightfor-
ward induction and the greedy algorithm (though see [18] for a combinatorial approach). For
this theorem to hold we must normalize the Fibonacci numbers by taking F1 = 1 and F2 = 2

This research was conducted as part of the 2014 SMALL REU program at Williams College and was sup-
ported by NSF grants DMS 1347804 and DMS 1265673, Williams College, and the Clare Boothe Luce Program
of the Henry Luce Foundation. It is a pleasure to thank them for their support, and the participants there and
at the 16th International Conference on Fibonacci Numbers and their Applications for helpful discussions. We
also thank the referee for several comments which improved the exposition.
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(and of course Fn+1 = Fn + Fn−1), for if our series began with two 1’s or with a 0 the
decompositions of many numbers into non-adjacent summands would not be unique.

In 1937 the physicist Frank Benford [2], then working for General Electric, observed that the
distributions of the leading digits of numbers in many real and mathematical data sets were
not uniform. In fact, the leading digits of numbers from various sources such as atomic weights,
baseball statistics, numbers in periodicals and values of mathematical functions or sequences
seemed biased towards lower values; for instance, a leading digit of 1 occurred about 30% of
the time, while a leading digit of 9 occurred less than 5% of the time. We now say a data set
satisfies Benford’s law (base B) if the probability of a first digit base B of d is logB(1 + 1/d),
or more generally the probability that the significand1 is at most s is logB(s). Benford’s law
has applications in disciplines ranging from accounting (where it is used to detect fraud) to
zoology and population growth, and many areas between. While this bias is often initially
surprising, it is actually very natural as Benford’s law is equivalent to the logarithms of the
set being equidistributed modulo 1. For more on Benford’s law see [15, 16, 21, 24], as well as
[20] for a compilation of articles on its theory and applications.

Obviously, we would not be discussing Benford’s law if it had no connection to the Fibonacci
numbers. A fascinating result, originally published in [5] (see also [21, 27]), states that the
Fibonacci numbers follow Benford’s law of digit bias.2 There are many questions that may be
asked concerning the connection between the Fibonacci numbers and Benford’s law. This re-
search was motivated by the study of the distribution of leading digits of Fibonacci summands
in Zeckendorf decompositions. Briefly, our main result is that the distribution of leading digits
of summands in Zeckendorf decompositions converges to Benford’s law. Our result is more
universal, and in fact holds for special sequences with density. We first set some notation, and
then precisely state our results.

1.2. Preliminaries.

Let S ⊂ {Fi}∞i=1, and let q(S, n) be the density of S over the Fibonacci numbers in the
interval [0, Fn]. That is,

q(S, n) =
#{Fi ∈ S : 1 ≤ i ≤ n}

n
. (1.1)

When limn→∞ q(S, n) exists, we define the asymptotic density q(S) as

q(S) := lim
n→∞

q(S, n). (1.2)

For the sake of completeness, we define a mapping between the positive integers and their
Zeckendorf decompositions. We first note that a legal Zeckendorf decomposition is the unique
decomposition of a number into non-adjacent Fibonacci numbers.

Definition 1.1. Let m ∈ N. The function ZD injectively maps each m ∈ N to the set of
its Zeckendorf summands. Conversely, ZD−1 injectively maps each legal set of Zeckendorf
summands to the positive integer that set represents.

For example, ZD(10) = {2, 8} and ZD−1({8, 34}) = 42; however, ZD−1({8, 13}) is undefined,
as 21 = 8 + 13 is not a legal Zeckendorf decomposition.

1If x > 0 we may write x = SB(x)10k(x), where SB(x) ∈ [1, B) is the significand and k(x) ∈ Z is the
exponent.

2The main idea of the proof is to note that log10

(
1+
√

5
2

)
is irrational, and then use Weyl’s criterion and

Binet’s formula to show the logarithms of the Fibonacci numbers converge to being equidistributed modulo 1.
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Let m ∈ N be chosen uniformly at random from the interval [0, Fn+1). We define two useful
random variables:

Xn(m) := #ZD(m), Yn(m) := #ZD(m) ∩ S. (1.3)

In our main result, we show that the density of S in a typical Zeckendorf decomposition is
asymptotic to the density of S in the set of Fibonacci numbers.

Theorem 1.2 (Density Theorem for Zeckendorf Decompositions). Let S ⊂ {Fi}∞i=1 with
asymptotic density q(S) in the Fibonacci numbers. For m ∈ N chosen uniformly at random
from the interval [0, Fn+1), let Xn(m) and Yn(m) be defined as above. Then for any ε > 0, we
have with probability 1 + o(1) that

∣∣∣∣
Yn(m)

Xn(m)
− q(S)

∣∣∣∣ < ε. (1.4)

We now define a method of constructing a random Zeckendorf decomposition, which plays
a central role in our proofs. Essentially, we want to select a random subset of the Fibonacci
numbers which satisfy the criterion of being a legal Zeckendorf decomposition. We fix a
probability p ∈ (0, 1) and let An(p) be a random subset of Fibonacci numbers at most Fn. Let
A0(p) = ∅, and define An(p) recursively for n > 0 as follows. We set

An(p) =





An−1(p) if Fn−1 ∈ An−1(p)

An−1(p) ∪ Fn with probability p if Fn−1 /∈ An−1(p)

An−1(p) otherwise,

(1.5)

and define

A(p) :=
⋃

n

An(p). (1.6)

This random process leads to the following result.

Theorem 1.3 (Density Theorem for Random Decompositions). Let S ⊂ {Fi}∞i=1 have as-
ymptotic density q(S) over the Fibonacci numbers. Then, with probability 1, S ∩ A(p) has
asymptotic density q(S) in A(p).

We use Theorem 1.3 with the clever choice of probability of p = 1/ϕ2 to prove Theorem
1.2. The reason for this choice is that this random Zeckendorf decomposition is similar to the
Zeckendorf decomposition of an integer chosen uniformly at random.

We now describe some situations where Theorem 1.3 applies. There are many interesting
situations where S ⊂ {Fi}∞i=1 has a limiting density over the Fibonacci numbers. As the
Fibonacci numbers follow Benford’s law, the set Sd of Fibonacci number with a fixed leading
digit 1 ≤ d ≤ 9 has asymptotic density q(Sd) = log (1 + 1/d) in the Fibonacci numbers. By an
extension of Benford’s law, the Fibonacci numbers in which a finite amount of leading digits
are fixed also have asymptotic density over the Fibonacci numbers. Conversely, we could fix
a finite set of digits at the right and obtain similar results. For example, if we look at the
Fibonacci numbers modulo 2 we get 1, 0, 1, 1, 0, 1, 1, 0, . . . ; thus in the limit one-third of the
Fibonacci numbers are even, and the asymptotic density exists. These arguments immediately
imply Benford behavior of the Zeckendorf decompositions.

Corollary 1.4 (Benford Behavior in Zeckendorf Decompositions). Fix positive integers D and
B, and let

DD := {(d1, . . . , dD) : d1 ≥ 1, di ∈ {0, 1, . . . , B − 1}}; (1.7)
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to each (d1, . . . , dD) ∈ DD we associate the set Sd1,...,dD of Fibonacci numbers whose significand
starts d1.d2d3 · · · dD. With probability 1, for each (d1, . . . , dD) we have the asymptotic density
of Sd1,...,dD ∩A(p) equals logB(d1.d2d3 · · · dD), and thus with probability 1 Benford’s law holds.

Proof. As D is fixed and finite, there are only finitely many starting blocks for significands
in DD. By Theorem 1.3 for each of these the asymptotic density of Sd1,...,dD ∩ S(p) equals
the corresponding Benford probability; as the intersection of finitely many events that each
happen with probability 1 happens with probability 1, we see that with probability 1, all the
significands of length D happen with the correct probability. Sending D → ∞ yields the
desired Benford behavior. �

As a check of our Benfordness results, we performed two simple experiments. The first was
an exhaustive search of all m ∈ [F25, F26) = [121393, 196418). We performed a chi-square
goodness of fit test on the distribution of first digits of summands for each m and Benford’s
law. There are eight degrees of freedom, and 99.74% of the time our chi-square values were
below the 95% confidence threshold of 15.51, and 99.99% of the time they were below the 99%
confidence threshold of 20.09. We then randomly chose a number in [1060000, 1060001), and
found a chi-square value of 8.749. See Figure 1 for a comparison between the observed digit
frequencies and Benford’s law.

Figure 1. Comparison of the frequencies of leading digits in Zeckendorf
decompositions of a large random integer, approximately 7.94 · 1060000, and
Benford’s law (the solid curve is 1/(x log 10), the Benford density).

To prove our main results we first state and prove some lemmas about random legal de-
compositions. The key observation is that for an appropriate choice of p, the set A(p) derived
from the random process defined in (1.5) acts similarly to the Zeckendorf decomposition of a
randomly chosen integer m ∈ [0, Fn+1). Theorem 1.2 thus becomes a consequence Theorem
1.3, which we prove through Chebyshev’s inequality.

2. Proof of Theorem 1.2

In this section, we assume the validity of Theorem 1.3 in order to prove Theorem 1.2. The
proof of Theorem 1.3 is given in §3. We begin with a useful lemma on the probability that
ZD−1(A(p)) equals m. We find that m ∈ [0, Fn+1) are almost uniformly chosen.

Lemma 2.1. With An(p) defined as in (1.5), ZD−1(An(p)) ∈ [0, Fn+1) is a random variable.
For a fixed integer m ∈ [0, Fn+1) with the Zeckendorf decomposition m = Fa1 +Fa2 + · · ·+Fak ,
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where k ∈ N, 1 ≤ a1, a1 + 1 < a2, . . . , ak−1 + 1 < ak, we have

Prob
(
ZD−1 (An(p)) = m

)
=

{
pk(1− p)n−2k if m ∈ [0, Fn)

pk(1− p)n−2k+1 if m ∈ [Fn, Fn+1).
(2.1)

Proof. With probability (1 − p)a1−1p, Fa1 is the smallest element of An(p). For j ∈ Z,
suppose that Fa1 , Fa2 , . . . , Faj−1 be the j − 1 smallest elements of An(p). With probability

(1 − p)aj−aj−1−2p, Faj is the next smallest element of An(p); the reason we have a -2 in the
exponent is that once we select Faj−1 we cannot have Faj−1+1, and thus there are aj−aj−1−2
Fibonacci numbers between Faj−1+1 and Faj−1 which we could have selected (but did not).

Continuing, we find ZD−1 (An(p)) = m if and only if the k smallest elements of An(p) are
Fa1 , Fa2 , . . . , Fak and Fj /∈ An(p) for j > ak; note if ak = n then we are done determining if we
have or do not have summands, while if ak < n we must elect not to have Fak+1, . . . , Fn and
thus need another n− ak − 1 factors of 1− p. Then, by these calculations, ZD−1 (An(p)) = m
with probability

Prob
(
ZD−1 (An(p)) = m

)
= (1− p)a1−1p




k∏

j=2

(1− p)aj−aj−1−2p


 (1− p)n−ak−δk , (2.2)

where δk = 1 if ak < n and 1 if ak = n. The first case happens when m ∈ [0, Fn) and the
second when m ∈ [Fn, Fn+1); (2.1) now follows from simple algebra. �

The key idea in proving Theorem 1.2 is to consider the special case of p = 1/ϕ2 in Lemma

2.1, where ϕ := 1+
√
5

2 is the golden mean.3 The reason this is an exceptionally useful choice is
that initially the probability of choosing m in our random process A(p) depends on the number
of summands of m; however, for p = 1/ϕ2 we have pk(1− p)−2k = 1. Thus in this case, for m
an integer in [0, Fn+1) we see that (2.2) reduces to

Prob
(
ZD−1

(
An(ϕ−2)

)
= m

)
=

{
ϕ−n if m ∈ [0, Fn)

ϕ−(n+1) if m ∈ [Fn, Fn+1).
(2.3)

Note this is nearly independent of m; all that matters is whether or not it is larger than Fn.
The desired result follows from straightforward algebra.4

We now are ready to prove Theorem 1.2.

Proof of Theorem 1.2. For a fixed ε > 0, let

E(n, ε) :=

{
m ∈ Z ∩ [0, Fn+1) :

∣∣∣∣
Yn(m)

Xn(m)
− q(S)

∣∣∣∣ ≥ ε

}
. (2.4)

3For us, the importance of ϕ is that it is the largest root of the characteristic polynomial for the Fibonacci
recurrence, and by Binet’s formula it governs the growth of the sequence.

4As a quick check, note Fnϕ
−n + (Fn+1 − Fn)ϕ−(n+1) = 1, as required for a probability.

DECEMBER 2014 39



THE FIBONACCI QUARTERLY

By Theorem 1.3, for m chosen uniformly at random from the integers in [0, Fn+1), we have

Prob (m ∈ E(n, ε)) =
∑

x∈E(n,ε)

1

Fn+1

= O


 ∑

x∈E(n,ε)

Prob
(
ZD−1

(
An(ϕ−2)

)
= x

)



= O
(
Prob

(
ZD−1

(
An(ϕ−2)

)
∈ E(n, ε)

))
= o(1). (2.5)

We conclude that
∣∣∣ Yn(m)
Xn(m) − q(S)

∣∣∣ < ε with probability 1 + o(1). �

3. Proof of Theorem 1.3

In this section, we prove Theorem 1.3. We first prove some useful lemmas.

Lemma 3.1. Let A(p) ⊂ {Fn}∞n=1 be constructed as in (1.5) with probability parameter p ∈
(0, 1). Then

Prob (Fk ∈ A(p)) =
p

p+ 1
+O(pk). (3.1)

Proof. By conditioning on whether Fk−2 ∈ A(p), we obtain a recurrence relation:5

Prob (Fk ∈ A(p)) = Prob (Fk ∈ A(p) | Fk−2 ∈ A(p)) · Prob (Fk−2 ∈ A(p))

+ Prob (Fk ∈ A(p) | Fk−2 /∈ A(p)) · Prob (Fk−2 /∈ A(p))

= p · Prob (Fk−2 ∈ A(p)) + p(1− p) · Prob (Fk−2 /∈ A(p))

= p2 · Prob (Fk−2 ∈ A(p)) + p− p2. (3.2)

As Prob (F1 ∈ A(p)) = p and Prob (F2 ∈ A(p)) = (1− p)p = p− p2, we have

Prob (Fk ∈ A(p)) = (Prob (F1 ∈ A(p)))2 · Prob (Fk−2 ∈ A(p)) + Prob (F2 ∈ A(p)) . (3.3)

From induction and the geometric series formula we immediately obtain for all k that

Prob (Fk ∈ A(p)) =
k∑

j=1

(−1)j+1pj =
p

1 + p
+O(pk), (3.4)

completing the proof. �

Lemma 3.2. Let Wn be the random variable defined by Wn := #An(p). Then

E[Wn] =
np

1 + p
+O(1) and Var(Wn) = O(n). (3.5)

Proof. Define the indicator function χ(Fk) for k ∈ N by

χ(Fk) :=

{
1 if Fk ∈ A(p)

0 if Fk /∈ A(p).
(3.6)

5We can also give a simple heuristic suggesting the main term of the answer. For k large, the probability Fk

occurs should roughly be the same as the probability that Fk−1 is used; call this x. Then x ≈ (1−x)p (to have
Fk we must first not have taken Fk−1, and then once this happens we choose Fk with probability p), which
implies x ≈ p/(1 + p) as claimed.

40 VOLUME 52, NUMBER 5



BENFORD BEHAVIOR OF ZECKENDORF DECOMPOSITIONS

We note that Wn =
∑n

k=1 χ(Fk) and by linearity of expectation have

E[Wn] =
n∑

k=1

E[χ(Fk)]

=
n∑

k=1

Prob (Fk ∈ A(p))

=
n∑

k=1

(
p

1 + p
+O(pk)

)

=
np

1 + p
+O(1). (3.7)

To find the variance we use that it equals E[W 2
n ]−E[Wn]2. Without loss of generality, when

we expand below we may assume i ≤ j and double the contribution of certain terms. As
we cannot have Fi and Fi+1, there are dependencies. While we could determine the variance
exactly with a bit more work, for our applications we only need to bound its order of magnitude.

E[W 2
n ] = E



(

n∑

k=1

χ(Fk)

)2



= E


∑

i,j≤n
χ(Fi) · χ(Fj)




=
∑

i,j≤n
E[χ(Fi) · χ(Fj)]

=
∑

i,j≤n
Prob (Fi ∈ A(p)) Prob (Fj ∈ A(p)|Fi ∈ A(p))

=
∑

i≤n
Prob (Fi ∈ A(p)) + 2

∑

i+2≤j≤n
Prob (Fi ∈ A(p)) Prob (Fj ∈ A(p)|Fi ∈ A(p))

= O(n) + 2
∑

i+2≤j≤n
Prob (Fi ∈ A(p)) Prob (Fj−i−1 ∈ A(p))

= O(n) + 2
∑

i+2≤j≤n

(
p

1 + p

)2 (
1 +O

(
pmin(i,j−i)

))

≤ O(n) +

(
np

1 + p

)2

+O


 ∑

i+2≤j≤n
pmin(i,j−i)


 . (3.8)

For a fixed k = 1, 2, . . . , n − 1, there are less than n pairs (i, j) with k = i < j − i and
i + 2 ≤ j ≤ n. Similarly, there are less than n pairs (i, j) with k = i − j ≤ i, i + 2 ≤ j ≤ n.
Therefore, there are less than 2n pairs (i, j) for which min(i, j − i) = k. Thus

∑

i+2≤j≤n
pmin(i,j−i) < 2n

n−1∑

k=1

pk = O(n), (3.9)
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and therefore

E[W 2
n ] =

(
np

1 + p

)2

+O(n) = E[Wn]2 +O(n). (3.10)

We conclude that

Var(Wn) = O(n), (3.11)

completing the proof. �

Corollary 3.3. Let Wn be the random variable defined by Wn := #An(p). With probability
1 + o(1),

∣∣∣∣Wn −
np

1 + p

∣∣∣∣ < n2/3. (3.12)

Proof. From (3.7) we know E[Wn] = np
1+p + O(1). For n large, if

∣∣∣Wn − np
1+p

∣∣∣ ≥ n2/3 then

|Wn − E[Wn]| ≥ n2/3/2015. By Chebyshev’s inequality we have

Prob

(
|Wn − E[Wn]| ≥ n2/3

2015

)
≤ 20152Var(Wn)

n4/3
= o(1) (3.13)

as by (3.11) the variance of Wn is of order n. �

Lemma 3.4. Let S ⊂ {Fn}∞n=1 with asymptotic density q(S) in the Fibonacci numbers. Let
Zn be the random variable defined by Zn := #An(p) ∩ S. Then

E[Zn] =
npq(S)

1 + p
+ o(n)

Var(Zn) = o(n2). (3.14)

Proof. Define the indicator function ψ(Fk) for k ∈ N by

ψ(Fk) =

{
1 if Fk ∈ S
0 if Fk /∈ S.

(3.15)

Then we have

E[Zn] =
n∑

k=1

ψ(Fk)Prob (Fk ∈ A(p))

=
n∑

k=1

ψ(Fk)

(
p

1 + p
+O(pk)

)

= O(1) +
p

1 + p

n∑

k=1

ψ(Fk)

=
npq(S)

1 + p
+ o(n) (3.16)

since limn→∞ q(S, n) = q(S).
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Similarly to the calculation in Lemma 3.2, we compute

E[Z2
n] =

∑

i,j≤n
ψ(Fi)ψ(Fj)Prob (Fi ∈ A(p)) Prob (Fj ∈ A(p)|Fi ∈ A(p))

= O(n) + 2
∑

i+2≤j≤n
ψ(Fi)ψ(Fj)Prob (Fi ∈ A(p)) Prob (Fj−i−1 ∈ A(p))

= O(n) + 2
∑

i+2≤j≤n
ψ(Fi)ψ(Fj)

(
p

1 + p

)2 (
1 +O

(
pmin(i,j−i)

))

= O(n) + 2

(
p

1 + p

)2 ∑

i+2≤j≤n
ψ(Fi)ψ(Fj)

= o(n2) +

(
npq(S)

1 + p

)2

. (3.17)

In the calculation above, the only difficulty is in the second to last line, where we argue that
the main term of the i and j double sum is n2q(S)2/2. To see this, note by symmetry that up
to contributions of size O(n) we can remove the restrictions on i and j (and thus have each
range from 1 to n) if we then take half of the resulting sum. Thus, the restricted double sum

becomes 1
2

(∑
i≤n ψ(Fi)

)(∑
j≤n ψ(Fj)

)
, which as n→∞ converges to 1

2q(S)n · q(S)n (up to

an error of size o(n2), of course). Therefore, we have

Var(Zn) = E[Z2
n]− E[Zn]2 = o(n2), (3.18)

which completes the proof. �

Corollary 3.5. Let Zn be the random variable defined by Zn := #An(p) ∩ S, and let g(n) =

n1/2Var(Zn)−1/4. Then

Prob

(
|Zn − E[Zn]| > E[Zn]

g(n)

)
≤ Var(Zn)g(n)2

E[Zn]2
= o(1). (3.19)

Proof. The proof follows immediately by Chebyshev’s inequality and the order of magnitude
of the various quantities. �

Armed with the above results, we can now prove our main theorem.

Proof of Theorem 1.3. Let

e1(n) = n−1/3,

e2(n) =
1

n

(
E[Zn]

g(n)
+

∣∣∣∣E[Zn]− npq(S)

1 + p

∣∣∣∣
)
. (3.20)

Note that both are of order o(1). We combine Corollaries 3.3 and 3.5 to see that with
probability 1 + o(1) we have

Zn ≤
npq(S)

1 + p
(1 + e2(n)),

Wn ≥
np

1 + p
(1− e1(n)). (3.21)
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Therefore, for any ε > 0 we have with probability 1 that

lim
n→∞

Zn
Wn

≤ lim
n→∞

q(S)(1 + e2(n))

1− e1(n)
= q(S). (3.22)

A similar argument gives q(S) as a lower bound for limn→∞ Zn/Wn, and thus with probability
1

lim
n→∞

Zn
Wn

= q(S), (3.23)

as desired. �

4. Conclusion and Future Work

We were able to handle the behavior of almost all Zeckendorf decompositions by finding
a correspondence between these and a special random process, replacing the deterministic
behavior for each m ∈ [0, Fn) with random behavior which is easier to analyze. The key
observation was that this correspondence held when choosing p = 1/ϕ2. This allowed us to
prove not just Benford behavior for the leading digits of summands in almost all Zeckendorf
decompositions, but also similar results for other sequences with density.

In [4] we revisit these problems for more general recurrences, where there is an extensive
literature (see among others [1, 8, 9, 10, 11, 12, 13, 14, 17, 19, 22, 23, 25, 26]). Similar to
other papers in the field (for example, [18] versus [22], or [6] versus [7]), the arguments are
often easier for the Fibonacci numbers, as we have simpler and more explicit formulas at our
disposal. In the more general case we introduce the notion of a super-legal decomposition,
which aids in the arguments.

Instead of choosing our integers uniformly in [0, Fn+1) one can consider other models, such
as choosing elements in [0,M) with M →∞ or various sub-intervals of [0, Fn+1). For most of
these choices we expect to see similar behavior; we analyze many of these cases in [3].
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E-mail address: ajb5@williams.edu

Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267

E-mail address: pdynes@clemson.edu

Department of Mathematical Sciences, Clemson University, Clemson, SC 29634

E-mail address: xe1@williams.edu

Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267

E-mail address: bmcdon11@u.rochester.edu

DECEMBER 2014 45



THE FIBONACCI QUARTERLY

Department of Mathematics, University of Rochester, Rochester, NY 14627

E-mail address: sjm1@williams.edu, Steven.Miller.MC.96@aya.yale.edu

Department of Mathematics and Statistics, Williams College, Williamstown, MA 01267

E-mail address: ktor.student@manhattan.edu

Department of Mathematics, Manhattan College, Riverdale, NY 10471

E-mail address: cturnagebutterbaugh@gmail.com

Department of Mathematics, North Dakota State University, Fargo, ND 58102

E-mail address: mweinstein@g.hmc.edu

Department of Mathematics, Harvey Mudd College, Claremont, CA 91711

46 VOLUME 52, NUMBER 5



GAUSSIAN BEHAVIOR OF THE NUMBER OF SUMMANDS IN

ZECKENDORF DECOMPOSITIONS IN SMALL INTERVALS

ANDREW BEST, PATRICK DYNES, XIXI EDELSBRUNNER, BRIAN MCDONALD, STEVEN J.
MILLER, KIMSY TOR, CAROLINE TURNAGE-BUTTERBAUGH, AND MADELEINE WEINSTEIN

Abstract. Zeckendorf’s theorem states that every positive integer can be written uniquely
as a sum of non-consecutive Fibonacci numbers Fn, with initial terms F1 = 1, F2 = 2.
We consider the distribution of the number of summands involved in such decompositions.
Previous work proved that as n → ∞ the distribution of the number of summands in the
Zeckendorf decompositions of m ∈ [Fn, Fn+1), appropriately normalized, converges to the
standard normal. The proofs crucially used the fact that all integers in [Fn, Fn+1) share the
same potential summands.

We generalize these results to subintervals of [Fn, Fn+1) as n → ∞; the analysis is sig-
nificantly more involved here as different integers have different sets of potential summands.
Explicitly, fix an integer sequence α(n) → ∞. As n → ∞, for almost all m ∈ [Fn, Fn+1) the
distribution of the number of summands in the Zeckendorf decompositions of integers in the
subintervals [m,m+Fα(n)), appropriately normalized, converges to the standard normal. The
proof follows by showing that, with probability tending to 1, m has at least one appropri-
ately located large gap between indices in its decomposition. We then use a correspondence
between this interval and [0, Fα(n)) to obtain the result, since the summands are known to
have Gaussian behavior in the latter interval. We also prove the same result for more general
linear recurrences.
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1. Introduction

1.1. History. Let {Fn} denote the Fibonacci numbers, normalized so that F1 = 1, F2 = 21,
and Fn+1 = Fn + Fn−1. An interesting equivalent definition of the Fibonacci numbers is that
they are the unique sequence of positive integers such that every positive integer has a unique

This research was conducted as part of the 2014 SMALL REU program at Williams College and was sup-
ported by NSF grant DMS1347804 and DMS1265673, Williams College, and the Clare Boothe Luce Program
of the Henry Luce Foundation. It is a pleasure to thank the participants of the SMALL REU and the 16th

International Conference on Fibonacci Numbers and their Applications for helpful discussions.
1We define the sequence this way to retain uniqueness in our decompositions
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legal decomposition as a sum of non-adjacent terms. This equivalence is known as Zeckendorf’s
theorem [25] and has been extended by many authors to a variety of other sequences.

For the Fibonacci numbers, Lekkerkerker [19] proved that the average number of summands
needed in the Zeckendorf decomposition of an integer m ∈ [Fn, Fn+1) is n

ϕ2+1
+ O(1), where

ϕ = 1+
√
5

2 , the golden mean, is the largest root of the Fibonacci recurrence. This has been
extended to other positive linear recurrence sequences, and much more is known. Namely,
the distribution of the number of summands converges to a Gaussian as n → ∞. There are
several different methods of proof, from continued fractions to combinatorial perspectives to
Markov processes. See [9, 11, 12, 13, 14, 15, 16, 20, 17, 18, 21, 22, 23, 24] for a sampling of
results and methods along these lines, [1, 6, 7, 8, 10, 11] for generalizations to other types of
representations, and [2, 5] for related questions on the distribution of gaps between summands.

The analysis in much of the previous work was carried out for m ∈ [Fn, Fn+1). The advan-
tage of such a localization2 is that each m has the same candidate set of summands and is of
roughly the same size. The purpose of this work is to explore some of the above questions on
a significantly smaller scale and determine when and how often we obtain Gaussian behavior.
Note that we cannot expect such behavior to hold for all sub-intervals of [Fn, Fn+1), even if
we require the size to grow with n. To see this, consider the interval

[F2n + Fn + Fn−2 + · · ·+ Fbn1/4c, F2n + Fn+1 + Fbn1/4c). (1.1)

The integers in the above interval that are less than F2n + Fn+1 have on the order of n/2

summands, while those that are larger have at most on the order of n1/4 summands. Thus the
behavior cannot be Gaussian.3

1.2. Main Result.

We first introduce some notation before stating our main result. Fix any increasing positive
integer valued function α(n) with

lim
n→∞

α(n) = lim
n→∞

(n− α(n)) = ∞. (1.2)

Fix a non-decreasing positive function q(n) < n−α(n) taking on even integer values with the
restrictions that q(n)→∞ and q(n) = o(

√
n). For m ∈ [Fn, Fn+1) with decomposition

m =
n∑

j=1

ajFj , (1.3)

define

C1(m) := (a1, a2, ..., aα(n)),

C2(m) := (aα(n)+1, ..., aα(n)+q(n)), and

C3(m) := (aα(n)+q(n)+1, ..., an). (1.4)

Note that each ai ∈ {0, 1} for all 1 ≤ i ≤ n. Let s(m) be the number of summands in the
decomposition of m. That is, let

s(m) :=
n∑

j=1

aj . (1.5)

2As the sequence {Fn} is exponentially growing, it is easy to pass from m in this interval to m ∈ [0, Fn).
3Though in this situation it would be interesting to investigate separately the behavior on both sides.
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Similarly, let s1(m), s2(m), and s3(m) be the number of summands contributed by C1(m), C2(m),
and C3(m) respectively. Note that no two consecutive aj ’s equal 1.

Our main result, given in the following theorem, extends the Gaussian behavior of the
number of summands in Zeckendorf decompositions to smaller intervals. Note that requiring
m to be in [Fn, Fn+1) is not a significant restriction because given any m, there is always an
n such that this holds.

Theorem 1.1 (Gaussianity on small intervals). For α(n) satisfying (1.2), the distribution of
the number of summands in the decompositions of integers in the interval [m,m+Fα(n)) con-
verges to a Gaussian distribution when appropriately normalized for almost all m ∈ [Fn, Fn+1).
Specifically, this means that using the notation from equations (1.3) and (1.4), the Gaussian be-
havior holds for all m where there is a gap of length at least 2 in the C2(m) (and q(n) = o(

√
n)

is an increasing even function that diverges to infinity).

2. Preliminaries

In order to prove Theorem 1.1, we establish a correspondence between the decompositions
of integers in the interval [m,m+ Fα(n)) and those in [0, Fα(n)).

Lemma 2.1. Let x ∈ [m,m+ Fα(n)). If there are at least two consecutive 0’s in C2(m), then
C3(x) is constant, and hence s3(x) is constant as well.

Proof. Assume there are at least two consecutive 0’s in C2(m). Then for some k ∈ [α(n) + 2,
α(n) + q(n)), we have ak−1 = ak = 0. Let m′ denote the integer obtained by truncating the
decomposition of m at ak−2Fk−2. (Note that if ak−2 = 1, we include Fk−2 in the truncated
decomposition, and if ak−2 = 0 we do not.) Then m′ < Fk−1. Since Fα(n) ≤ Fk−2, it follows
that for any h < Fα(n) we have

m′ + h < Fk−1 + Fk−2 = Fk, (2.1)

and thus the decomposition of m′ + h has largest summand no greater than Fk−1. Therefore,
the Zeckendorf decomposition of m+h is obtained simply by concatenating the decompositions
for m−m′ and m′ + h. Hence C3(m+ h) = C3(m−m′) = C3(m). �

With this lemma, we see that the distribution of the number of summands involved in the
decomposition of x ∈ [m,m + Fα(n)) depends (up to a shift) only on what happens in C1(x)
and C2(x), provided that there is a gap between summands of length at least two somewhere
in C2(m). In light of this stipulation, we will show the following items in order to prove our
main theorem.

• With high probability, m is of the desired form (i.e., there is a gap between summands
of length at least two in C2(m)).

• When m is of the desired form, the distribution of the number of summands involved
in C1(x) for x ∈ [m,m+Fα(n)) converges to Gaussian when appropriately normalized.

• The summands involved in C2(x) produce a negligible error term (i.e., there are sig-
nificantly fewer summands from C2(x) than there are from C1(m)).

We address the first point with the following lemma.

Lemma 2.2. With probability 1 + o(1), there are at least 2 consecutive 0’s in C2(m) if m is
chosen uniformly at random from the integers in [Fn, Fn+1).
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Proof. Suppose m is not of the desired form. Recalling that q(n) takes on even integer values,
it follows that either C2(m) = (1, 0, 1, 0, . . . , 1, 0) or C2(m) = (0, 1, 0, 1, . . . , 0, 1). For each of
these two cases, we now count the total number of ways to choose the coefficients for C3(m)
and C1(m).

In the former case, we have aα(n)+q(n) = 0. Thus the number of ways to choose the coeffi-
cients for C3(m) is equal to the number of ways to legally construct

n∑

j=α(n)+q(n)+1

ajFj (2.2)

with no nonzero consecutive coefficients and an = 1 (since m ∈ [Fn, Fn+1) we must select Fn).
There are Fn−α(n)−q(n)−1 ways to make such a construction, so we conclude that the number
of ways to choose the coefficients for C3(m) is equal to Fn−α(n)−q(n)−1. To see this, we argue
as in [2, 5]. By shifting indices, the number of legal constructions here is the same as the
number of legal ways to choose the coefficients in

n−α(n)−q(n)∑

j=1

ãjFj (2.3)

where we must choose the final summand. By Zeckendorf’s theorem, this is equivalent to
counting the number of elements in [Fn−α(n)−q(n), Fn−α(n)−q(n)+1), which by the Fibonacci
recurrence is just Fn−α(n)−q(n)−1. Thus the number of ways to choose the coefficients for
C3(m) is equal to Fn−α(n)−q(n)−1. Similarly, since aα(n) = 0 the number of ways to choose
the coefficients for C1(m) is equal to Fα(n). Thus, if C2(m) = (1, 0, 1, 0, . . . , 1, 0), there are
Fn−3−α(n)−q(n)Fα(n) ways to choose the coefficients for C3(m) and C1(m).

A similar counting argument shows that if C2(m) = (0, 1, 0, 1, . . . , 0, 1), then the coefficients
for C3(m) and C1(m) can be chosen in Fn−α(n)−q(n)−2Fα(n)+1 different ways. Therefore, since
q(n)→∞ as n→∞, the probability of m not being of the desired form is

Fn−α(n)−q(n)−1Fα(n) + Fn−α(n)−q(n)−2Fα(n)+1

Fn−1
∼ 2√

5
φ−q(n) = o(1). (2.4)

�

Assuming m is of the desired form, we now consider the distribution of s(x) for x ∈ [m,m+
Fα(n)).

Lemma 2.3. If m has at least 2 consecutive 0’s in C2(m), then for all x ∈ [m,m + Fα(n)),
we have

0 ≤ s(x)− s3(m)− s(t(x)) < q(n), (2.5)

where t(x) denotes some bijection

t : Z ∩ [m,m+ Fα(n))→ Z ∩ [0, Fα(n)). (2.6)

Proof. First, note that the number of summands in the decomposition of x with indices i ∈
[α(n), α(n) + q(n)) must be less than q(n). Next, let m0 be the sum of the terms in the
decomposition of x truncated at aα(n)−1Fα(n)−1. Define the bijection t by

t(m+ h) :=

{
m0 + h, if m0 + h < Fα(n)
m0 + h− Fα(n) if m0 + h ≥ Fα(n).

(2.7)
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For any x ∈ [m,m+ Fα(n)), the decompositions of t(x) and x agree for the terms with index
less than α(n). Furthermore, the decompositions of x and m agree for terms with index greater
than α(n) + q(n). Therefore, the number of summands in the decomposition of x with indices
i ∈ [α(n), α(n) + q(n)) is equal to s(x) − s3(m) − s(t(x)). Combining this with our initial
observation, the lemma now follows. �

As a result of this lemma, the distribution of s(x) over the integers in [m,m+Fα) is a shift
of its distribution over [0, Fα(n)), up to an error bounded by q(n). With this fact, we are now
ready to prove the main theorem.

3. Proof of Theorem 1.1

We now prove our main result. The key idea is that with probability approaching 1, we
have a gap of length at least 2 in the middle summands of our decompositions, and this allows
us to use our bijection to reduce questions on the distribution of the number of summands in
[m,m+Fα(n)) to similar statements on [0, Fα(n)). In doing so, the fluctuations in the difference
between the two quantities is bounded by q(n), which is a free parameter in our splitting of
the decomposition, and can therefore be taken to be sufficiently small.

Proof. For a fixed m ∈ [Fn, Fn+1) with two consecutive 0’s somewhere in C2(m), we define
random variables Xn and Yn by

Xn := s(X), Yn := s(Y ), (3.1)

where X is chosen uniformly at random from Z∩ [m,m+Fα(n)) and Y is chosen uniformly at
random from Z ∩ [0, Fα(n)). Let

X ′n :=
1

σx(n)
(Xn − E[Xn]), (3.2)

and

Y ′n :=
1

σy(n)
(Yn − E[Yn]), (3.3)

where σx(n) and σy(n) are the standard deviations of Xn and Yn, respectively, so that Xn and
Yn are normalized with mean 0 and variance 1. It is known that the densities of Y ′n converge to
the density of the standard normal4, and we claim that X ′n converges to the standard normal
as well. Though we only need the order of magnitude of σy(n), for completeness we remark

that the mean of Yn is n
ϕ+2 +O(1) and the variance σy(n)2 is ϕn

5(ϕ+2) +O(1), where ϕ = 1+
√
5

2

is the golden mean.
Let fn and gn be the cumulative density functions for X ′n and Y ′n, respectively. By Lemma

2.3, we have

gn

(
x− q(n)

σy(n)

)
≤ fn(x) ≤ gn

(
x+

q(n)

σy(n)

)
. (3.4)

Since σy(n)→∞, we may add the restriction to q(n) that

q(n) = o (σy(n)) = o
(√
n
)
. (3.5)

4Many of the references give proofs both for the case of the Fibonacci numbers as well as for more general
recurrences; see [20] for a simple proof using just Stirling’s formula, which yields that the mean grows on the

order of α(n) and the standard deviation grows on the order of
√
α(n).
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Since {gn}n converges pointwise to the cumulative distribution function for the standard nor-
mal, say g(x), and since

lim
n→∞

gn

(
x− q(n)

σy(n)

)
= lim

n→∞
gn

(
x+

q(n)

σy(n)

)
= g(x), (3.6)

it follows that {fn}n also converges pointwise to g(x). �

4. Conclusion and Future Work

We were able to handle the behavior of the number of Zeckendorf summands of numbers
drawn from small intervals by finding a correspondence between Zeckendorf decompositions
in the interval [m,m+ Fα(n)) and in the interval [0, Fα(n)) when a certain gentle condition is
placed on the integers m we consider. The key step was to show that almost surely an integer
m chosen uniformly at random from [Fn, Fn+1) will permit the construction of a bijection onto
the interval [0, Fα(n)). Our results follow from previous results on the Gaussian behavior of
the number of Zeckendorf summands in this interval.

Our arguments hold for more general recurrence relations (see [4]), though the arguments
become more technical. There are two approaches to proving an analogue of the key step,
specifically showing that for almost all m we have a sufficiently large gap in the middle section.
One approach is to appeal to some high powered machinery that shows the distribution of the
longest gap between summands for m ∈ [F,Fn+1) is strongly concentrated about C log log n,
where C is some constant depending on the recurrence. Results along these lines are known
for many recurrences; see [3, 5]. Of course, these results contain far more than we need; we
do not need to know there is a gap as large as C log log n, but rather just that there is a gap
a little longer than the length of the recurrence.
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CONVOLUTIONS OF TRIBONACCI, FUSS–CATALAN,

AND MOTZKIN SEQUENCES

DANIEL BIRMAJER, JUAN B. GIL, AND MICHAEL D. WEINER

Abstract. We introduce a class of sequences, defined by means of partial Bell polynomials,
that contains a basis for the space of linear recurrence sequences with constant coefficients
as well as other well-known sequences like Catalan and Motzkin. For the family of ‘Bell
sequences’ considered in this paper, we give a general multifold convolution formula and
illustrate our result with a few explicit examples.

1. Introduction

Given numbers a and b, not both equal to zero, and given a sequence c1, c2, . . . , we consider
the sequence (yn) given by

y0 = 1, yn =
n∑

k=1

(
an+ bk

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ) for n ≥ 1, (1.1)

where Bn,k denotes the (n, k)-th partial Bell polynomial defined as

Bn,k(x1, . . . , xn−k+1) =
∑

α∈π(n,k)

n!

α1!α2! · · ·αn−k+1!

(
x1
1!

)α1 · · ·
( xn−k+1

(n−k+1)!

)αn−k+1

with π(n, k) denoting the set of multi-indices α ∈ Nn−k+1
0 such that α1 + α2 + · · · = k and

α1 +2α2 +3α3 + · · · = n. For more about Bell polynomials, see e.g. [4, Chapter 3]. In general,
there is no need to impose any restriction on the entries x1, x2, . . . other than being contained
in a commutative ring. Here we are mainly interested in Z and Z[x].

The class of sequences (1.1) turns out to offer a unified structure to a wide collection of known
sequences. For instance, with a = 0 and b = 1, any linear recurrence sequence with constant
coefficients c1, c2, . . . , cd, can be written as a linear combination of sequences of the form (1.1).
In fact, if (an) is a recurrence sequence satisfying an = c1an−1+c2an−2+· · ·+cdan−d for n ≥ d,
then there are constants λ0, λ1, . . . , λd−1 (depending on the initial values of the sequence) such
that an = λ0yn + λ1yn−1 + · · ·+ λd−1yn−d+1 with

y0 = 1, yn =
n∑

k=1

k!

n!
Bn,k(1!c1, 2!c2, . . . ) for n ≥ 1.

For more details about this way of representing linear recurrence sequences, cf. [3].
On the other hand, if a = 1 and b = 0, we obtain sequences like Catalan and Motzkin by

making appropriate choices of c1 and c2, and by setting cj = 0 for j ≥ 3. These and other
concrete examples will be discussed in sections 3 and 4.

In this paper, we focus on convolutions and will use known properties of the partial Bell
polynomials to prove a multifold convolution formula for (1.1).
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2. Convolution Formula

Our main result is the following formula.

Theorem 2.1. Let y0 = 1 and for n ≥ 1,

yn =
n∑

k=1

(
an+ bk

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ).

For r ≥ 1, we have

∑

m1+···+mr=n

ym1 · · · ymr = r

n∑

k=1

(
an+ bk + r − 1

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ). (2.1)

In order to prove this theorem, we recall a convolution formula for partial Bell polynomials
that was given by the authors in [2, Section 3, Corollary 11].

Lemma 2.2. Let α(`,m) be a linear polynomial in ` and m. For any τ 6= 0, we have

k∑

`=0

n∑

m=`

(α(`,m)
k−`

)(τ−α(`,m)
`

)(
n
m

)

α(`,m)(τ − α(`,m))
(
k
`

)Bm,`Bn−m,k−` =
τ − α(0, 0) + α(k, n)

τα(k, n)(τ − α(0, 0))

(
τ

k

)
Bn,k.

This formula is key for proving Theorem 2.1. For illustration purposes, we start by proving
the special case of a simple convolution (i.e. r = 2).

Lemma 2.3. The sequence (yn) defined by (1.1) satisfies

n∑

m=0

ym yn−m = 2

n∑

k=1

(
an+ bk + 1

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ).

Proof. We begin by assuming a, b ≥ 0. For n ≥ 0 we can rewrite yn as

yn =
n∑

k=0

1

an+ bk + 1

(
an+ bk + 1

k

)
k!

n!
Bn,k(1!c1, 2!c2, . . . ). (2.2)

By definition,
n∑

m=0

ym yn−m

=

n∑

m=0

[
m∑

`=0

1
am+b`+1

(
am+b`+1

`

)
`!
m!Bm,`

][
n−m∑

j=0

1
a(n−m)+bj+1

(
a(n−m)+bj+1

j

) j!
(n−m)!Bn−m,j

]

=

n∑

m=0

n∑

k=0

k∑

`=0

(
am+b`+1

`

)(a(n−m)+b(k−`)+1
k−`

)

(am+ b`+ 1)(a(n−m) + b(k − `) + 1)

`!

m!

(k − `)!
(n−m)!

Bm,`Bn−m,k−`

=
n∑

k=0

k!

n!

k∑

`=0

n∑

m=`

(a(n−m)+b(k−`)+1
k−`

)(
am+b`+1

`

)(
n
m

)

(am+ b`+ 1)(a(n−m) + b(k − `) + 1)
(
k
`

)Bm,`Bn−m,k−`

=
n∑

k=0

k!

n!

[
k∑

`=0

n∑

m=`

(α(`,m)
k−`

)(τ−α(`,m)
`

)(
n
m

)

(τ − α(`,m))α(`,m)
(
k
`

)Bm,`Bn−m,k−`
]

with α(`,m) = a(n−m) + b(k − `) + 1 and τ = an+ bk + 2.
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Thus, by Lemma 2.2,

n∑

m=0

ym yn−m =
n∑

k=0

k!

n!

[
τ − α(0, 0) + α(k, n)

τα(k, n)(τ − α(0, 0))

(
τ

k

)
Bn,k(1!c1, 2!c2, . . . )

]

=
n∑

k=0

k!

n!

[
2

(an+ bk + 2)

(
an+ bk + 2

k

)
Bn,k(1!c1, 2!c2, . . . )

]

= 2
n∑

k=0

(
an+ bk + 1

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ).

For any fixed n, both sides of the claimed equation are polynomials in a and b. Since they
coincide on an open subset of R2, they must coincide for all real numbers a and b. �

Proof of Theorem 2.1. We proceed by induction in r. The case r = 2 was discussed in the
previous lemma. Assume the formula (2.1) holds for products of length less than r > 2.

As before, we temporarily assume that both a and b are positive. For n ≥ 0 we rewrite

∑

m1+···+mr−1=n

ym1 · · · ymr−1 =

n∑

k=0

r − 1

an+ bk + r − 1

(
an+ bk + r − 1

k

)
k!

n!
Bn,k(1!c1, 2!c2, . . . ).

Thus

∑

m1+···+mr=n

ym1 · · · ymr =
n∑

m=0

ym
∑

m1+···+mr−1=n−m
ym1 · · · ymr−1

=
n∑

m=0

ym

n−m∑

j=0

r−1
a(n−m)+bj+r−1

(
a(n−m)+bj+r−1

j

) j!
(n−m)!Bn−m,j .

Writing ym as in (2.2), we then get

1

r − 1

∑

m1+···+mr=n

ym1 · · · ymr

=

n∑

m=0

[
m∑

`=0

(
am+b`+1

`

)
`!

(am+ b`+ 1)m!
Bm,`

][
n−m∑

j=0

(
a(n−m)+bj+r−1

j

)
j!

(a(n−m) + bj + r − 1)(n−m)!
Bn−m,j

]

=

n∑

m=0

n∑

k=0

k∑

`=0

(a(n−m)+b(k−`)+r−1)
k−`

)(
am+b`+1

`

)

(am+ b`+ 1)(a(n−m) + b(k − `) + r − 1)

`!

m!

(k − `)!
(n−m)!

Bm,`Bn−m,k−`

=

n∑

k=0

k!

n!

[
k∑

`=0

n∑

m=`

(α(`,m)
k−`

)(τ−α(`,m)
`

)(
n
m

)

(τ − α(`,m))α(`,m)
(
k
`

)Bm,`Bn−m,k−`
]

with α(`,m) = a(n−m) + b(k − `) + r − 1 and τ = an+ bk + r.
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Finally, by Lemma 2.2,

∑

m1+···+mr=n

ym1 · · · ymr = (r − 1)
n∑

k=0

k!

n!

[
τ − α(0, 0) + α(k, n)

τα(k, n)(τ − α(0, 0))

(
τ

k

)
Bn,k(1!c1, 2!c2, . . . )

]

= (r − 1)
n∑

k=0

k!

n!

[
r
(
an+bk+r

k

)

(an+ bk + r)(r − 1)
Bn,k(1!c1, 2!c2, . . . )

]

= r
n∑

k=0

(
an+ bk + r − 1

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ).

As in the previous lemma, this equation actually holds for all a, b ∈ R as claimed. �

3. Examples: Fibonacci, Tribonacci, Jacobsthal

As mentioned in the introduction, sequences of the form (1.1) with a = 0 and b = 1 can
be used to describe linear recurrence sequences with constant coefficients. In this case, (1.1)
takes the form

yn =
n∑

k=0

k!

n!
Bn,k(1!c1, 2!c2, . . . ) for n ≥ 0, (3.1)

and the convolution formula (2.1) turns into

∑

m1+···+mr=n

ym1 · · · ymr = r
n∑

k=1

(
k + r − 1

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . )

=
n∑

k=1

(
k + r − 1

k

)
k!

n!
Bn,k(1!c1, 2!c2, . . . ).

One can obtain (with a similar proof) the more general formula

∑

m1+···+mr=n

ym1−δ · · · ymr−δ =
n−δr∑

k=0

(
k + r − 1

k

)
k!

(n− δr)!Bn−δr,k(1!c1, 2!c2, . . . )

for any integer δ ≥ 0, assuming y−1 = y−2 = · · · = y−δ = 0.

Example 3.1 (Fibonacci). Consider the sequence defined by

f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for n ≥ 2.

Choosing c1 = c2 = 1 and cj = 0 for j ≥ 3 in (3.1), for n ≥ 1 we have

fn = yn−1 =

n−1∑

k=0

k!

(n− 1)!
Bn−1,k(1, 2, 0, . . . ) =

n−1∑

k=0

(
k

n− 1− k

)
,

and
∑

m1+···+mr=n

fm1 · · · fmr =
n−r∑

k=0

(
k + r − 1

k

)(
k

n− r − k

)
.

Example 3.2 (Tribonacci). Let (tn) be the sequence defined by

t0 = t1 = 0, t2 = 1, and tn = tn−1 + tn−2 + tn−3 for n ≥ 3.
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Choosing c1 = c2 = c3 = 1 and cj = 0 for j ≥ 4 in (3.1), for n ≥ 2 we have

tn = yn−2 =
n−2∑

k=0

k!

(n− 2)!
Bn−2,k(1!, 2!, 3!, 0, . . . ),

and since Bn,k(1!, 2!, 3!, 0, . . . ) = n!
k!

∑k
`=0

(
k
k−`
)(

k−`
n+`−2k

)
= n!

k!

∑k
`=0

(
k
`

)(
`

n−k−`
)
, we get

tn =
n−2∑

k=0

k∑

`=0

(
k

`

)(
`

n− 2− k − `

)
,

and

∑

m1+···+mr=n

tm1 · · · tmr =

n−2r∑

k=0

k∑

`=0

(
k + r − 1

k

)(
k

`

)(
`

n− 2r − k − `

)
.

Example 3.3 (Jacobsthal). The Jacobsthal polynomials are obtained by the recurrence

J0 = 0, J1 = 1, and

Jn = Jn−1 + 2xJn−2 for n ≥ 2.

Choosing c1 = 1, c2 = 2x, and cj = 0 for j ≥ 3 in (3.1), for n ≥ 1 we get

Jn = yn−1 =

n−1∑

k=0

k!

(n− 1)!
Bn−1,k(1, 2(2x), 0, . . . ) =

n−1∑

k=0

(
k

n− 1− k

)
(2x)n−1−k,

and

∑

m1+···+mr=n

Jm1 · · · Jmr =
n−r∑

k=0

k!

(n− r)!

(
k + r − 1

k

)
Bn−r,k(1, 4x, 0, . . . )

=
n−r∑

k=0

(
k + r − 1

k

)(
k

n− r − k

)
(2x)n−r−k.

4. Examples: Fuss–Catalan, Motzkin

All of the previous examples are related to the family (3.1). However, there are many other
cases of interest. For example, let us consider the case when a = 1, b = 0, and cj = 0 for

j ≥ 3. Since Bn,k(c1, 2c2, 0, . . . ) = n!
k!

(
k

n−k
)
c2k−n1 cn−k2 , the family (1.1) can be written as

y0 = 1, yn =

n∑

k=1

1

k

(
n

k − 1

)(
k

n− k

)
c2k−n1 cn−k2 for n ≥ 1, (4.1)

and the convolution formula (2.1) becomes

∑

m1+···+mr=n

ym1 · · · ymr =

n∑

k=1

r

k

(
n+ r − 1

k − 1

)(
k

n− k

)
c2k−n1 cn−k2 . (4.2)
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Example 4.1 (Catalan). If we let c1 = 2 and c2 = 1 in (4.1), for n ≥ 1 we get

yn =
n∑

k=1

1

k

(
n

k − 1

)(
k

n− k

)
22k−n

=
1

n+ 1

n∑

k=1

(
n+ 1

k

)(
k

n− k

)
22k−n

=
1

n+ 1

(
2(n+ 1)

n

)
=

1

n+ 2

(
2(n+ 1)

n+ 1

)
= Cn+1.

Here we used the identity
n∑

k=dn
2
e

(
x

k

)(
k

n− k

)
22k = 2n

(
2x

n

)
(4.3)

from Gould’s collection [5, Identity (3.22)]. As for convolutions, (4.2) leads to

∑

m1+···+mr=n

Cm1+1 · · ·Cmr+1 =

n∑

k=1

r

k

(
n+ r − 1

k − 1

)(
k

n− k

)
22k−n

=
r

n+ r

n∑

k=1

(
n+ r

k

)(
k

n− k

)
22k−n.

Using again (4.3), we arrive at the identity

∑

m1+···+mr=n

Cm1+1 · · ·Cmr+1 =
r

n+ r

(
2(n+ r)

n

)
.

Example 4.2 (Motzkin). Let us now consider (4.1) with c1 = 1 and c2 = 1. For n ≥ 1,

yn =
n∑

k=1

1

k

(
n

k − 1

)(
k

n− k

)
=

1

n+ 1

n∑

k=1

(
n+ 1

k

)(
k

n− k

)
.

These are the Motzkin numbers Mn. Moreover,

∑

m1+···+mr=n

Mm1 · · ·Mmr =
r

n+ r

n∑

k=0

(
n+ r

k

)(
k

n− k

)
.

We finish this section by considering the sequence (with b 6= 0):

y0 = 1, yn =

n∑

k=1

(
bk

k − 1

)
(k − 1)!

n!
Bn,k(1!c1, 2!c2, . . . ) for n ≥ 1.

Example 4.3 (Fuss–Catalan). If c1 = 1 and cj = 0 for j ≥ 2, then the above sequence becomes

y0 = 1, yn =

(
bn

n− 1

)
(n− 1)!

n!
=

1

(b− 1)n+ 1

(
bn

n

)
.

Denoting C
(b)
n = yn, and since r

(
bn+r−1
n−1

) (n−1)!
n! = r

bn+r

(
bn+r
n

)
, we get the identity

∑

m1+···+mr=n

C(b)
m1
· · ·C(b)

mr
=

r

bn+ r

(
bn+ r

n

)
.
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STEINHAUS TRIANGLES WITH GENERALIZED PASCAL ADDITION

JENS-P. BODE AND HEIKO HARBORTH

Abstract. For a given row of 0s and 1s the following row is determined by the sums mod 2 of
s consecutive entries each. If this operation is repeated as long as possible then a generalized
Steinhaus triangle is obtained which is called balanced if there are as many 0s as 1s. Necessary
conditions for the existence of balanced Steinhaus triangles are determined. Constructions
are given in most of the cases for odd s and in some cases for even s.

1. Introduction

Consider a sequence a = (a1, a2, . . . , an) of length n with ai ∈ {0, 1}. For n ≥ s ≥ 2 the
derivative a′ = (a′1, a

′
2, . . . , a

′
n−s+1) is defined by a′i = (ai + ai+1 + . . . + ai+s−1) mod 2 being

the addition as in a generalized Pascal triangle [2]. A given sequence a determines a finite

sequence ∇ = ∇s(a) = (a, a′, a′′, . . . , a(t−1)) of length t = dn/(s− 1)e where a(t−1) is of length
less than s and thus has no further derivative. The sequence ∇ can be represented in triangular
arrangements, for example, as in Figure 1 for s = 3 and a = 1101010. These triangles will be

1 1 0 1 0 1 0
0 0 1 0 1

1 1 0
0

1 1 0 1 0 1 0
0 0 1 0 1

1 1 0
0

1 1 0 1 0 1 0
0 0 1 0 1
1 1 0
0

Figure 1. Triangular arrangements of ∇3(1101010).

called (generalized) Steinhaus triangles since they have been introduced for s = 2 in [9], that
is, using the classical Pascal addition. A Steinhaus triangle is called balanced if there occur
as many 0s as 1s in the whole triangle as for example in Figure 1. As Steinhaus did for s = 2
we will ask for the existence of balanced Steinhaus triangles for general s and all lengths n.

A first solution for s = 2 has been presented in [8] already. A further generalization where
ai ∈ {0, 1, . . . ,m− 1} and a′i = (ai + ai+1) mod m and corresponding references can be found
in [3, 4, 5]. For a′i = |ai − ai+1| see [1]. Classical Steinhaus triangles (s = 2) have been
interpreted as incidence matrices of so-called Steinhaus graphs (see for example [6, 7]).

2. Necessary conditions

At first the number P (n, s) of entries in a Steinhaus triangle ∇s(a1, . . . , an) will be deter-
mined.

Theorem 2.1. For n = (t− 1)(s− 1) + j with 1 ≤ j ≤ s− 1 and t ≥ 1 it holds

P (n, s) =
t(n+ j)

2
.
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Proof. In row r of the t rows there are (t − r)(s − 1) + j entries for 1 ≤ r ≤ t. The sum of
the t elements of this arithmetic progression having n as first element and j as last element
results in the asserted formula. �

Next the values of n will be determined for which P (n, s) is even being necessary for the
existence of a balanced Steinhaus triangle.

Theorem 2.2. The number P (n, s) is even if and only if

(1) s odd and

(1.1) n ≡ 0 (mod 2) or

(1.2) n ≡ s, s+ 2, . . . , 2s− 3 (mod 2s− 2)

or

(2) s even and

(2.1) n ≡ 0, 2, . . . , s− 2 (mod 4s− 4) or

(2.2) n ≡ 2s− 1, 2s+ 1, . . . , 3s− 3 (mod 4s− 4) or

(2.3) n ≡ 3s− 2, 3s− 1, . . . , 4s− 5 (mod 4s− 4).

Proof. Using n = (t− 1)(s− 1) + j, 1 ≤ j ≤ s− 1, we have

P = P (n, s) =
t((t− 1)(s− 1) + 2j)

2
.

Let s be odd. If t = 2i+ 1 then P = (2i+ 1)(i(s− 1) + j) which is even if and only if j is even,
that is, j = 2, 4, . . . , s− 1. Since n = i(2s− 2) + j it follows n ≡ 2, 4, . . . s− 1 (mod 2s− 2). If
t = 2i then P = i((2i−1)(s−1)+2j) which is always even, that is, for j = 1, 2, . . . s−1. Since
n = (2i−1)((s−1)+j) = (i−1)(2s−2)+s+j−1 it follows n ≡ s, s+1, . . . , 2s−2 (mod 2s−2).
Together both sets of values of n correspond to (1.1) and (1.2).

Let s be even. If t = 4i+ 1 then P = (4i+ 1)(2i(s− 1) + j) is even if and only if j is even,
that is, j = 2, 4, . . . , s− 2. From n = i(4s− 4) + j we obtain n ≡ 2, 4, . . . , s− 2 (mod 4s− 4).
If t = 4i + 3 then P = (4i + 3)((2i + 1)(s − 1) + j) is even if and only if j is odd, that
is, j = 1, 3, . . . , s − 1. From n = (4i + 2)(s − 1) + j = i(4s − 4) + 2s + j − 2 we have
n ≡ 2s− 1, 2s+ 1, . . . , 3s− 3 (mod 4s− 4). If t = 4i+ 2 then P = (2i+ 1)((4i+ 1)(s− 1) + 2j)
which is always odd. If t = 4i then P = 2i((4i− 1)(s− 1) + 2j) which is always even, that is,
for j = 1, 2, . . . , s − 1. With n = (4i − 1)(s − 1) + j = (i − 1)(4s − 4) + 3s + j − 3 we obtain
n ≡ 3s−2, 3s−1, . . . , 4s−4 (mod 4s−4). Together these three sets of values of n correspond
to (2.1) to (2.3). �
Theorem 2.3. If s ≡ 1 (mod 4) and n = s or if s ≡ 0 (mod 2), s > 2, and n = 3s then
balanced Steinhaus triangles do not exist although P (n, s) is even.

Proof. If s ≡ 1 (mod 4) and n = s then P (n, s) = s + 1 ≡ 2 (mod 4) follows since we have
a = (a1, a2, . . . , an) and a′ = (a′1) with a′1 = (a1 +a2 + . . .+an) mod 2. Now the total number
of 1s is a1 + a2 + . . .+ an + a′1 ≡ 2(a1 + a2 + . . .+ an) ≡ 0 (mod 2) so that the triangle cannot
be balanced since P (n, s)/2 ≡ 1 (mod 2).

If s ≡ 0 (mod 2), s > 2, and n = 3s then t = d3s/(s− 1)e = 3 + d3/(s− 1)e = 4 and j = 3.
This implies P (n, s)/2 = 4(3s + 3)/4 = 3(s + 1) ≡ 1 (mod 2). Then the triangle cannot be
balanced if we prove that the number of 1s is always even, that is, the total sum of the entries
is even.

This is the case if the number of entries in which each ai occurs an odd number of times is
even, that is, in a triangle with only one 1 in the first row the total number of 1s is always
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even. We start with a triangle with 0s only (see italic values in Figure 2 for s = 6), thus we
have an even number of 1s. Then we shift the single 1 from right to left through the first row.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 1 1 1 1 1 1 1 1 0 0 1 1 0 0 0

Figure 2. Example for s = 6.

The corresponding derivatives are shifted simultaneously. In the first step the four underlined
1s are shifted into the triangle and at the same time the four bold 0s at the left border leave
the triangle. Due to symmetry the four underlined 1s correspond to the four bold 1s. Figures
3 and 4 show a, a′, a′′, and a′′′ for general s ≡ 0 and s ≡ 2 (mod 4) such that the four bold
1s and the four bold 0s are in one column each, that is, in columns i = 0 and i = 3s. In the

i = 0 1 . . . s . . . 2s . . . 3s

a = 0 0 0 0 0 . . . 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 0 0 . . . 0 0 0 0 1
a′ = 0 0 0 0 0 . . . 0 0 0 0 0 0 . . . 0 0 1 1 1 1 1 1 1 . . . 1 1 1 1 1
a′′ = 0 0 0 0 0 . . . 0 0 0 0 0 1 . . . 0 1 0 1 0 1 0 1 0 . . . 1 0 1 0 1
a′′′ = 0 0 0 1 1 . . . 0 0 1 1 0 0 . . . 0 0 0 0 1 1 0 0 1 . . . 1 0 0 1 1

σ = 0 0 0 1 1 . . . 0 0 1 1 0 1 . . . 0 1 1 0 0 1 1 0 0 . . . 1 1 0 0 0

Figure 3. s ≡ 0 (mod 4).

i = 0 1 . . . s . . . 2s . . . 3s

a = 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 . . . 0 0 0 0 0 0 0 . . . 0 0 0 0 1
a′ = 0 0 0 0 0 0 0 . . . 0 0 0 0 0 0 . . . 0 0 1 1 1 1 1 . . . 1 1 1 1 1
a′′ = 0 0 0 0 0 0 0 . . . 0 0 0 0 0 1 . . . 0 1 0 1 0 1 0 . . . 1 0 1 0 1
a′′′ = 0 0 0 1 1 0 0 . . . 1 1 0 0 1 1 . . . 1 1 1 1 0 0 1 . . . 1 0 0 1 1

σ = 0 0 0 1 1 0 0 . . . 1 1 0 0 1 0 . . . 1 0 0 1 1 0 0 . . . 1 1 0 0 0

Figure 4. s ≡ 2 (mod 4).

following steps the four entries in column i = 3s − j are shifted into the triangle and at the
same time the four entries in column i = j leave the triangle for j = 1, . . . , 3s− 1. The total
number of 1s in the triangle remains even if the sum of the entering and leaving entries is even
in every step. This can be checked in Figures 3 and 4 since for the sums σi of the columns
modulo 2 it holds σj = σ3s−j where σ = (σ0, σ1, . . . , σ3s). �

Theorem 2.3 shows that some of the conditions for n in Theorem 2.2 are not sufficient.
For s = 2u we conjecture in addition to Theorem 2.3 that there exist no balanced Steinhaus
triangles for n = s(4si − 1), i = 1, 2, . . ., although P (n, s) is even. This has been checked by
computer for s, n ≤ 100000. Moreover, we conjecture that balanced Steinhaus triangles exist
in all other cases where P (n, s) is even.
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3. Odd values of s

For one half of the odd values of s the existence of balanced triangles can be proved com-
pletely.

Theorem 3.1. For s ≡ 3 (mod 4) balanced Steinhaus triangles exist for all n fulfilling the
necessary conditions (1.1) or (1.2) in Theorem 2.2.

Proof. If a = 0101 . . . then a′ = 1010 . . ., a′′ = 0101 . . . and thus every second row has the
same pattern. For n even the triangle is balanced since all rows are of even length. For n odd
all rows are of odd length and all pairs of consecutive rows are balanced. Then the triangle is
balanced if the number t of rows is even which is the case for the odd values n in (1.2), see
the proof of Theorem 2.2. �

For the other half of the odd values of s one residue class remains open up to some small
examples.

Theorem 3.2. For s ≡ 1 (mod 4) balanced Steinhaus triangles exist for all n ≡ 0 (mod 2)
and all n ≡ s+ 2, s+ 4, . . . , 2s− 3 (mod 2s− 2).

Proof. If a = 0101 . . . it follows a′ = 0101 . . . so that every row has the same pattern and the
triangle is balanced for all even values of n since then all rows are of even length.

For odd n we choose a = 00(01)1 to obtain a′ = 10(01)1 and a′′ = 00(01)1 where the
part in brackets can be repeated arbitrarily often. It follows that all pairs of consecutive
rows are balanced. Thus for t = 2i + 2 the triangle is balanced, that is, for n = (t − 1)(s −
1) + j = i(2s − 2) + s − 1 + j. With j = 3, 5, . . . , s − 2 we have obtained a solution for
n ≡ s+ 2, s+ 4, . . . , 2s− 3 (mod 2s− 2). �

Note that the construction in the preceding proof is not possible for j = 1, that is, for
n ≡ s (mod 2s − 2). Due to Theorems 2.2 and 2.3 for s ≡ 1 (mod 4), n = s + i(2s − 2),
i = 1, 2, . . ., balanced triangles may be possible. The following theorem guarantees such
balanced triangles for some residue classes of n by general construction.

Theorem 3.3. For s ≡ 1 (mod 4) and s ≥ 1 + 2c, c ≥ 1, balanced Steinhaus triangles exist
for n ≡ s+ (s− 1)2c (mod (2s− 2)2c).

Proof. We define 2c × 2c matrices Mc, c ≥ 1, recursively by

M1 =

(
1 0
0 0

)
, Mc+1 =




Mc Mc

0 1 . . . 0 1
. . . Mc

0 1 . . . 0 1


 .

For example,

M2 =




1 0 1 0
0 0 0 0
0 1 1 0
0 1 0 0


 , M3 =




1 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0
0 1 1 0 0 1 1 0
0 1 0 0 0 1 0 0
0 1 0 1 1 0 1 0
0 1 0 1 0 0 0 0
0 1 0 1 0 1 1 0
0 1 0 1 0 1 0 0




.
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If every row of Mc is augmented by an infinite sequence 0101. . . to the right hand side then
for s ≡ 1 (mod 4) and s ≥ 2c the first row is the derivative of the last row and each of all
other rows is the derivative of the preceding row. This can be seen by induction on c using
that each but the last row of Mc has an even number of 1s for c ≥ 2.

Now let Pc be the 2c+1× (1+2c) matrix consisting of the 1+2c rightmost columns of Mc+1.
Note that the first column of Pc consists of 2c consecutive 0s followed by 2c consecutive 1s.
Let Qc be the 2c+1× 2c matrix obtained from the 2c rightmost columns of Mc+1 by horizontal
reflection and taking the complement. Then we define the trapezoid-like scheme Tc by

Tc =




0 1 . . . 0 1
Pc . . . Qc

0 1 . . . 0 1




where each row has (s−1)/2 pairs 01 less that its preceding one in the central part. Note that
the first row of Tc has the same pattern (only different numbers of pairs 01 in the central part)
as the derivative of the last row and each of all other rows is the derivative of its preceding
one. Moreover, Tc is balanced since the first column is balanced and each row of the rest of Tc
is balanced, since the rest is the complement of its mirror image. For example, see Figure 5.

T2 =




0 1 0 1 0 0 1 . . . 0 1 1 0 1 0
0 0 0 0 0 0 1 . . . 0 1 1 1 1 1
0 0 1 1 0 0 1 . . . 0 1 1 0 0 1
0 0 1 0 0 0 1 . . . 0 1 1 1 0 1
1 1 0 1 0 0 1 . . . 0 1 1 0 1 0
1 0 0 0 0 0 1 . . . 0 1 1 1 1 1
1 0 1 1 0 0 1 . . . 0 1 1 0 0 1
1 0 1 0 0 0 1 . . . 0 1 1 1 0 1




Figure 5. T2.

For s ≥ 1 + 2c+1 we choose from Tc the last 1 + 2c−1 rows beginning with 0 followed by the
first 2c−1 rows beginning with 1 (see Figure 6 for s = 9 and 13 with the first and last horizontal
line of Figure 5). If there are (s− (1 + 2c+1))/2 pairs 01 in the last of these chosen rows then

0 0 0 0 0 0 1 . . . 0 1 1 1 1 1
0 0 1 1 0 0 1 0 1 0 1 0 1 1 0 0 1
0 0 1 0 0 0 1 0 1 1 1 0 1
1 1 0 1 0 1 0 1 0
1 1 0 1 0
1

0 0 0 0 0 0 1 . . . 0 1 1 1 1 1
0 0 1 1 0 0 1 . . . 0 1 1 0 0 1
0 0 1 0 0 0 1 . . . 0 1 1 1 0 1
1 1 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0
1 0 0 0 0 1 1 1 1
1

0 0 0 0 0 0 1 . . . 0 1 1 1 1 1
0 0 1 1 0 0 1 . . . 0 1 1 0 0 1
0 0 1 0 0 0 1 . . . 0 1 1 1 0 1
1 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0
1 0 0 0 0 0 1 0 1 1 1 1 1
1

Figure 6. (s, n) = (5, 21), (9, 41), and (13, 61).
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it has s entries and its derivative is a single 1. Thus we have constructed a Steinhaus triangle
being balanced since the first column has as many 1s as 0s. If on top of this triangle i2c+1

rows are added which are the cyclically preceding rows of Tc then we obtain balanced triangles
for

n = 1 + (s− 1)(2c−1 + 2c−1 + 1 + i2c+1)
= s+ (2c−1 + i2c)(2s− 2)
≡ s+ (s− 1)2c (mod (2s− 2)2c).

For 1 + 2c ≤ s ≤ 2c+1 we can proceed similar to the preceding case. From Tc we now choose
the last 1+2c−1 rows beginning with 0 followed by the first 2c−1−1 rows beginning with 1 (see
Figure 6 for s = 5 with the first and second horizontal line of Figure 5). If there are s− 1− 2c

pairs 01 in the last of the chosen rows then it has 1 + 2c+1 + 2(s − 1 − 2c) = 2s − 1 entries
and its derivative has length s and starts with 1. The rest of this row is the complement of
its mirror image and thus it is balanced and has an even number of 1s. Then the derivative
of this row is a single 1 and we have balanced triangles for

n = 1 + (s− 1)(1 + 2c−1 − 1 + 2c−1 + 1 + i2c+1)

as above. �

For s ≡ 1 (mod 4) and c such that 1 + 2c ≤ s ≤ 2c+1 by Theorems 2.2, 2.3, 3.2, and 3.3
only the cases n ≡ s (mod (2s− 2)2c) remain open. For s = 5 and s = 9 balanced Steinhaus
triangles exist in these cases:

s = 5: n ≡ 5 (mod 64), n 6= 5: a = 11111111110(01),
n ≡ 37 (mod 64): a = 00100100010(01),

s = 9: n ≡ 9 (mod 256), n 6= 9:
a = 010111011101000100(01)11011101000100010,

n ≡ 137 (mod 256):
a = 00101011001010100(01)1101010110010101,

where the part between the brackets is repeated appropriately.

4. Even values of s

The case s = 2 is solved in [8]. Moreover, for s ≡ 0 (mod 2) we so far have found balanced
Steinhaus triangles for some small values of s only:

s = 4: n ≡ 0 (mod 24): a = 000100(001111),
n ≡ 2 (mod 12): a = 1000(011110)1000,
n ≡ 7 (mod 12): a = 100(010100)1000,
n ≡ 9 (mod 12): a = 1000(100010)1000,
n ≡ 10 (mod 12): a = 1010(010001),
n ≡ 11 (mod 12): a = 01010(010001),

For s = 4 the existence of balanced Steinhaus triangles remains open for n ≡ 12 (mod 24),
n 6= 12.
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s = 6: n ≡ 0 (mod 20): a = 0011100010(0010000010),
n ≡ 2 (mod 20), n 6= 2: a = 10111000001(0010000010),
n ≡ 4 (mod 20): a = 0011(0010000010),
n ≡ 11 (mod 20): a = 10111000001(0001000001),
n ≡ 13 (mod 20): a = 0111010000010(0010000010),
n ≡ 15 (mod 20): a = 00111(0010000010),
n ≡ 16 (mod 20): a = 100110(0010000010),
n ≡ 17 (mod 20): a = 1000111(0010000010),
n ≡ 19 (mod 20): a = 100100110(0010000010),
n ≡ 38, 58, 78 (mod 80): a = 000101101011100010(0010000010),
n ≡ 98 (mod 160): a = 110001101010101111(0010000010),

For s = 6 the case n ≡ 18 (mod 160), n 6= 18, remains open.

5. Remarks

Summarizing, the existence of balanced Steinhaus triangles with generalized Pascal addition
in the case of odd n remains open only for s ≡ 1 (mod 4) and large values of n with n ≡
s (mod 2s− 2). In the case of n even only examples for small values of s and some classes of
n are known.
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GENERALIZING ZECKENDORF’S THEOREM: THE KENTUCKY

SEQUENCE
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Abstract. By Zeckendorf’s theorem, an equivalent definition of the Fibonacci sequence (ap-
propriately normalized) is that it is the unique sequence of increasing integers such that every
positive number can be written uniquely as a sum of non-adjacent elements; this is called a
legal decomposition. Previous work examined the distribution of the number of summands,
and the spacings between them, in legal decompositions arising from the Fibonacci numbers
and other linear recurrence relations with non-negative integral coefficients. These results
were restricted to the case where the first term in the defining recurrence was positive. We
study a generalization of the Fibonacci sequence with a simple notion of legality which leads
to a recurrence where the first term vanishes. We again have unique legal decompositions,
Gaussian behavior in the number of summands, and geometric decay in the distribution of
gaps.
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1. Introduction

One of the standard definitions of the Fibonacci numbers {Fn} is that it is the unique
sequence satisfying the recurrence Fn+1 = Fn + Fn−1 with initial conditions F1 = 1, F2 =
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2. An interesting and equivalent definition is that it is the unique increasing sequence of
positive integers such that every positive number can be written uniquely as a sum of non-
adjacent elements of the sequence.1 This equivalence is known as Zeckendorf’s theorem [27],
and frequently one says every number has a unique legal decomposition as a sum of non-
adjacent Fibonacci numbers.

Past research regarding generalized Zeckendorf decompositions have involved sequences
{Gn} where the recurrence relation coefficients are non-negative integers, with the additional
restriction being that the first and last terms are positive.2 See for instance [22], where the
authors call these Positive Linear Recurrence (PLR) Sequences. In this setting, much is
known about the properties of the summands including that the distribution of the number
of summands converges to a Gaussian, [9, 23]. There have also been recent results about gaps
between summands, including a proof that the distribution of the longest gap converges to the
same distribution one sees when looking at the longest run of heads in tosses of a biased coin,
see [2, 3, 5]. There is a large set of literature addressing generalized Zeckendorf decompositions,
these include[1, 8, 10, 11, 12, 13, 14, 15, 16, 17, 25, 26] among others.

However, all of these results only hold for PLR Sequences. In this paper, we extend the
results on Gaussian behavior and average gap measure to recurrences that cannot be handled
by existing techniques. To that end, we study a sequence arising from a notion of a legal
decomposition whose recurrence has first term equal to zero.3 While our sequence fits into
the framework of an f -decomposition introduced in [9], their arguments only suffice to show
that our decomposition rule leads to unique decompositions. The techniques in [9] do not
address the distribution of the number of summands nor the behavior of the gaps between the
summands for our particular sequence. We address these questions completely in Theorems
1.5 and 1.6, respectively.

We now describe our object of study. We can view the decomposition rule corresponding to
the Fibonacci sequence by saying the sequence is divided into bins of length 1, and (i) we can
use at most one element from a bin at most one time, and (ii) we cannot choose elements from
adjacent bins. This suggests a natural extension where the bins now contain b elements and
any two summands of a decomposition (i) cannot be members of the same bin and (ii) must
be at least s bins away from each other. We call this the (s, b)-Generacci sequence (see
Definition 5.2) and the Fibonacci numbers are the (1, 1)-Generacci sequence. In this paper we
consider the case s = 1, b = 2. We give this special sequence a name: the Kentucky sequence,
after the home state of one of our authors. Although we expect our results to extend in full
generality, we have found that new techniques are needed for the two parameter family. See
Section 5 for more details on the general case.

Definition 1.1. Let an increasing sequence of positive integers {ai}∞i=1 be given and partition
the elements into bins

Bk := {a2k−1, a2k}
for k ≥ 1. We declare a decomposition of an integer

m = a`1 + a`2 + · · ·+ a`k

where `1 < `2 < · · · < `k and {a`j , a`j+1
} 6⊂ Bi ∪ Bi−1 for any i, j to be a Kentucky legal

decomposition.

1If we started the Fibonacci numbers with a zero, or with two ones, we would lose uniqueness of
decompositions.

2Thus Gn+1 = c1Gn + · · · + cLGn−(L−1) with c1cL > 0 and ci ≥ 0.
3Thus Gn+1 = c1Gn + c2Gn−1 + · · · + CLGn−(L−1) with c1 = 0 and ci ≥ 0.
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This says that we cannot decompose a number using more than one summand from the
same bin or two summands from adjacent bins.

Definition 1.2. An increasing sequence of positive integers {ai}∞i=1 is called a Kentucky se-
quence if every ai (i ≥ 1) is the smallest positive integer that does not have a Kentucky legal
decomposition using the elements {a1, . . . , ai−1}.

From the definition of a Kentucky legal decomposition, the reader can see that the first five
terms of the sequence must be {1, 2, 3, 4, 5}. We have a6 6= 6 as 6 = a1 + a5 = 1 + 5 is a
Kentucky legal decomposition. In the same way we find a6 6= 7, and this is the largest integer
that could be legally decomposed using the first five entries in the sequence. Thus we must
have a6 = 8. Continuing we have the first few terms of the Kentucky sequence:

1, 2

B1

, 3, 4

B2

, 5, 8

B3

, 11, 16

B4

, 21, 32

B5

, 43, 64

B6

, 85, 128

B7

, 171, 256

B8

, . . .

We have a nice closed form expression for the elements of this sequence.

Theorem 1.3. If {an} is the Kentucky sequence, then

an+1 = an−1 + 2an−3, a1 = 1, a2 = 2, a3 = 3, a4 = 4,

which implies

a2n = 2n and a2n−1 =
1

3

(
2n+1 + (−1)n

)
.

This is not a PLR Sequence as the leading coefficient (that of an) is zero, and this sequence
falls outside the scope of many of the previous techniques. We prove the following theorems
concerning the Kentucky Sequence.

Theorem 1.4 (Uniqueness of Decompositions). Every positive integer can be written uniquely
as a sum of distinct terms from the Kentucky sequence where no two summands are in the
same bin and no two summands belong to consecutive bins in the sequence.

The above follows immediately from the work in [9] on f -decompositions. In Theorem 1.3 of
[9] take f(n) = 3 if n is even and f(n) = 2 otherwise. For completeness we give an elementary
proof in Appendix A. generalize the results on Gaussian behavior for the summands to this
case.

Theorem 1.5 (Gaussian Behavior of Summands). Let the random variable Yn denote the
number of summands in the (unique) Kentucky decomposition of an integer picked at random
from [0, a2n+1) with uniform probability.4 Normalize Yn to Y ′n = (Yn − µn)/σn, where µn and
σn are the mean and variance of Yn respectively, which satisfy

µn =
n

3
+

2

9
+O

( n
2n

)

σ2n =
2n

27
+

8

81
+O

(
n2

2n

)
.

Then Y ′n converges in distribution to the standard normal distribution as n→∞.

4Using the methods of [4], these results can be extended to hold almost surely for a sufficiently large sub-
interval of [0, a2n+1).
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Our final results concern the behavior of gaps between summands. For the legal decompo-
sition

m = a`1 + a`2 + · · ·+ a`k with `1 < `2 < · · · < `k

and m ∈ [0, a2n+1), we define the set of gaps as follows:

Gapsn(m) := {`2 − `1, `3 − `2, . . . , `k − `k−1}.
Notice we do not include the wait to the first summand, `1 − 0, as a gap. We could include
this if we wish; one additional gap will not affect the limiting behavior.

In the theorem below we consider all the gaps between summands in Kentucky legal de-
compositions of all m ∈ [0, a2n+1). We let Pn(g) be the fraction of all these gaps that are of
length g (i.e., the probability of a gap of length g among Kentucky legal decompositions of
m ∈ [0, a2n+1)). For example, notice m = a1 + a11 + a15 + a22 + a26 contributes two gaps of
length 4, one gap of length 7 and one gap of length 10.

Theorem 1.6 (Average Gap Measure). For Pn(g) as defined above, the limit P (g) := limn→∞ Pn(g)
exists, and

P (0) = P (1) = P (2) = 0, P (3) = 1/8,

and for g ≥ 4 we have

P (g) =

{
2−j if g = 2j
3
4 2−j if g = 2j + 1.

In §2 we derive the recurrence relation and explicit closed form expressions for the terms of
the Kentucky sequence, as well as a useful generating function for the number of summands
in decompositions. We then prove Theorem 1.5 on Gaussian behavior in §3, and Theorem 1.6
on the distribution of the gaps in §4. We end with some concluding remarks and directions
for future research in §5.

2. Recurrence Relations and Generating functions

In the analysis below we constantly use the fact that every positive integer has a unique
Kentucky legal decomposition; see [9] or Appendix A for proofs.

2.1. Recurrence Relations.

Proposition 2.1. For the Kentucky sequence, an = n for 1 ≤ n ≤ 5 and for any n ≥ 5 we
have an = an−2 + 2an−4. Further for n ≥ 1 we have

a2n = 2n and a2n−1 =
1

3

(
2n+1 + (−1)n

)
. (2.1)

Proof. We recall that the integers a2n+1 and a2n in the Kentucky sequence are elements of
the sequence as they are the smallest integers that cannot be legally decomposed using the
members of {a1, a2, . . . , a2n} or {a1, a2, . . . , a2n−1} respectively:

1, 2

B1

, 3, 4

B2

, 5, 8

B3

, 11, 16

B4

, 21, 32

B5

, 43, 64

B6

, · · · , a2n−3, a2n−2
Bn−1

, a2n−1, a2n
Bn

.

As a2n is the largest entry in the bin Bn, it is one more than the largest number we can
legally decompose, and thus

a2n = a2n−1 + a2(n−2) + a2(n−4) + · · ·+ aj + 1

DECEMBER 2014 71



THE FIBONACCI QUARTERLY

where aj = a2 if n is odd and aj = a4 if n is even. By construction of the Kentucky sequence
we have a2(n−2) + a2(n−4) + · · ·+ aj + 1 = a2(n−2)+1 = a2n−3. Thus

a2n = a2n−1 + a2n−3. (2.2)

Similarly a2n+1 is the smallest entry in bin Bn+1, so

a2n+1 = a2n + a2(n−2) + a2(n−4) + · · ·+ aj + 1

where aj = a2 if n is odd and aj = a4 if n is even. Thus

a2n+1 = a2n + a2n−3. (2.3)

Substituting (2.2) into (2.3) yields

a2n+1 = a2n−1 + 2a2n−3, (2.4)

and thus for m ≥ 5 odd we have am = am−2 + 2am−4.
Now using (2.4) in (2.2), we have

a2n = a2n−1 + a2n−3 = a2n−3 + 2a2n−5 + a2n−3 = 2(a2n−3 + a2n−5).

Shifting the index in (2.2) gives

a2n = 2a2n−2. (2.5)

Since a2 = 2 and a4 = 4, together with (2.5) we now have a2n = 2n for all n ≥ 1. A few
algebraic steps then confirm am = am−2 + 2am−4 for m ≥ 6 even.

Finally, we prove that a2n−1 = 1
3(2n+1 + (−1)n) for n ≥ 1 by induction. The base case

is immediate as a1 = 1 and 1
3(21+1 + (−1)1) = 1

3(4 − 1) = 1. Assume for some N ≥ 1,

a2N−1 = 1
3(2N+1 + (−1)N ). By (2.4), we have

a2(N+1)−1 = a2N+1

= a2N−1 + 2a2N−3

=
1

3
(2N+1 + (−1)N ) + (2)

(
1

3

)
(2N−1+1 + (−1)N−1)

=
1

3
(2N+1 + (−1)N + 2N+1 + (−1)N−1 + (−1)N−1)

=
1

3
(2N+2 + (−1)N+1),

and thus for all n ≥ 1 we have a2n−1 = 1
3(2n+1 + (−1)n). �

2.2. Counting Integers With Exactly k Summands. In [18], Koloğlu, Kopp, Miller and
Wang introduced a very useful combinatorial perspective to attack Zeckendorf decomposition
problems. While many previous authors attacked related problems through continued fractions
or Markov chains, they instead partitioned the m ∈ [Fn, Fn+1) into sets based on the number
of summands in their Zeckendorf decomposition. We employ a similar technique here, which
when combined with identities about Fibonacci polynomials allows us to easily obtain Gaussian
behavior.

Let pn,k denote the number of m ∈ [0, a2n+1) whose legal decomposition contains exactly k
summands where k ≥ 0. We have pn,0 = 1 for n ≥ 0, p0,k = 0 for k > 0, p1,1 = 2, and pn,k = 0
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if k > bn+1
2 c. Also, by definition,

bn+1
2
c∑

k=0

pn,k = a2n+1,

and we have the following recurrence.

Proposition 2.2. For pn,k as above, we have

pn,k = 2pn−2,k−1 + pn−1,k

for n ≥ 2 and k ≤ bn+1
2 c.

Proof. We partition the Kentucky legal decompositions of all m ∈ [0, a2n+1) into two sets,
those that have a summand from bin Bn and those that do not.

If we have a legal decomposition m = a`1 + a`2 + · · · + a`k with a`k ∈ Bn, then a`k−1
≤

a2(n−2) and there are two choices for a`k . The number of legal decompositions of the form
a`1 +a`2 + · · ·+a`k−1

with a`k−1
≤ a2(n−2) is pn−2,k−1. Note the answer is independent of which

value a`k ∈ Bn we have. Thus the number of legal decompositions of m containing exactly k
summands with largest summand in bin Bn is 2pn−2,k−1.

If m ∈ [0, a2n+1) does not have a summand from bin Bn in its decomposition, then m ∈
[0, a2n−1), and by definition the number of such m with exactly k summands in a legal decom-
position is pn−1,k.

Combining these two cases yields

pn,k = 2pn−2,k−1 + pn−1,k,

completing the proof. �

This recurrence relation allows us to compute a closed-form expression for F (x, y), the
generating function of the pn,k’s.

Proposition 2.3. Let

F (x, y) :=
∑

n,k≥0
pn,kx

nyk

be the generating function of the pn,k’s arising from Kentucky legal decompositions. Then

F (x, y) =
1 + 2xy

1− x− 2x2y
. (2.6)

Proof. Noting that pn,k = 0 if either n < 0 or k < 0, using explicit values of pn,k and the
recurrence relation from Proposition 2.2, after some straightforward algebra we obtain

F (x, y) = 2x2yF (x, y) + xF (x, y) + 2xy + 1.

From this, (2.6) follows. �

While the combinatorial vantage of [18] has been fruitfully applied to a variety of recurrences
(see [22, 23]), their proof of Gaussianity does not generalize. The reason is that for the
Fibonacci numbers (which are also the (1, 1)-Generacci numbers) we have an explicit, closed
form expression for the corresponding pn,k’s, which greatly facilitates the analysis. Fortunately
for us a similar closed form expression exists for Kentucky decompositions.
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Proposition 2.4. Let pn,k be the number of integers in [0, a2n+1) that have exactly k sum-
mands in their Kentucky legal decomposition. For all k ≥ 1 and n ≥ 1 + 2(k − 1), we have

pn,k = 2k
(
n− (k − 1)

k

)
.

Proof. We are counting decompositions of the form a′`1+· · ·+a′`k where a′`i ∈ B`i = {a2`i−1, a2`i}
and `i ≤ n. Define x1 := `1 − 1 and xk+1 := n− `k. For 2 ≤ i ≤ k, define xi := `i − `i−1 − 1.
We have

x1 + 1 + x2 + 1 + x3 + 1 + · · ·+ xk + 1 + xk+1 = n.

We change variables to rewrite the above. Essentially what we are doing is replacing the
x’s with new variables to reduce our Diophantine equation to a standard form that has been
well-studied. As we have a legal decomposition, our bins must be separated by at least one
and thus xi ≥ 1 for 2 ≤ i ≤ k − 1 and x1, xk ≥ 0. We remove these known gaps in our new
variables by setting y1 := x1, yk+1 := xk+1 and yi := xi − 1 for 2 ≤ i ≤ k, which gives

y1 + y2 + · · ·+ yk + yk+1 = x1 + (x2 − 1) + · · ·+ (xk − 1) + xk+1

= n− k − (k − 1). (2.7)

Finding the number of non-negative integral solutions to this Diophantine equation has many
names (the Stars and Bars Problem, Waring’s Problem, the Cookie Problem). As the number

of solutions to z1 + · · ·+ zP = C is
(
C+P−1
P−1

)
(see for example [21, 24], or [20] for a proof and

an application of this identity in Bayesian analysis), the number of solutions to (2.7) is given
by the binomial coefficient(

n− k − (k − 1) + k

k

)
=

(
n− (k − 1)

k

)
.

As there are two choices for each a′`i , we have 2k legal decompositions whose summands are

from the bins {B`1 ,B`2 , . . . ,B`k} and thus

pn,k = 2k
(
n− (k − 1)

k

)
.

�

3. Gaussian Behavior

Before launching into our proof of Theorem 1.5, we provide some numerical support in
Figure 1. We randomly chose 200,000 integers from [0, 10600). We observed a mean number of
summands of 666.899, which fits beautifully with the predicted value of 666.889; the standard
deviation of our sample was 12.154, which is in excellent agreement with the prediction of
12.176.

We split Theorem 1.5 into three parts: a proof of our formula for the mean, a proof of our
formula for the variance, and a proof of Gaussian behavior. We isolate the first two as separate
propositions; we will prove these after first deriving some useful properties of the generating
function of the pn,k’s.

Proposition 3.1. The mean number of summands in the Kentucky legal decompositions for
integers in [0, a2n+1) is

µn =
n

3
+

2

9
+O

( n
2n

)
.
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Figure 1. The distribution of the number of summands in Kentucky legal
decompositions for 200,000 integers from [0, 10600).

Proposition 3.2. The variance σ2n of Yn (from Theorem 1.5) is

σ2n =
2n

27
+

8

81
+O

(
n2

2n

)
.

3.1. Mean and Variance. Recall Yn is the random variable denoting the number of sum-
mands in the unique Kentucky decomposition of an integer chosen uniformly from [0, a2n+1),
and pn,k denotes the number of integers in [0, a2n+1) whose legal decomposition contains ex-
actly k summands. The following lemma yields expressions for the mean and variance of Yn
using a generating function for the pn,k’s; in fact, it is this connection of derivatives of the
generating function to moments that make the generating function approach so appealing.
The proof is standard (see for example [9]).

Lemma 3.3. [9, Propositions 4.7, 4.8] Let F (x, y) :=
∑

n,k≥0 pn,kx
nyk be the generating

function of pn,k, and let gn(y) :=
∑n

k=0 pn,ky
k be the coefficient of xn in F (x, y). Then the

mean of Yn is

µn =
g′n(1)

gn(1)
,

and the variance of Yn is

σ2n =

d
dy (yg′n(y))|y=1

gn(1)
− µ2n.

In our analysis our closed form expression of pn,k as a binomial coefficient is crucial in
obtaining simple closed form expressions for the needed quantities. We are able to express
these needed quantities in terms of the Fibonacci polynomials, which are defined recursively
as follows:

F0(x) = 0, F1(x) = 1, F2(x) = x,

and for n ≥ 3

Fn(x) = xFn−1(x) + Fn−2(x).

DECEMBER 2014 75



THE FIBONACCI QUARTERLY

For n ≥ 3, the Fibonacci polynomial5 Fn(x) is given by

Fn(x) =

bn−1
2 c∑

j=0

(
n− j − 1

j

)
xn−2j−1, (3.1)

and also has the explicit formula

Fn(x) =
(x+

√
x2 + 4)n − (x−

√
x2 + 4)n

2n
√
x2 + 4

. (3.2)

The derivative of Fn(x) is given by

F ′n(x) =
2nFn−1(x) + (n− 1)xFn(x)

x2 + 4
. (3.3)

For a reference on Fibonacci polynomials and the formulas given above (which follow imme-
diately from the definitions and straightforward algebra), see [19].

Proposition 3.4. For n ≥ 3

gn(y) = (
√

2y)n+1Fn+2

(
1√
2y

)
. (3.4)

Proof. By Proposition 2.4, we have

F (x, y) =
∞∑

n=0

∞∑

k=0

pn,kx
nyk =

∞∑

n=0

n∑

k=0

2k
(
n− k + 1

k

)
xnyk.

Thus, using (3.1) we find

F (x, y) =
1

x2
√

2y

∞∑

n=0

n+2∑

k=0

(
(n+ 2)− k − 1

k

)(
1√
2y

)(n+2)−2k−1
(x
√

2y)n+2

=
1

x2
√

2y

∞∑

n=0

Fn+2

(
1√
2y

)
(x
√

2y)n+2 =
∞∑

n=0

Fn+2

(
1√
2y

)
(
√

2y)n+1xn,

completing the proof. �

In Appendix B we provide alternate proofs of Proposition 3.1, Proposition 3.2 and Theorem
1.5 using different methods. In doing so, we uncovered another formula for gn(y), the coefficient
for xn in F (x, y) as given in Lemma 3.3, and this leads to a derivation of a formula for the
Fibonacci polynomials.

5Note that Fn(1) gives the standard Fibonacci sequence.
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Proof of Proposition 3.1. By Lemma 3.3, the mean of Yn is g′n(1)/gn(1). Calculations of deriva-
tives using equations (3.3) and (3.4) give

g′n(1)

gn(1)
=

(n+ 1)(
√

2)n−1Fn+2(
1√
2
)

Fn+2(
1√
2
)(
√

2)n+1
−

(
√

2)n−2F ′n+2(
1√
2
)

Fn+2(
1√
2
)(
√

2)n+1

=
n+ 1

2
− 1

(
√

2)3

F ′n+2

(
1√
2

)

Fn+2

(
1√
2

) .

=
n+ 1

2
−

2(n+ 2)Fn+1

(
1√
2

)
+ n+1√

2
Fn+2

(
1√
2

)

9
√

2Fn+2

(
1√
2

)

=
4

9
(n+ 1)−

√
2

9
(n+ 2)

Fn+1

(
1√
2

)

Fn+2

(
1√
2

)

=
4

9
(n+ 1)−

√
2

9
(n+ 2)

(
1√
2

+O(2−n)

)
=

n

3
+

2

9
+O(n2−n),

where in the next-to-last step we use (3.2) to approximate Fn+1(1/
√

2)/Fn+2(1/
√

2). �

Proof of Proposition 3.2. By Lemma 3.3,

σ2n =
g′′n(1)

gn(1)
+
g′n(1)

gn(1)
− µ2n =

g′′n(1)

gn(1)
+ µn(1− µn).

Now,

g′′n(1)

gn(1)
=

(−2n+ 1)

4
√

2

F ′n+2(
1√
2
)

Fn+2(
1√
2
)

+
(n2 − 1)

4
+

1

8

F ′′n+2(
1√
2
)

Fn+2(
1√
2
)
.

Applying the derivative formula in (3.3) and using (3.2), we find

F ′n+2(
1√
2
)

Fn+2(
1√
2
)

=
4(n+ 2)

9

Fn+1(
1√
2
)

Fn+2(
1√
2
)

+

√
2(n+ 1)

9

=
4(n+ 2)

9

[
1√
2

+O(2−n)

]
+

√
2(n+ 1)

9

and

F ′′n+2(
1√
2
)

Fn+2(
1√
2
)

=
16(n2 + 3n+ 2)

81

Fn( 1√
2
)

Fn+2(
1√
2
)

+
4
√

2(2n2 + 3n− 2)

81

Fn+1(
1√
2
)

Fn+2(
1√
2
)

+
2(n2 + 9n+ 8)

81

=
16(n2 + 3n+ 2)

81

[
1

2
+O(2−n)

]
+

4
√

2(2n2 + 3n− 2)

81

[
1√
2

+O(2−n)

]

+
2(n2 + 9n+ 8)

81
.
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Thus

σ2n =
(−2n+ 1)

4
√

2

[√
2

9
(3n+ 5) +O(n2−n)

]
+

(n2 − 1)

4
+

1

8

[
2n2

9
+

2n

3
+

8

27
+O(n22−n)

]

+

[
n

3
+

2

9
+O

( n
2n

)] [
1− n

3
− 2

9
+O

( n
2n

)]
=

2n

27
+

8

81
+O

(
n2

2n

)
,

completing the proof. �

3.2. Gaussian Behavior.

Proof of Theorem 1.5. We prove that Y ′n converges in distribution to the standard normal
distribution as n → ∞ by showing that the moment generating function of Y ′n converges to

that of the standard normal (which is et
2/2). Following the same argument as in [9, Lemma

4.9], the moment generating function MY ′n(t) of Y ′n is

MY ′n(t) =
gn(et/σn)e−tµn/σn

gn(1)
.

Thus we have

MY ′n(t) =
Fn+2

(
1√

2et/σn

)
e(
n+1
2
−µn)t/σn

Fn+2

(
1√
2

) ,

and

log(MY ′n(t)) = logFn+2

(
1√

2et/σn

)
+

t

σn

(
n+ 1

2
− µn

)
− logFn+2

(
1√
2

)
.

From (3.2),

Fn+2(x) =
(x+

√
x2 + 4)n+2

2n+2
√
x2 + 4


1−

(
x−
√
x2 + 4

x+
√
x2 + 4

)n+2

 .

Thus

logFn+2(x) = (n+ 2) log(x+
√
x2 + 4)− (n+ 2) log 2

− 1

2
log(x2 + 4) + log(1− r(x)n+2)

= (n+ 2) log x+ (n+ 2) log

(
1 +

√
1 +

4

x2

)
− (n+ 2) log 2

− 1

2
log(x2 + 4) + O(r(x)n),

where for all x

r(x) =

(
x−
√
x2 + 4

x+
√
x2 + 4

)
∈ (0, 1].

Thus

logFn+2

(
1√
2

)
= 1

2(n+ 3) log 2− log 3 +O(2−n)
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and

logFn+2

(
1√

2et/σn

)
= − (n+ 2)

2
log 2− (n+ 2)

2σn
t− (n+ 2) log 2

+ (n+ 2)αn(t)− 1

2
βn(t) +O(rn),

where

αn(t) = log(1 +
√

1 + 8et/σn), βn(t) = log

(
1

2
e−t/σn + 4

)
,

and

r = r

(
1√

2et/σn

)
< 1.

The Taylor series expansions for αn(t) and βn(t) about t = 0 are given by

αn(t) = log 4 +
1

3σn
t+

1

27σ2n
t2 +O(n−3/2)

and

βn(t) = log

(
9

2

)
− 1

9σn
t+

4

81σ2n
t2 +O(n−3/2).

Going back to log(MY ′n(t)) we now have

log(MY ′n(t)) = −3

2
(n+ 2) log 2− (n+ 2)

2σn
t+ (n+ 2)

[
2 log 2 +

1

3σn
t+

1

27σ2n
t2 +O(n−3/2)

]

−1

2

[
2 log 3− log 2 +O(n−1/2)

]
+

(n+ 1− 2µn)

2σn
t− 1

2
(n+ 3) log 2 + log 3

+O(2−n) +O(rn)

= −(2µn + 1)

2σn
t+

(n+ 2)

3σn
t+

(n+ 2)

27σ2n
t2 +O(n−1/2) +O(2−n) +O(rn).

Since µn ∼ n
3 and σ2n ∼ 2n

27 , it follows that log(MY ′n(t)) → 1
2 t

2 as n → ∞. As this is the
moment generating function of the standard normal, our proof is completed. �

4. Average Gap Distribution

In this section we prove our results about the behavior of gaps between summands in
Kentucky decompositions. The advantage of studying the average gap distribution is that,
following the methods of [2, 5], we reduce the problem to a combinatorial one involving how
many m ∈ [0, a2n+1) have a gap of length g starting at a given index i. We then write the gap
probability as a double sum over integers m and starting indices i, interchange the order of
summation, and invoke our combinatorial results.

While the calculations are straightforward once we adopt this perspective, they are long.
Additionally, it helps to break the analysis into different cases depending on the parity of i
and g, which we do first below and then use those results to determine the probabilities.

Proof of Theorem 1.6. Let In := [0, a2n+1) and let m ∈ In with the legal decomposition

m = a`1 + a`2 + · · ·+ a`k ,
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with `1 < `2 < · · · < `k. For 1 ≤ i, g ≤ n we define Xi,g(m) as an indicator function which
denotes whether the decomposition of m has a gap of length g beginning at i. Formally,

Xi,g(m) =

{
1 if ∃ j, 1 ≤ j ≤ k with i = `j and i+ g = `j+1

0 otherwise.

Notice when Xi,g(m) = 1, this implies that there exists a gap between ai and ai+g. Namely
m does not contain ai+1, . . . , ai+g−1 as summands in its legal decomposition.

As the definition of the Kentucky sequence implies P (g) = 0 for 0 ≤ g ≤ 2, we assume
below that g ≥ 3. Hence if aj is a summand in the legal decomposition of m and aj < ai, then
the admissible j are at most i− 4 if and only if i is even, whereas the admissible j are at most
i− 3 if and only if i is odd. We are interested in computing the fraction of gaps (arising from
the decompositions of all m ∈ In) of length g. This probability is given by

Pn(g) = cn

a2n+1−1∑

m=0

2n−g∑

i=1

Xi,g(m),

where

cn =
1

(µn − 1)a2n+1
. (4.1)

To compute the above-mentioned probability we argue based on the parity of i. We find
the contribution of gaps of length g from even i and odd i separately and then add these two.
The case when g = 3 is a little simpler, as only even i contribute. If i were odd and g = 3 we
would violate the notion of a Kentucky legal decomposition.

Part 1 of the Proof, Gap Preliminaries:

Case 1, i is even: Suppose that i is even. This means that ai is the largest entry in its
bin. Thus the largest possible summand less than ai would be ai−4. First we need to know
the number of legal decompositions that only contain summands from {a1, . . . , ai−4}, but this
equals the number of integers that lie in [0, a2( i−4

2 )+1) = [0, ai−3). By (2.1), this is given by

a2( i−4
2 )+1 = ai−3 =

1

3
(2

i
2 + (−1)

i−2
2 ).

Next we must consider the possible summands between ai+g and a2n+1. There are two cases
to consider depending on the parity of i+ g.

Subcase (i), g is even: Notice that in this case i + g is even and if aj is a summand in
the legal decomposition of m with ai+g < aj , then j ≥ i+ g + 3. In this case the number of
legal decompositions only containing summands from the set {ai+g+3, ai+g+4, . . . , a2n} is the
same as the number of integers that lie in [0, a(2n−(i+g+2))+1), which equals

a(2n−(i+g+2))+1 = a
2
(

2n−(i+g+2)
2

+1
)
−1 =

1

3

(
2

2n−(i+g)
2

+1 + (−1)
2n−(i+g)

2

)
.

So for fixed i and g both even, the number of m ∈ In that have a gap of length g beginning
at i is

1

9

(
2
i
2 + (−1)

i−2
2

)(
2

2n−(i+g)
2

+1 + (−1)
2n−(i+g)

2

)
.
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Hence in this case we have that
a2n+1−1∑

m=0

2n−g∑

i=1
i,g even

Xi,g(m) =
1

9

2n−g∑

i=1
i,g even

(
2
i
2 + (−1)

i−2
2

)(
2

2n−(i+g)
2

+1 + (−1)
2n−(i+g)

2

)
.

Subcase (ii), g is odd: In the case when i is even and g is odd, any legal decomposition
of an integer m ∈ In with a gap from i to i+ g that contains summands aj > ai+g must have
j ≥ i+ g + 4. The number of legal decompositions achievable only with summands in the set
{ai+g+4, ai+g+5, . . . , a2n} is the same as the number of integers in the interval [0, a2n−(i+g+2)),
which is given by

a2n−(i+g+2) = a
2
(

2n−(i+g+1)
2

)
−1 =

1

3

(
2

2n−(i+g+1)
2

+1 + (−1)
2n−(i+g+1)

2

)
.

Hence when i is even and g is odd we have that

a2n+1−1∑

m=0

2n−g∑

i=1
i even,g odd

Xi,g(m) =
1

9

2n−g∑

i=1
i even,g odd

(2
i
2 + (−1)

i−2
2 )
(

2
2n−(i+g+1)

2
+1 + (−1)

2n−(i+g+1)
2

)
.

Subcase (iii), g = 3: As remarked above, there are no gaps of length 3 when i is odd, and
thus the contribution from i even is the entire answer and we can immediately find that

Pn(3) = cn

a2n+1−1∑

m=0

2n−3∑

i=1
i even

Xi,3(m)

=
1

9
cn

2n−3∑

i=1
i even

(
2
i
2 + (−1)

i−2
2

)(
2

2n−(i+4)
2

+1 + (−1)
2n−(i+4)

2

)

=
1

9
cn

2n−3∑

i=1
i even

(
2n−1 + 2

i
2 (−1)

2n−(i+4)
2 + 2

2n−(i+4)
2

+1(−1)
i−2
2 + (−1)n−3

)
.

As the largest term in the above sum is 2n−1, we have

Pn(3) =
cn
9

[
(n− 1)2n−1 +O(2n)

]
.

Since µn ∼ n
3 and a2n+1 ∼ 1

3(4)(2n), using (4.1) we find that up to lower order terms which
vanish as n→∞ we have

cn ∼
9

n2n+2
. (4.2)

Therefore

Pn(3) ∼ 1

n2n+2

[
(n− 1)2n−1 +O(2n)

]
=

(
1

8

)(
n− 1

n

)
+O

(
1

n

)
.

Now as n goes to infinity we see that P (3) = 1/8.
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Case 2, i is odd: Suppose now that i is odd. The largest possible summand less than ai in
a legal decomposition is ai−3. As before we now need to know the number of integers that lie
in [0, a2( i−3

2 )+1), but this equals

a2( i−3
2 )+1 = a2( i−1

2 )−1 =
1

3

(
2
i−1
2

+1 + (−1)
i−1
2

)
.

We now need to consider the parity of i+ g.

Subcase (i), g is odd: When i and g are odd, we know i + g is even and therefore
the first possible summand greater than ai+g is ai+g+3. Like before, the number of legal
decompositions using summands from the set {ai+g+3, ai+g+4, . . . , a2n} is the same as the
number of m with legal decompositions using summands from the set {a1, a2, . . . , a2n−(i+g+2)},
which is 1

3

(
2

2n−(i+g)
2

+1 + (−1)
2n−(i+g)

2

)
. This leads to

a2n+1−1∑

m=0

2n−g∑

i=1
i odd,g odd

Xi,g(m) =
1

9

2n−g∑

i=1
i odd,g odd

(
2
i−1
2

+1 + (−1)
i−1
2

)(
2

2n−(i+g)
2

+1 + (−1)
2n−(i+g)

2

)
.

Subcase (ii), g is even: Following the same line of argument we see that if i is odd and
g is even, then

a2n+1−1∑

m=0

2n−g∑

i=1
i odd,g even

Xi,g(m) =
1

9

2n−g∑

i=1
i odd,g even

(
2
i−1
2

+1 + (−1)
i−1
2

)(
2

2n−(i+g+1)
2

+1 + (−1)
2n−(i+g+1)

2

)
.

Using these results, we can combine the various cases to determine the gap probabilities for
different g.

Part 2 of the Proof, Gap Probabilities:
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Case 1, g is even: As g is even, we have g = 2j for some positive integer j. Therefore

Pn(2j) = cn

a2n+1−1∑

m=0

2n−2j∑

i=1

Xi,2j(m)

= cn

a2n+1−1∑

m=0

2n−2j∑

i=1
i even

Xi,2j(m) + cn

a2n+1−1∑

m=0

2n−2j∑

i=1
i odd

Xi,2j(m)

= cn


1

9

2n−2j∑

i=1
i even

(2
i
2 + (−1)

i−2
2 )(2

2n−(i+2j)
2

+1 + (−1)
2n−(i+2j)

2 )




+ cn


1

9

2n−2j∑

i=1
i odd

(2
i−1
2

+1 + (−1)
i−1
2 )(2

2n−(i+2j+1)
2

+1 + (−1)
2n−(i+2j+1)

2 )




=
1

9
cn

2n−2j∑

i=1
i even

(2n−j+1 + 2
i
2 (−1)

2n−(i+2j)
2 + 2

2n−(i+2j)
2

+1(−1)
i−2
2 + (−1)n−j−1)

+
1

9
cn

2n−2j∑

i=1
i odd

(2n−j+1 + 2
i−1
2

+1(−1)
2n−(i+2j+1)

2 + 2
2n−(i+2j+1)

2
+1(−1)

i−1
2 + (−1)n−j−1).

Notice that the largest terms in the above sums/expressions are given by 2n−j+1 and 2n−j+1,
the sum of which gives 4(n−j)2n−j . The rest of the terms are of lower order and are dominated
as n→∞. Using (4.2) for cn we find

Pn(2j) ∼ cn
9

4(n− j)2n−j ∼
(

1

n2n+2

)
4(n− j)2n−j =

n− j
n2j

,

and thus as n goes to infinity we see that P (2j) = 1/2j .
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Case 2, g is odd: As g is odd we may write g = 2j + 1. Thus

Pn(2j + 1) = cn

a2n+1−1∑

m=0

2n−2j−1∑

i=1

Xi,2j+1(m)

= cn

a2n+1−1∑

m=0

2n−2j−1∑

i=1
i even

Xi,2j+1(m) + cn

a2n+1−1∑

m=0

2n−2j−1∑

i=1
i odd

Xi,2j+1(m)

= cn


1

9

2n−2j−1∑

i=1
i even

(2
i
2 + (−1)

i−2
2 )
(

2
2n−(i+2j+2)

2
+1 + (−1)

2n−(i+2j+2)
2

)



+ cn


1

9

2n−2j−1∑

i=1
i odd

(2
i−1
2

+1 + (−1)
i−1
2 )(2

2n−(i+2j+1)
2

+1 + (−1)
2n−(i+2j+1)

2 )




=
1

9
cn

2n−2j−1∑

i=1
i even

(
2n−j + 2

i
2 (−1)

2n−(i+2j+2)
2 + 2

2n−(i+2j+2)
2

+1(−1)
i−2
2 + (−1)n−j−2

)

+
1

9
cn

2n−2j−1∑

i=1
i odd

(
2n−j+1 + 2

i−1
2

+1(−1)
2n−(i+2j+1)

2 + 2
2n−(i+2j+1)

2
+1(−1)

i−1
2 + (−1)n−j−1

)
.

Notice that the largest terms in the above sums/expressions are given by 2n−j and 2n−j+1, the
sum of which gives 3(n− j)2n−j . The rest of the terms are of lower order and are dominated
as n→∞. Using (4.2) for cn we find

Pn(2j + 1) ∼ cn
9

3(n− j)2n−j ∼
(

1

n2n+2

)
3(n− j)2n−j =

(
3

4

)(
n− j
n2j

)
,

and thus as n goes to infinity we see that P (2j + 1) = 3
4

(
1/2j

)
. �

5. Conclusion and Future Work

Our results generalize Zeckendorf’s theorem to an interesting new class of recurrence rela-
tions, specifically to a case where the first coefficient is zero. While we still have uniqueness of
decompositions in the Kentucky sequence, that is not always the case for this class of recur-
rences. In a future work [6] we study another example with first coefficient zero, the recurrence
an+1 = an−1 + an−2. This leads to what we call the Fibonacci Quilt, and there uniqueness of
decomposition fails. The non-uniqueness gives rise to new interesting discussions, for example
the handling of the question of Gaussian behavior for the distribution of the number of sum-
mands given that we now have multiple decompositions for most integers; we address these
issues in [6].

Additionally, the Kentucky sequence is but one of infinitely many (s, b)-Generacci sequences;
in a future work [7] we hope to give a detailed study of these sequences and to extend the
results of this paper to arbitrary (s, b). The difficulty is that many of the arguments in the
paper here crucially use explicit formulas available for quantities associated to the Kentucky
sequence, which are not known for general sequences. This difficulty mirrors the difference
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between [18] (which used binomial coefficient expressions from the Zeckendorf decompositions)
and [22] (the general case required many technical arguments).

Definition 5.1. Let an increasing sequence of positive integers {ai}∞i=1 and a family of subse-
quences Bn = {ab(n−1)+1, . . . , abn} be given. (We call these subsequences bins.) We declare a
decomposition of an integer m = a`1 + a`2 + · · ·+ a`k where a`i < a`i+1

to be a (s, b)-Generacci
decomposition provided {a`i , a`i+1

} 6⊂ Bj−s ∪Bj−s+1 ∪ · · · ∪ Bj for all i, j. (We say Bj = ∅ for
j ≤ 0.)

This says that for all a`i ∈ Bj , no other a`i′ is also in the jth bin nor in any of the adjacent
s bins preceding Bj nor the s bins succeeding Bj .
Definition 5.2. An increasing sequence of positive integers {ai}∞i=1 is called an (s, b)-Generacci
sequence if every ai for i ≥ 1 is the smallest positive integer that does not have a (s, b)-
Generacci legal decomposition using the elements {a1, . . . , ai−1}.

Note that we still have uniqueness of decompositions as in Theorem 1.4; this follows from
Theorem 1.3 of [9]. Numerical simulations suggest that the number of summands in the unique
(s, b)-Generacci decomposition of a positive integer exhibits Gaussian behavior. The Fibonacci
polynomial approach in Section 3 extends nicely for general b, thus proving Gaussianity for
all (1, b)-Generacci sequences. The technique however fails to generalize for s > 1. We are
investigating methods to attack the general case.

Appendix A. Unique Decompositions

Proof of Theorem 1.4. Our proof is constructive. We build our sequence by only adjoining
terms that ensure that we can uniquely decompose a number while never using more than one
summand from the same bin or two summands from adjacent bins. The sequence begins:

1, 2

B1

, 3, 4

B2

, 5, 8

B3

, . . . .

Note we would not adjoin 9 because then 9 would legally decompose two ways, as 9 = 9 and
as 9 = 8 + 1. The next number in the sequence must be the smallest integer that cannot be
decomposed legally using the current terms.

We proceed with proof by induction. The base case follows from a direct calculation. Notice
that if i ≤ 5 then i = ai. Also 6 = a5 + a1.

The sequence continues:

. . . , a2n−5, a2n−4
Bn−2

, a2n−3, a2n−2
Bn−1

, a2n−1, a2n
Bn

, a2n+1, a2n+2

Bn+1

, . . .

By induction we assume that there exists a unique decomposition for all integers m ≤ a2n+w,
where w is the maximum integer that legally can be decomposed using terms in the set
{a1, a2, a3, . . . , a2n−4}. By construction we know that w = a2n−3 − 1, as this was the reason
we adjoined a2n−3 to the sequence.

Now let y be the maximum integer that can be legally decomposed using terms in the set
{a1, a2, a3, . . . , a2n}. By construction we have

y = a2n + w = a2n + a2n−3 − 1.

Similarly, let x be the maximum integer that legally can be decomposed using terms in the
set {a1, a2, a3, . . . , a2n−2}. Note x = a2n−1−1 as this is why we include a2n−1 in the sequence.
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Claim: a2n+1 = y + 1 and this decomposition is unique.

By induction we know that y was the largest value that we could legally make using only
terms in {a1, a2, . . . , a2n}. Hence we choose y+1 as a2n+1 and y+1 has a unique decomposition.

Claim: All N ∈ [y + 1, y + 1 + x] = [a2n+1, a2n+1 + x] have a unique decomposition.

We can legally and uniquely decompose all of 1, 2, 3, . . . , x using elements in the set {a1, a2,
. . . , a2n−2}. Adding a2n+1 to the decomposition is still legal since a2n+1 is not a member of
any bins adjacent to {B1,B2, . . . ,Bn−1}. The uniqueness follows from the fact that if we do
not include a2n+1 as a summand, then the decomposition does not yield a number big enough
to exceed y + 1.

Claim: a2n+2 = y + 1 + x+ 1 = a2n+1 + x+ 1 and this decomposition is unique.

By construction the largest integer that legally can be decomposed using terms {a1, a2, . . . , a2n+1}
is y + 1 + x.

Claim: All N ∈ [a2n+2, a2n+2 + x] have a unique decomposition.

First note that the decomposition exists as we can legally and uniquely construct a2n+2 +v,
where 0 ≤ v ≤ x. For uniqueness, we note that if we do not use a2n+2, then the summation
would be too small.

Claim: a2n+2 + x is the largest integer that legally can be decomposed using terms {a1, a2,
. . . , a2n+2}.

This follows from construction. �

Appendix B. Generating Function Proofs

In §3 we proved that the distribution of the number of summands in a Kentucky decomposi-
tion exhibits Gaussian behavior by using properties of Fibonacci polynomials. This approach
was possible because we had an explicit, tractable form for the pn,k’s (Proposition 2.4) that
coincided with the explicit sum formulas associated with the Fibonacci polynomials. Below we
present a second proof of Gaussian behavior using a more general approach, which might be
more useful in addressing the behavior of the number of summands when dealing with general
(s, b)-Generacci sequences.

As in the first proof, we are interested in gn(y), the coefficient of the xn term in F (x, y).

Lemma B.1. We have

gn(y) =
1

2n+1
√

1 + 8y

[
4y
(

1 +
√

1 + 8y
)n
− 4y

(
1−

√
1 + 8y

)n

+
(

1 +
√

1 + 8y
)n+1

−
(

1−
√

1 + 8y
)n+1

]
. (B.1)

Proof. For brevity set x1 = x1(y) and x2 = x2(y) for the roots of x in x2 + 1
2yx − 1

2y . In

particular, we find

x1 = − 1

4y

(
1 +

√
1 + 8y

)
x2 = − 1

4y

(
1−

√
1 + 8y

)
. (B.2)

Since x1 and x2 are unequal for all y > 0, we can decompose F (x, y) using partial fractions:

F (x, y) =
1 + 2xy

−2y(x− x1)(x− x2)
=

1 + 2xy

−2y

1

x1 − x2

[
1

x− x1
− 1

x− x2

]
.
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Using the geometric series formula, after some algebra we obtain

F (x, y) =
1 + 2xy

−2y

1

x1 − x2
∑

i≥0

[
1

x1

(
x

x1

)i
− 1

x2

(
x

x2

)i]
.

From here we find that that the coefficient of xn is

gn(y) =
1

−2y(x1 − x2)

[
1

xn+1
1

− 1

xn+1
2

+
2y

xn1
− 2y

xn2

]
.

Substituting the functions from (B.2) and simplifying we obtain the desired result. �

As we mentioned in §3.1, we have the following corollary.

Corollary B.2. Let Fn(x) be a Fibonacci polynomial. Then

Fn(x) =
(x+

√
x2 + 4)n − (x−

√
x2 + 4)n

2n
√
x2 + 4

.

Proof. Set the right hand sides of equations (3.4) and (B.1) equal and let x = 1/
√

2y. �

Proof of Proposition 3.1. Straightforward, but somewhat tedious, calculations give

gn(1) =
1

3

(
(−1)n+1 + 2n+2

)

g′n(1) =
n

9

(
2n+2 + 2(−1)n+1

)
+

2

27

(
2n+2

)
+ o(1).

Dividing these two quantities and using Lemma 3.3 gives the desired result. �

Proof of Proposition 3.2. Another straightforward (and again somewhat tedious) calculation
yields

σ2n =
22n+5(4 + 3n)− 2(8 + 3n)− 2n+2(−1)n(28 + 36n+ 9n2)

81(2n+2 − (−1)n)2

=
n
[
(6)22n+4 − 18(−1)n2n+3 − 6

]
+
[
(8)22n+4 − 14(−1)n2n+3 − 16

]
− 4.5(−1)nn22n+3

81
[
22n+4 − (−1)n2n+3 + 1

] .

�

Proof of Theorem 1.5. As in our earlier proof, we show that the moment generating function
of Y ′n converges to that of the standard normal. Following the same argument as in [9, Lemma
4.9], the moment generating function MY ′n(t) of Y ′n is

MY ′n(t) =
gn(et/σn)e−tµn/σn

gn(1)
.

Taking logarithms yields

logMY ′n(t) = log[gn(et/σn)]− log[gn(1)]− tµn
σn

. (B.3)

We tackle the right hand side in pieces.

Let rn = t/σn. Since σ2n = 2n
27 + 8

81 +O
(
n2

2n

)
, as n goes to infinity rn goes to 0. This allows

us to use Taylor series expansions.
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First we rewrite gn(ern)

gn(ern) =
1√

1 + 8ern

[
(1 +

√
1 + 8ern)n(4ern + 1 +

√
1 + 8ern)

2n+1

−4ern(1−
√

1 + 8ern)n

2n+1
− (1−

√
1 + 8ern)n+1

2n+1

]
.

Using Taylor series expansions of the exponential and square root functions we obtain

ern = 1 + o(1) and
1−
√

1 + 8ern

2
= −1 + o(1).

Thus

4ern(1−
√

1 + 8ern)n

2n+1
+

(1−
√

1 + 8ern)n+1

2n+1
= 2(−1)n + o(1)− (−1)n + o(1)

= (−1)n + o(1).

Hence

gn(ern) =
1√

1 + 8ern

[
(1 +

√
1 + 8ern)n(4ern + 1 +

√
1 + 8ern)

2n+1
− (−1)n + o(1)

]
.

So

log(gn(ern)) = − 1
2 log(1 + 8ern) + n log(1 +

√
1 + 8ern)

+ log(4ern + 1 +
√

1 + 8ern)− (n+ 1) log 2 + o(1).

Continuing to use Taylor series expansions

log(gn(ern)) =− 1
2

[
log 9 +

8

9
rn +

4

81
r2n

]
+ n

[
log 4 +

1

3
rn +

1

27
r2n

]

+

[
log 8 +

2

3
rn +

2

27
r2n

]
+O(r3n)− (n+ 1) log 2 + o(1). (B.4)

Finally, recall gn(1) = 1
3 [(−1)n+1 + 2n+2] so

log[gn(1)] = − log 3 + (n+ 2) log 2 + o(1). (B.5)

To finish we plug values into (B.3). In particular, plug in log(gn(ern)) from (B.4), log[gn(1)]
from (B.5), µn from Proposition 3.1, σn from Proposition 3.2, and rn = t/σn. This gives

logMY ′n(t) =
t2

2
+ o(1).

Thus, MY ′n(t) converges to the moment generating function of the standard normal distribu-
tion. Which according to probability theory, implies that the distribution of Y ′n converges to
the standard normal distribution. �
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[12] P. Filipponi, P. J. Grabner, I. Nemes, A. Pethö, and R. F. Tichy, Corrigendum to: “Generalized Zeckendorf
expansions”, Appl. Math. Lett., 7 (1994), no. 6, 25–26.

[13] P. J. Grabner and R. F. Tichy, Contributions to digit expansions with respect to linear recurrences, J.
Number Theory 36 (1990), no. 2, 160–169.

[14] P. J. Grabner, R. F. Tichy, I. Nemes, and A. Pethö, Generalized Zeckendorf expansions, Appl. Math. Lett.
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ALGEBRAIC STATEMENTS SIMILAR TO THOSE IN RAMANUJAN’S

“LOST NOTEBOOK”

CURTIS COOPER

Abstract. Ramanujan’s “lost notebook” contains algebraic statements

if g4 = 5, then
5
√
3 + 2g − 5

√
4− 4g

5
√
3 + 2g + 5

√
4− 4g

= 2 + g + g2 + g3,

and

if g5 = 2, then
√

1 + g2 =
g4 + g3 + g − 1√

5
.

In this paper we will discover algebraic statements similar to those in Ramanujan’s “lost
notebook”. For example, we will prove algebraic statements like

if g3 = 2, then
4
√
111− 87g + 4

√
g − 1

4
√
111− 87g − 4

√
g − 1

= 2 + g + g2,

and
if g5 = 2, then

√
−3g2 + 4g + 5 = g4 − g3 + g + 1.

1. Introduction

Page 344 of Ramanujan’s “lost notebook” [2] contains twelve algebraic statements. Recently,
Hirschhorn [1] gave simple proofs of these statements. Here are some of the statements.

If g5 = 3, then
√
g2 + 1 +

√
5g − 5√

g2 + 1−√5g − 5
=

1

g
+ g + g2 + g3. (1.1)

If g5 = 2, then

√
1 + g2 =

g4 + g3 + g − 1√
5

. (1.2)

If g5 = 2, then

√
4g − 3 =

g9 + g7 − g6 − 1√
5

. (1.3)

If g5 = 2, then

5
√

1 + g + g3 =

√
1 + g2

10
√

5
, (1.4)

If g4 = 5, then
5
√

3 + 2g − 5
√

4− 4g
5
√

3 + 2g + 5
√

4− 4g
= 2 + g + g2 + g3. (1.5)

In this paper we will discover algebraic statements similar to the above statements in Ra-
manujan’s “lost notebook”. The paper is organized as follows. Section 2 gives algebraic
statements similar to (1.1). Section 3 gives algebraic statements similar to (1.2) and (1.3).
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Section 4 gives algebraic statements similar to (1.4) and Section 5 gives algebraic statements
similar to (1.5). Finally, Section 6 gives other algebraic statements in the spirit of Ramanujan.

One technique we will use throughout the paper is componendo et dividendo, which states
that

a+ b

a− b =
c+ d

c− d if and only if
a

b
=
c

d
.

2. Algebraic Statement Similar to (1.1)

We wish to find an algebraic statement similar to Ramanujan’s (1.1). The following theorem
is similar to (1.1).

Theorem 2.1. If g5 = 2, then
√

4g2 + g + 2 +
√

8g2 + 41g − 54√
4g2 + g + 2−

√
8g2 + 41g − 54

=
1

g
+ g + g2 + g3. (2.1)

Proof. Equation (2.1) can be written as
√

4g2 + g + 2 +
√

8g2 + 41g − 54√
4g2 + g + 2−

√
8g2 + 41g − 54

=
1 + g2 + g3 + g4

g
.

Thus, by componendo et dividendo, we need to show that
√

4g2 + g + 2

8g2 + 41g − 54
=

1 + g + g2 + g3 + g4

1− g + g2 + g3 + g4
.

This is equivalent to showing that

(1 + g + g2 + g3 + g4)2(8g2 + 41g − 54) = (1− g + g2 + g3 + g4)2(4g2 + g + 2). (2.2)

Expanding both sides of (2.2) and using the fact that g5 = 2, the left- and right-hand sides of
(2.2) are equal and the theorem is proved. �

3. Algebraic Statements Similar to (1.2) and (1.3)

We wish to find an algebraic statement similar to Ramanujan’s (1.2) and (1.3). The following
theorem is similar to (1.2).

Theorem 3.1. If g5 = 8, then

√
2g2 − 3 =

g4 + 2g3 − 2g2 − 2

2
√

5
.

Proof. Using the fact that g5 = 8, we have the following equalities.

(g4 + 2g3 − 2g2 − 2)2 = g8 + 4g7 − 8g5 − 8g3 + 8g2 + 4

= 8g3 + 32g2 − 64− 8g3 + 8g2 + 4

= 40g2 − 60 = 20(2g2 − 3).

This proves the theorem. �
To find more algebraic identities similar to (1.2), we wrote a C++ program to search for

solutions to
(R+ Sg + Tg2 + Ug3 + V g4)2 = Cg2 + E.

We discovered the following (two) theorems.
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Theorem 3.2. If g5 = 18, then

√
g2 − 3 =

g4 + 3g3 − 6g2 − 3g − 9

15
.

Proof.

(g4 + 3g3 − 6g2 − 3g − 9)2 = g8 + 6g7 − 3g6 − 42g5 − 18g3 + 117g2 + 54g + 81

= 18g3 + 108g2 − 54g − 756− 18g3 + 117g2 + 54g + 81

= 225g2 − 675 = 225(g2 − 3).

�

Theorem 3.3. If g5 = 49, then

√
8g2 − 7 =

6g4 + 14g3 − 14g2 + 14g − 49

35
.

Proof.

(6g4 + 14g3 − 14g2 + 14g − 49)2

= 36g8 + 168g7 + 28g6 − 224g5 − 1764g3 + 1568g2 − 1372g + 2401

= 1764g3 + 8232g2 + 1372g − 10976− 1764g3 + 1568g2 − 1372g + 2401

= 9800g2 − 8575 = 1225(8g2 − 7).

�

The following theorem is similar to Ramanujan’s (1.3).

Theorem 3.4. If g5 = 8, then

√
g + 2 =

g4 − g3 + 4g + 4

2
√

10
.

Proof. Using the fact that g5 = 8, we have the following equalities.

(g4 − g3 + 4g + 4)2 = g8 − 2g7 + g6 + 8g5 − 8g3 + 16g2 + 32g + 16

= 8g3 − 16g2 + 8g + 64− 8g3 + 16g2 + 32g + 16

= 40g + 80 = 40(g + 2).

This proves the theorem. �

To find more algebraic identities similar to (1.3), we wrote a C++ program to search for
solutions to

(R+ Sg + Tg2 + Ug3 + V g4)2 = Dg + E.

We discovered the following (three) theorems. The proofs are similar to the proof above.

Theorem 3.5. If g5 = 12, then

√
11g − 7 =

g4 − g3 + 2g2 − 8g − 10

2
√

5
.
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Theorem 3.6. If g5 = 2, then

√
4g − 3 =

2g4 + 2g2 − 2g − 1√
5

.

Theorem 3.7. If g5 = 4, then

√
g + 1 =

g4 + g3 + 2g2 − 2

2
√

5
.

Theorem 3.8. If g5 = 7, then

√
−g + 8 =

2g4 − g3 − 2g2 + 6g + 2

5
.

Theorem 3.9. If g5 = 24, then

√
−g + 2 =

g4 − g3 − 4g2 + 4g − 4

10
√

2
.

We discovered the following (two) theorems similar to Ramanujan’s (1.2) and (1.3).

Theorem 3.10. If g5 = 2, then
√

8g2 − 20g + 17 = g9 − g7 + g6 − 1.

Proof. Using the fact that g5 = 2, we have the following equalities.

(g9 − g7 + g6 − 1)2 = (2g4 − 2g2 + 2g − 1)2

= 4g8 − 8g6 + 8g5 − 8g3 + 8g2 − 4g + 1

= 8g3 − 16g + 16− 8g3 + 8g2 − 4g + 1

= 8g2 − 20g + 17.

This proves the theorem. �
Theorem 3.11. If g5 = 2, then

√
−3g2 + 4g + 5 = g4 − g3 + g + 1.

4. Algebraic Statements Similar to (1.4)

We wish to find an algebraic statement similar to Ramanujan’s (1.4). The following theorem
is similar to (1.4).

Theorem 4.1. If g5 = 8, then

5
√

2 + 2g + g2 =

√
2 + g
10
√

10
.

Proof. Using the fact that g5 = 8, we have the following equalities.

(2 + g)5 = 32 + 80g + 80g2 + 40g3 + 10g4 + g5

= 32 + 80g + 80g2 + 40g3 + 10g4 + 8

= 40 + 80g + 80g2 + 40g3 + 10g4

= 10(4 + 8g + 8g2 + 4g3 + g4)

= 10(2 + 2g + g2)2.

This proves the theorem. �
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To find more algebraic identities similar to (1.4), we wrote a C++ program to search for
solutions to

(R+ Sg + Tg2)5 = (A+Bg + Cg2 +Dg3)2.

The next theorem is one that we discovered. The proof is similar to the proof above.

Theorem 4.2. If g5 = 8, then

5
√

1 + g =

√
2 + g
10
√

40
.

5. Algebraic Statements Similar to (1.5)

We wish to find an algebraic statement similar to Ramanujan’s (1.5). To construct a result
similar to (1.5), we want to find integers h, A, B, C, D, and E such that if g4 = h+ 1, then

5

√
Ag +B

Cg +D
=
E + 1 + g + g2 + g3

1 + g + g2 + g3
. (5.1)

Then, by componendo et dividendo, we would have

5
√
Ag +B + 5

√
Cg +D

5
√
Ag +B − 5

√
Cg +D

=
E + 2 + 2g + 2g2 + 2g3

E
.

Simplifying the RHS of (5.1) and using the fact that g4 = h+ 1, we have

5

√
Ag +B

Cg +D
=
E + 1 + g + g2 + g3

1 + g + g2 + g3

=
E + h

g−1

h
g−1

=
Eg + h− E

h
.

Thus,

Ag +B

Cg +D
=

(Eg + h− E)5

h5

and so

h5(Ag +B) = (Cg +D)(Eg + h− E)5. (5.2)

Expanding the polynomial on the RHS of (5.2), we have

CE5g6 + (DE5 − 5CE5 + 5ChE4)g5

+ (10Ch2E3 + 5DhE4 − 20ChE4 + 10CE5 − 5DE5)g4

+ (10Ch3E2 + 30ChE4 + 10DE5 + 10Dh2E3 − 30Ch2E3 − 10CE5 − 20DhE4)g3

+ (5Ch4E − 20ChE4 − 30Dh2E3 − 10DE5 + 30Ch2E3 − 20Ch3E2 + 5CE5

+ 30DhE4 + 10Dh3E2)g2

+ (−10Ch2E3 + 10Ch3E2 + 5Dh4E − 20Dh3E2 + 30Dh2E2 + 30Dh2E3 + 5DE5

+ 5ChE4 − 20DhE4 − 5Ch4E − CE5 + Ch5)g

− 10Dh2E3 −DE5 − 5Dh4E +Dh5 + 5DhE4 + 10Dh3E2.
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Assuming g4 = h+ 1, we continue to simplify the polynomial on the RHS of (5.2) by defining

CE5g6 = CE5(h+ 1)g2 = Fg2

(DE5 − 5CE5 + 5ChE4)g5 = (DE5 − 5CE5 + 5ChE4)(h+ 1)g = Gg

(10Ch2E3 + 5DhE4 − 20ChE4 + 10CE5 − 5DE5)g4

= (10Ch2E3 + 5DhE4 − 20ChE4 + 10CE5 − 5DE5)(h+ 1) = H.

In addition we define

10Ch3E2 + 30ChE4 + 10DE5 + 10Dh2E3 − 30Ch2E3

− 10CE5 − 20DhE4 = I

5Ch4E − 20ChE4 − 30Dh2E3 − 10DE5 + 30Ch2E3 − 20Ch3E2

+ 5CE5 + 30DhE4 + 10Dh3E2 = J

− 10Ch2E3 + 10Ch3E2 + 5Dh4E − 20Dh3E2 + 30Dh2E2 + 30Dh2E3

+ 5DE5 + 5ChE4 − 20DhE4 − 5Ch4E − CE5 + Ch5 = K

− 10Dh2E3 −DE5 − 5Dh4E +Dh5 + 5DhE4 + 10Dh3E2 = L.

Thus, the expanded polynomial on the RHS of (5.2) is

Ig3 + (F + J)g2 + (G+K)g + (H + L).

To simplify this polynomial, we want I = 0, F = −J , h 6= 0, h 6= −1, C 6= 0, and E 6= 0.
Equation (5.2) becomes

Ah5g +Bh5 = (G+K)g + (H + L).

Therefore, we wrote a C++ program to search for integers C, D, E, and h with the above
constraints and with A and B integers. We found the following solutions.

C D E h A B

4 -4 2 4 2 3
1 2 -79 79 512 -1536
4 12 -202 404 486 -2187

The first line of the table is Ramanujan’s algebraic statement (1.5). Here are the other two
theorems.

Theorem 5.1. If g4 = 80, then
5
√

512g − 1536 + 5
√
g + 2

5
√

512g − 1536− 5
√
g + 2

=
77− 2g − 2g2 − 2g3

79
. (5.3)

Theorem 5.2. If g4 = 405, then
5
√

486g − 2187 + 5
√

4g + 12
5
√

486g − 2187− 5
√

4g + 12
=

200− 2g − 2g2 − 2g3

202
.

But, Theorems 5.1 and 5.2 are equivalent to Ramanujan’s equation (1.5). To see this, we
start by rewriting Ramanujan’s equation (1.5), using some algebra, as

5
√

2g + 3 + 5
√

4g − 4
5
√

2g + 3− 5
√

4g − 4
= 2 + g + g2 + g3. (5.4)
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Changing equation (5.4) using componendo et dividendo results in the following equation.

5

√
2g + 3

4g − 4
=

3 + g + g2 + g3

1 + g + g2 + g3
. (5.5)

Changing equation (5.3) using componendo et dividendo results in the following algebraic
equation.

5

√
512g − 1536

g + 2
=
−78 + g + g2 + g3

1 + g + g2 + g3
. (5.6)

Now we show equation (5.5) and equation (5.6) are equivalent. Start with equation (5.6)
under the assumption that g4 = 80. Substituting g = −2f into equation (5.6), we have the
following equation under the assumption that f4 = 5.

5

√
−1024f − 1536

−2f + 2
=
−78− 2f + 4f2 − 8f3

1− 2f + 4f2 − 8f3
. (5.7)

Simplifying equation (5.7), we obtain

5

√
2f + 3

4f − 4
=
−78− 2f + 4f2 − 8f3

4− 8f + 16f2 − 32f3
. (5.8)

But, if f4 = 5, we have that

−78− 2f + 4f2 − 8f3

4− 8f + 16f2 − 32f3
=

3 + f + f2 + f3

1 + f + f2 + f3
. (5.9)

We can prove this by showing that if f4 = 5, then

(−78− 2f + 4f2 − 8f3)(1 + f + f2 + f3) = (4− 8f + 16f2 − 32f3)(3 + f + f2 + f3).

But equations (5.8) and (5.9) produce equation (5.5). Thus, we have shown that Theorem
5.1 is equivalent to Ramanujan’s equation (1.5). Following the same procedure with g = −3f
shows that Theorem 5.2 is equivalent to Ramanujan’s equation (1.5).

6. More Algebraic Statements

We state and prove some theorems that are similar to some of Ramanujan’s algebraic
statements.

Theorem 6.1. If g3 = 2, then

4
√

111− 87g + 4
√
g − 1

4
√

111− 87g − 4
√
g − 1

= 2 + g + g2. (6.1)

Proof. Using componendo et dividendo and the fact that

1 = g3 − 1 = (1 + g + g2)(g − 1)

we rewrite (6.1) as

4

√
111− 87g

g − 1
=

3 + g + g2

1 + g + g2
=

1 + g + g2 + 2

1 + g + g2

=

1
g−1 + 2

1
g−1

= 2g − 1.
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But, since g3 = 2, we have that

(2g − 1)4 = (2g)4 − 4(2g)3 + 6(2g)2 − 4(2g) + 1 = 16g4 − 32g3 + 24g2 − 8g + 1

= 32g − 64 + 24g2 − 8g + 1 = 24g2 + 24g − 63

= 24g2 + 24g + 24− 87 =
24

g − 1
− 87 =

111− 87g

g − 1
.

�

We can generalize this result in the following way.

Theorem 6.2. Let A and h be given integers and let

B = 6A2(h−A)2

D = A4(h+ 1) + 4A(h−A)3

C = 4A3(h−A)(h+ 1) + (h−A)4.

Then if B = D and B 6= 0, we have the following result. If g3 = h+ 1, then

± 4

√
(C −B)g +Bh+B − C

h4g − h4 =
A+ 1 + g + g2

1 + g + g2
. (6.2)

We will choose the plus or minus sign depending on the real value of the RHS of equation
(6.2).

Proof. We wish to find an unknown function f of A and h (g3 = h+ 1) such that

± 4
√
f =

A+ 1 + g + g2

1 + g + g2
=

h
g−1 +A

h
g−1

=
1

h
(Ag + h−A) .

So,

f =
1

h4
(Ag + h−A)4

=
1

h4
(
A4g4 + 4A3g3(h−A) + 6A2g2(h−A)2 + 4Ag(h−A)3 + (h−A)4

)

=
1

h4
(
A4(h+ 1)g + 4A3(h+ 1)(h−A) + 6A2(h−A)2g2 + 4A(h−A)3g + (h−A)4

)

=
1

h4
(
6A2(h−A)2g2 +

(
A4(h+ 1) + 4A(h−A)3

)
g + 4A3(h+ 1)(h−A) + (h−A)4

)
.

Now the last expression for f is equal to

f =
1

h4
(
Bg2 +Bg + C

)
=

1

h4
(
B(g2 + g + 1) + C −B

)

=
1

h4

(
Bh

g − 1
+ C −B

)

=
1

h4

(
Bh+ (C −B)g +B − C

g − 1

)

=
1

h4
(C −B)g +Bh+B − C

g − 1
.
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So

± 4
√
f = 4

√
(C −B)g +Bh+B − C

h4(g − 1)
=
A+ 1 + g + g2

1 + g + g2
.

�

The following table gives A and h which apply to the theorem. We omitted the values of h
where h + 1 is a perfect cube. The range of A and h which was searched is -30000 to 30000
for both variables.

A h B C

-16384 -24576 108086391056891904 148618787703226368
-8192 -12288 6755399441055744 9288674231451648
-511 4599 40910505984600 -11864046735534000
-188 846 226729497984 -22134467240688
-185 -1665 449798640000 -57574225920000
-117 351 17989317216 -1007401764096
-55 55 219615000 -3953070000
-22 -99 17217816 -286246191
2 1 24 -63

8192 12288 6755399441055744 9288674231451648
16384 24576 108086391056891904 148618787703226368

The third line from the bottom of the table is Theorem 6.1. If we construct an algebraic
statement from the fifth line from the bottom of the table with A = −55, h = 55, B =
219615000 and C = −3953070000, we obtain the following theorem.

Theorem 6.3. If g3 = 56, then

4
√

1776− 456g + 4
√
g − 1

4
√

1776− 456g − 4
√
g − 1

=
55

53− 2g − 2g2
. (6.3)

However, this statement can be simplified to the following statement.

Theorem 6.4. If h3 = 7, then

4
√

111− 57h+ 4
√

2h− 1
4
√

111− 57h− 4
√

2h− 1
=

7 + h+ h2

5− h− h2 . (6.4)

To prove these two theorems are equivalent, we will show that their alternate forms using
componendo et dividendo are equivalent. The alternate form of Theorem 6.3 is if g3 = 56,
then

4

√
1776− 456g

g − 1
=

54− g − g2
1 + g + g2

(6.5)

and the alternate form of Theorem 6.4 is if h3 = 7, then

4

√
111− 57h

2h− 1
=

6

1 + h+ h2
. (6.6)

We start with equation (6.5). Substituting g = 2h in equation (6.5) and simplifying, we
obtain the following algebraic statement.
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If h3 = 7, then

4

√
111− 57h

2h− 1
=

27− h− 2h2

1 + 2h+ 4h2
. (6.7)

Finally, if h3 = 7, we have

27− h− 2h2

1 + 2h+ 4h2
=

6

1 + h+ h2
. (6.8)

But equations (6.7) and (6.8) give equation (6.6). Therefore, since their alternate statements
are equivalent, Theorem 6.3 and Theorem 6.4 are equivalent.

We give another algebraic statement theorem and its proof.

Theorem 6.5. If g5 = 4, then

3
√

3g2 + 4g + 6 +
√

55g2 + 40g − 50

3
√

3g2 + 4g + 6−
√

55g2 + 40g − 50
=

6 + g2 − g3
−g2 + g3

. (6.9)

Proof. Using the equality

6 + g2 − g3
−g2 + g3

=
3 + 3 + g2 − g3
3− 3− g2 + g3

,

we rewrite (6.9) using componendo et dividendo as

3

√
3g2 + 4g + 6

55g2 + 40g − 50
=

3

3− g2 + g3
.

But, since g5 = 4, we have that

(3g2 + 4g + 6)(3 + g2 − g3)2

= 54 + 36g + 63g2 − 12g3 − 26g5 + g6 − 2g7 + 3g8

= 54 + 36g + 63g2 − 12g3 − 104 + 4g − 8g2 + 12g3

= 55g2 + 40g − 50

and the theorem is proved. �

Here is another algebraic statement and its proof.

Theorem 6.6. If g5 = 2, then

3
√

5g2 + 1 + 3
√

35g2 + g − 43
3
√

5g2 + 1− 3
√

35g2 + g − 43
=

2 + g − g2
−g + g2

. (6.10)

Proof. Using the equality

2 + g − g2
−g + g2

=
1 + 1 + g − g2
1− 1− g + g2

,

we rewrite (6.10) using componendo et dividendo as

3

√
5g2 + 1

35g2 + g − 43
=

1

1 + g − g2 .
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But, since g5 = 2, we have that

(1 + g − g2)3(5g2 + 1)

= −5g8 + 15g7 − g6 − 22g5 + 10g3 + 5g2 + 3g + 1

= −10g3 + 30g2 − 2g − 44 + 10g3 + 5g2 + 3g + 1

= 35g2 + g − 43

and the theorem is proved. �
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ENUMERATING DISTINCT CHESSBOARD TILINGS

DARYL DEFORD

Abstract. Counting the number of distinct colorings of various discrete objects, via
Burnside’s Lemma and Pólya Counting, is a traditional problem in combinatorics. Mo-
tivated by a method for proving upper bounds on the order of the minimal recurrence
relation satisfied by a set of tiling instances, we address a related problem in a more
general setting. Given an m× n chessboard and a fixed set of (possibly colored) tiles,
how many distinct tilings exist, up to symmetry?

More specifically, we are interested in the sequences formed by counting the number
of distinct tilings of boards of size (m× 1), (m× 2), (m× 3) . . ., for a fixed set of tiles
and some natural number m. We present explicit results and closed forms for several
well known classes of tiling problems as well as a general result showing that all such
sequences satisfy some linear, homogeneous, constant–coefficient recurrence relation.
Additionally, we give a characterization of all 1 × n distinct tiling problems in terms
of the generalized Fibonacci tilings.

1. Introduction

1.1. Background. Enumerating the number of ways to cover a rectangular chessboard
with a fixed set of tiles is a motivating problem for many interesting recurrence relations
and integer sequences. Many examples of these problems and their associated solution
methods can be found in [6, 7, 12, 14, 15]. A complete and informative treatment of
the one–dimensional case is contained in Benjamin and Quinn’s wonderful book [2].
Often, restrictions are made on the types and orientations of the permissible tiles in
order to model a particular combinatorial problem. For example, it is well known that
the number of ways to tile a 1 × n board with 1 × 1 squares and 1 × 2 dominoes is
the nth combinatorial Fibonacci number fn, while generalized domino tilings have deep
connections to questions in statistical mechanics [9, 13, 22].

The particular case when the tiles are restricted to be square was considered by
Brigham et al. [3] and Hare [10]. In 1999, Heubach used the combinatorial method of
counting indecomposable blocks to generalize these earlier results [11]. More recently,
Calkin et al. showed that when the square tiles are restricted in dimension, the number
of tilings can be calculated as the sum of the entries in the nth power of a recursively
defined matrix [4]. This solution is based on a method of Calkin and Wilf for counting
grid tilings [5]. This problem is a specific case of the forbidden sub–matrix problem.
Furthermore, Webb has shown that such problems always have a recurrence solution
[23].

Date: April 20, 2015.
Key words and phrases. Tilings; Recurrence Relations; Integer Sequences.
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Aside from their intrinsic interest and applications, tilings are also an effective com-
binatorial technique for proving identities. While most of the identities concerning
combinatorial objects have straightforward proofs through mathematical induction or
algebraic manipulation with Binet forms, these approaches do not provide intuition for
the results or suggest avenues for further investigation. Thus, bijective proofs utilizing
tilings and other combinatorial models are preferred. Indeed, many of the most com-
mon Fibonacci and Lucas identities have simple and elegant proofs using the 1×n tiling
model mentioned above.

1.2. Notation. In this paper, the Fibonacci sequence will be indexed combinatorially
as f0 = 1 and f1 = 1, in order to have a direct connection with the tiling interpretation.
The primary object of interest in this paper are the sequences formed by counting
the number of legitimate tilings of rectangular boards by some fixed sets of tiles. In
particular, for any arbitrary fixed set of tiles T (note that we do not require that the tiles
be connected) and fixed board height m we will let the sequence {Tn} be the number of
ways to tile a m×n board with tiles in T . More generally, we will also be interested in the
collection of sequences {{Tn}(m)} as m ranges over the natural numbers. Throughout,
d will represent the length of the longest tile in T .

We will frequently need to consider the number of ways to tile boards where some
subset of the initial squares have been deleted. In these examples the set of tiles will be
clear from context and we will use capital letters to represent the boards and lower case
letters to represent the number of ways to tile the board (see Figure 1 in Section 2.1).

Following DeTemple and Webb, we will denote the successor operator on sequences
by E. That is, for any sequence an we have E(an) = an+1. The successor operator
offers an elegant way to express and prove many combinatorial identities [6]. Finally,
throughout this paper the phrase “recurrence relation” will be used to refer to a linear,
homogeneous, constant–coefficient recurrence relation.

1.3. Contributions. In this paper we consider enumerating distinct tilings up to sym-
metry. These problems arise when trying to prove recurrence order bounds for standard
tiling problems. We give a general formula for all 1×n tiling problems generalized from
the standard Fibonacci tiling model. Finally, we show that for any fixed tile set T and
number of rows m the sequence of distinct tilings of m× n boards satisfies a recurrence
relation and give examples incorporating the Fibonacci numbers.

2. Tilings and Recurrence Relations

As discussed in [2], if we permit ourselves to consider weighted tilings with initial
phases, we can realize any sequence satisfying a recurrence relation as tiling problem on
a 1×n board. In 2004, Webb, Criddle, and DeTemple proved an interesting converse to
this statement by showing that for any fixed set of tiles, T and any fixed board height,
m, the sequence {Tn} satisfies a recurrence relation, by conditioning on the number of
ways to cover the leftmost column [24]. This proof and its generalizations rely on an
algebraic lemma proved in [6] that any collection of arbitrary sequences that satisfy a

MONTH YEAR 103



homogeneous linear system in E are recurrent sequences annihilated by the determinant
of that system.

Before proceeding, we provide a simple example using this methodology:

2.1. Example: Tilings of a 2× n board with Dominoes and L–shaped Tromi-
noes. The tiles, endings, and necessary sub–boards are shown below in Figure 1:

(a) Tiles (b) Endings (c) Subboards

Figure 1. Figures for Example 1

Considering the number of ways to fill the initial column of board A, we see that
we can either use one vertical domino, two horizontal dominoes, or an L–shaped tile in
either orientation. The remaining boards, B and C, are simpler, because each tile may
only be placed in one orientation. This leads to the following system of sequences:

an = an−1 + an−2 + bn−1 + cn−1 (2.1)

bn = cn−1 + an−2 (2.2)

cn = bn−1 + an−2. (2.3)

As an example of how these equations are obtained, consider (2.3). In order to tile a C
board of length n we may either place a horizontal domino in the top row, leaving a B
board of length n− 1, or we may place a tromino that covers the remaining squares in
the first two columns, leaving an A board of length n − 2. Rewriting these as a linear
system in E we obtain:



E2 − E − 1 −E −E
−1 E2 −E
−1 −E E2





an
bn
cn


 =




0
0
0


 . (2.4)

The determinant of this matrix E2(E4−E3−2E2−E−1) = E2(E+1)(E3−2E2−1), and
indeed we can check the initial conditions, T1 = 1, T2 = 2, T3 = 5, T4 = 11 and T5 = 24
to see that our desired sequence satisfies the recurrence relation Tn = 2Tn−1 + Tn−3
corresponding to the irreducible cubic factor. This appears in the OEIS as A052980,
although this tiling interpretation is not yet included [19]. In a sense that will be made
precise later, the matrix obtained in (2.4) is typical of such problems. The fact that the
determinant is a degree six polynomial highlights the important fact that this method
does not always directly return the polynomial corresponding to the minimal recurrence
relation satisfied by the sequence, which we will discuss in the next section.
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3. Recurrence Order Bounds

3.1. Motivation. The order of a sequence is defined as the degree of the characteristic
polynomial of the minimal recurrence relation that the sequence satisfies. As discussed
in Chapter 7 of [6] knowing the order or even an upper bound for the order of a sequence
can allow us to prove identities and results without actually computing the coefficients
themselves. In the case of tiling problems, where all of the sequences we are interested in
satisfy some recurrence relation, having a bound on the recurrence order is particularly
valuable.

The mechanical method for proving identities contained in [6] shows that the upper
bound on sequence order describes how many initial conditions are necessary to compute
in order to prove a desired identity. Additionally, it is possible compute the coefficients
from initial conditions by solving a simple linear system of size equal to twice the
order bound. Thus, providing a better upper bound limits the amount of computation
necessary to make use of a particular tiling model. This is particularly important,
because it has been shown that enumerating the number of tilings can be #P–complete
in some cases [20].

3.2. Sequences of Sequences. For a given tile set T , we can form a family of sequences

T
(m)
n , each of which satisfies some recurrence relation, by letting the number of rows, m,

range over the positive integers. It is natural to investigate the relationships between
these sequences. For example, matrix methods of Calkin and Wilf [5] as well as those
of Anderson [1], show that for some fixed sets of tiles, the recurrence relations can
be calculated for any n by constructing a particular recursively constructed matrix.
Similarly, families of tilings with dominoes or with the tiles restricted to be square can
generate divisibility sequences [25].

In this paper, we are particularly interested in the growth rate of the order of the
sequences. That is, let O(Tn) be the order of the minimal recurrence relation that Tn
satisfies. Then, we can construct a sequence {O(T

(m)
n )} of these orders, and in particular,

consider the growth rate of the sequence. As discussed previously, this measure provides
important information about the sequence without excessive computation.

3.3. Trivial Bounds. The proof that every tiling sequence satisfies a recurrence rela-
tion proceeds by constructing the characteristic polynomial of such a recurrence relation,
as the determinant of a matrix whose entries are polyomials in E. As noted above, this
recurrence relation is rarely minimal, but does provide an upper bound on the order.
In order to compute this bound in general, we can consider the number of rows in the
matrix and the maximum degree in E of the entries in each row.

Consider the case for a fixed number of rows m and maximum tile length d. Because
we are considering arbitrary, possibly disconnected tiles, there are (2m − 1)2m(d−1) le-
gitimate tiles to choose from, and a maximum of 2m(d−1) states remaining of the board
after the initial column is tiled. Thus, our matrix could have up to 2m(d−1) +1 rows, one
for each board state and one for the initial board. Each of these rows can have exponent
at most d, which can always be achieved along the main diagonal when all of the tiles
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are used. The product of the main diagonal entries is one summand of the determinant

and thus, we obtain our first trivial upper bound on O(T
(m)
n ) ≤ d2m(d−1)+1 ∼ O(d2md).

There is some additional structure of the constructed matrix that can be used to re-
duce this bound. For example, even in the worst case where T contains all (2m−1)2m(d−1)

tiles, the Ed factors will only occur along the main diagonal and the only polynomials
with non–zero constant term will appear in the initial column as in the matrix in (2.4).
Hence, expanding down the initial column shows that there will be extraneous factors
of E corresponding to sequence eigenvalues of 0 that may be discarded. Moreover, some
of the states are translates of each other, and could thus be combined in order to fur-
ther reduce the order. However, these improvements do not significantly impact the
asymptotic behavior of the upper bound.

In general, this bound grows much too fast to be useful either combinatorially or
computationally. For example, even for tilings with dominoes and squares the bound
grows like 2 · 2m(2−1) = 2m+1. However, the actual recurrence orders are much smaller,
as can be seen in Table 1 below. Thus, the trivial bound obtained from the proof is too
inefficient for practical use.

m OEIS Upper Bound Observed Order
1 A000045 4 2
2 A030186 8 3
3 A033506 16 6
4 A033507 32 9
5 A033508 64 20
6 A033509 127 36

Table 1. Enumerating tilings with squares and dominoes. The data in
column 4 is from the OEIS [19]. Most of the computations were performed
by Lundow [16]. The observed orders may not be minimal in all cases.

4. Motivating Example

In this section, we present a simple and well–studied counting problem as a case study
suggesting some approaches to obtaining more reasonable recurrence order bounds for
fixed sets of tiles. For the remainder of this section T will consist of 1 × 1 and 2 × 2
squares with m arbitrary. We will let An be the whole m × n board and hence the
sequence an is equivalent to the desired sequence Tn. It is well known that the number
of ways to tile a 2× n strip with 1× 1 and 2× 2 squares is equal to fn [7]. Thus, there
are fm possible beginnings for a tiling of An.

This implies that the associated successor matrix has size bounded by fm × fm. The
maximum exponent of E in each row is one, except for the row corresponding to an which
has a quadratic term from the all 2 × 2 tiling, balanced by the all 1 × 1 ending which
is counted by an−1. Combined, this analysis provides us with fm as an upper bound
on the order of the recurrence. This is an asymptotic improvement, since fm ∼ ϕm.
Moreover, we note that we can further restrict the size of the matrix by only considering
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the distinct endings up to symmetry. This was also true in Example 1, as the sequences
bn and cn are clearly identical as C can be obtained from B by a reflection.

Thus, we need to compute the number of distinct Fibonacci tilings, relying on Burn-
side’s Lemma1 (see Theorem 8.7 in [6]). The next result is a specific case of the general
formula presented in the next section, with a1 = a2 = 1 and aj = 0 for j > 2. Similarly,
Lemma 4.3 corresponds to a1 = 0, a2 = a3 = 1 and aj = 0 for j > 3.

Lemma 4.1. The number of distinct Fibonacci tilings of order n up to symmetry is
equal to 1

2
(f2k + fk+1) when n = 2k and 1

2
(f2k+1 + fk) when n = 2k + 1.

Proof. Let n = 2k and consider the tilings of an 1×n board with squares and dominoes.
Any reflection of a tiling across the line of symmetry between the kth and (k + 1)st

squares produces another legitimate tiling. However, some tilings are self–similar under
reflection, hence we cannot simply take 1

2
fn as our answer. The number of self–similar

tilings can be computed by considering that the line of symmetry may either be covered
by a domino, or uncovered. There are fk−1 self–similar tilings whose center tile is a
domino and fk self–similar tilings where the line of symmetry is uncovered.

Thus, there are fk−1 + fk = fk+1 self–similar tilings. Figure 2 shows examples of
tilings with this property. By adding this quantity to the total number of tilings of
length n, we have exactly twice the number of distinct classes of tilings up to symmetry.
Hence, the number of classes of tilings is 1

2
(f2k + fk+1) and this case is complete.

When n = 2k + 1 we can apply a similar argument. In this case however, the line of
symmetry passes directly through the (k + 1)st square and thus must be covered by a
square to create a self–similar tiling. Hence, there are exactly fk self–similar tilings, and
by applying Burnside’s lemma as above we see that there must be exactly 1

2
(f2k+1 + fk)

distinct tilings which completes the proof. �

Figure 2. Self–Similar Fibonacci Tilings

The number of distinct classes of tilings provides a better bound on the order of our
recurrence by limiting the number of rows in our successor operator matrix. However, we
can offer another improvement by noticing that any ending that contains no consecutive
1×1 squares has exactly as many remaining tilings as an−2 since the remaining un–tiled
squares in the second column must also be covered by 1× 1 squares. This implies that
we can subtract the number of such endings, since they do not need to be represented

1Or rather, the lemma that is not Burnside’s [26].
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in our successor matrix. The number of endings that satisfy this condition is given by
Pn+2, where Pn is the nth Padovan number, which counts the number of ways to tile a
1×n board with 1× 2 dominoes and 1× 3 trominoes, satisfying the recurrence relation
Pn = Pn−2 +Pn−3. More interpretations of the Padovan sequence are given in the OEIS
as sequence A000931 [19]. We prove this statement as the following lemma.

Lemma 4.2. The number of endings with no consecutive 1× 1 tiles is equal to Pn+2.

Proof. We may construct a bijection between endings and tilings by associating every
2 × 2 square followed by a 1 × 1 square with a tromino in the Padovan tiling, while
each 2 × 2 square not followed by a 1 × 1 square is associated with a domino. Then,
since we need to count separately the cases when the tiling begins with a square or a
domino, we have that the number of endings with no consecutive 1× 1 squares is equal
to Pn + Pn−1 = Pn+2, by the Padovan recurrence. This completes our proof. �

Thus, we may subtract the number of distinct Padovan tilings from our previous
bound to obtain a better order approximation. In order to calculate the number of
distinct Padovan tilings we follow the methodology introduced in Lemma 1.

Lemma 4.3. The number of distinct Padovan tilings of order n up to symmetry is equal
to 1

2
(P2k + Pk+2) when n = 2k and 1

2
(P2k+1 + Pk−1) when n = 2k + 1.

Proof. We may argue as in Lemma 4.1. Notice that we again have exactly one odd length
and one even length tile, so the cases proceed exactly as in Lemma 4.1. Replacing the
square by a tromino gives a third order recurrence, which now satisfies the defining
relation of the Padovan numbers. It is then a straightforward calculation to verify the
result.

�
The preceding discussion suffices to prove the following theorem:

Theorem 4.4. The number of tilings of an m × n chessboard with 1 × 1 and 2 × 2
squares when m is fixed and n varies is not greater than:

1

2
(f2k + fk+1 − P2k+2 − Pk+3) + 1

when m = 2k, and
1

2
(f2k+1 + fk − P2k+3 − Pk) + 1

when m = 2k + 1.

Table 2 below shows the differences between the bound and the actual order of the
computed recurrence for the first several cases. Neither of these sequences appear to
be contained in the OEIS. The values in the table row labelled O(an) are the orders
of recurrences given in the OEIS for the solutions of these problems [19]. Computing
the order of recurrences for other sets of tiles can be done in a similar fashion. For any
particular case, analyzing the symmetry classes of the tiling endings can lead to greatly
improved upper bounds.
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n 2 3 4 5 6 7 8 9 10
O(an) 2 2 3 4 6 8 14 19 32
Bound 2 2 3 4 7 10 17 26 44

Table 2. Comparison between the derived bound and the actual order

This theorem demonstrates the usefulness of our contributions. Using the successor
operator method we may bound the order of the recurrence for a tiling problem by
decomposing its endings into separate smaller problems of determining the number
of distinct tilings of a simpler tile set. Since every chessboard tiling problem has an
associated recurrence relation this is a very general method. Figure 3 below shows the
possible endings of a 5× n board grouped in rows by equivalence class.

Figure 3. The 5× n endings

5. One Dimensional Tilings

In this section we provide a complete characterization of the number of distinct tilings
of a 1×n rectangle with colored tiles of fixed lengths. We also use the Pòlya Enumeration
Theorem (see Theorem 8.15 in [6]) to prove a similar result for 1× n bracelet tilings.

5.1. Generalized Fibonacci Tilings. Tilings of 1 × n rectangles have been inextri-
cably linked to the Fibonacci numbers by Benjamin and Quinn’s classic book [2]. They
give an interpretation of every (positive) linear homogeneous constant coefficient re-
currence relation in terms of a generalization of the standard Fibonacci tiling model.
Here, we prove a complementary theorem counting the number of distinct tilings for
any possible collection of colors and tiles.
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We begin by defining some convenient notation. Since we are covering boards of
dimension 1 × n we will consider tiling sets consisting of colored k–dominoes. We will
represent the tile set as a vector, T = (a1, a2, a3, . . .), where ak represents the number
of distinctly colored k–length dominoes available. Further, we will let Tn represent the
number of ways to tile a 1× n rectangle with the tiles in T .

Finally, let αj represent the number of self–symmetric 1× n T–tilings where the line
of symmetry is covered by a j–domino. This gives the following piecewise definition for
aj:

aj =





Tn−j
2

j ≡ n ≡ 0 (mod 2)

0 j ≡ 0, n ≡ 1 (mod 2)
0 j ≡ 1, n ≡ 0 (mod 2)
Tn−j

2
j ≡ n ≡ 1 (mod 2)

. (5.1)

Methods for calculating numerical values for Tk and by extension αk are given in [2].
Now we may give the statement of our theorem.

Theorem 5.1. Let T be any set of colored k–length dominoes. Then the number of
distinct tilings up to symmetry of a 1× n rectangle is equal to

1

2

(
Tn +

∞∑

i=1

aiαi +
Tn

2

2
+

(−1)nTn
2

2

)
. (5.2)

Proof. We proceed again using Burnside’s lemma. Since our board is one–dimensional
the only symmetry we are concerned with is the reflection across the vertical line of
symmetry. Notice that the set of tilings is closed under reflection which implies that it
is sufficient to add the number of self–symmetric tilings to Tn to obtain the number of
distinct tilings.

As in the proof of Lemma 1, we begin with the even case so let n = 2k. Since
n is even the symmetry line falls between two units of our board. Thus, there are
Tk tilings where the line is uncovered. This accounts for the final two terms in our
sum. Additionally, it is easy to see that when n is odd these terms annihilate leaving
us a single closed–form expression instead of a piecewise representation. This fits the
combinatorial interpretation since when n is odd the line of symmetry bisects some unit
square and must be covered by some tile.

Finally, for each j–length domino in T we must consider the case where the line of
symmetry is covered by a tile of length j. These cases separately naturally into four
parts, conditioning on the parity of j and n, as represented in Figure 4.

I) Both j and n are even:
In this case the line of symmetry must pass through the center of the j–domino.
This leaves j

2
units covered in each half of the board. In order to construct a self–

symmetric tiling, we must have both halves equivalent. Since there are no other
restrictions on the tiling, there are Tn−j

2
such coverings and this case is complete.

II) When j is even and n is odd:
In this case, the center of the j–domino does not correspond to the line of symmetry.
Hence, there can be no self–symmetric tilings with these conditions.
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III) When j is odd and n is even:
As in case II we are unable to construct such a self–symmetric tiling since the
domino covers a different number of squares on each half of the board.

IV) Both j and k are odd:
Here we may place the j–domino such that exactly j−1

2
squares are covered on each

side. As in case I this implies that there are Tn−j
2

such coverings and no more.

Since for each j there are aj colors, summing over ajαj for all j ∈ N counts all self–
symmetric tilings where the line of symmetry is covered. Since all self–symmetric tilings
have the line of symmetry either covered or uncovered, this completes the proof. �

This result is particularly valuable in light of our work presented in the previous
section. Notice, that to produce the bounds on our recurrence relation we only needed
to apply this theorem twice, even though the number of rows, m, could be selected
arbitrarily. This is because using the successor operator method, we need only consider
the initial columns, and frequently a bijection can be constructed between tilings of the
initial columns and colored 1 × n tilings. Thus, this theorem is sufficient to provide
recurrence order bounds on most traditional tiling problems.

Figure 4. 1× n Self Symmetric Centers

5.2. Distinct Lucas Tilings. In addition to considering generalized Fibonacci rela-
tions, Benjamin and Quinn also provide a combinatorial interpretation of the Lucas
numbers as tilings of a 1 × n bracelet. We now show that the number of distinct Lu-
cas tilings can be given by a number–theoretic formula, using the Pòlya Enumeration
Theorem. The sequence generated by (5.3) occurs in the OEIS as A032190 [19].

Theorem 5.2. The number of distinct Lucas tilings of a 1×n bracelet up to symmetry
is:

dn−1
2
e∑

i=0


 1

n− i
∑

d|(i,n−i)
ϕ(d)

(n−i
d
i
d

)
 . (5.3)
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Proof. In order to apply the Pòlya Enumeration Theorem, we must first calculate ck for
each bracelet Bn. Since the group acting on each bracelet is the nth cyclic group we
have that ck(Bn) = ϕ((n, k)) elements of order k where ϕ represents the Euler totient
function [21]. With this representation in hand, it follows that by the Pòlya Enumeration
Theorem there are exactly

f(n, k) =
1

n

∑

d|(n,k)
ϕ(d)

(n
d
k
d

)
(5.4)

binary colorings of a n–bracelet with exactly k black units [14].
In order to enumerate the Lucas tilings we must condition on the number of dominoes

in each tiling. Let each black unit in a distinct bracelet coloring represent a domino,
and let each white unit in a distinct bracelet coloring represent a square. There can be
at most dn

2
e dominoes in such a covering, since each domino covers two units. Replacing

each domino with two squares, increases the number of available units by one up to n.
Each of these different combinations of tiles represents a unique distribution of the

colors in a binary bracelet coloring of order n − d, with d representing the number of
dominoes. Summing over all possible values for d gives:

dn
2
e∑

i=0

f(n− i, i). (5.5)

Finally, substituting (5.4) for f(n, k) gives the desired result completing this proof. �
This result demonstrates the difficulties and complexities involved in employing the

techniques of Burnside and Pòlya in more complex domains. While the number of
distinct bracelet colorings has a convenient closed form expression [15], the techniques
needed to catalog even the simplest cases of distinct Lucas tilings are much more sig-
nificant. Consider extending Theorem 5.2 by adding curved trominoes to the tile–set.
The resulting expression is a triple sum over multinomial coefficients. Similarly, adding
colored dominoes or squares again increases the complexity of the expression exponen-
tially.

6. Larger Rectangular Tilings

6.1. Recurrence Relations for Distinct Tilings. In this section we consider more
generally the problem of enumerating the number of distinct tilings of an m× n chess-
board. We prove a complementary result to the result of Webb et al. showing that
every such sequence satisfies a recurrence relation and conclude with some examples of
this method applied to some well known tiling problems.

Theorem 6.1. Let T be a fixed set of tiles with maximum length d, and m > 0 be a
fixed number of rows. The sequence {Dn} of distinct tilings of an m× n board satisfies
a recurrence relation.

Proof. Since our chessboards are rectangular, the group of symmetries is isomorphic
to the Klein group. We will use the notation G = {e, h, v, r}, where e is the identity
element, h and v represent the horizontal and vertical reflections respectively, and r is
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the 180◦ rotation. Then, letting en, hn, vn, and rn be the number of tilings of a m× n
board with tiles in T fixed by each respective group element, by Burnside’s Lemma, we
have that

Dn =
1

4
(en + hn + vn + rn). (6.1)

Since the set of all sequences satisfying some recurrence relation is a vector space,
any finite linear combination of such sequences also satisfies a recurrence relation. Thus,
it suffices to show that en, hn, vn, and rn are all recurrent sequences. Note that this
together with Theorem 5.1 imply the case for m = 1 since the even and odd cases each
separately are a finite linear combination of recurrent sequences (the Ti). In the general
case, the theorem of Webb guarantees that en satisfies a recurrence relation since e fixes
all Tn tilings.

We consider the remaining three cases in turn, following the idea in [24]. The case of
hn is simplest after the identity. Let S be the set of all possible boards formed from A
by deleting some (possibly empty) collection of squares in the first d − 1 columns and
let S∗h represent the corresponding sequences counting the number of ways to distinctly
tile a m × n board with initial columns in S. Note that we actually need only include
those endings that are fixed under h in S since the corresponding sequences are 0 for
all other endings.

For each board B ∈ S we may form a linear equation in E for bn in terms of sequences
in S∗h by considering the number of distinct ways, up to symmetry, to tile the initial col-
umn of the board, since any such covering of the initial squares will leave another board
in S of shorter length. Hence, each sequence in S∗h (including hn) can be represented as
a linear combination in E of other sequences. Then, the determinant of this system is
the characteristic polynomial of a recurrence that annihilates hn.

We may proceed similarly for v and r, defining S∗v and S∗r to enumerate corresponding
sequences counting the number of ways to distinctly tile a m × n board with initial
columns in S fixed by v and r respectively. Again, by considering the number of ways
to distinctly cover the initial column of each board in S we may form linear systems
whose determinants give recurrences annihilating the sequences vn and rn. Hence, we
have shown that Dn is a linear combination of sequences satisfying recurrence relations
and so Dn must also be a recurrent sequence as desired.

�

6.2. Examples. We conclude this paper by presenting some simple, discrete exam-
ples of enumerating distinct two–dimensional tilings. These examples are meant to be
representative of the solution methods necessary to approach more general problems.

6.2.1. Tilings with Dominoes. In this example we consider the distinct tilings of a 2×n
rectangle with dominoes. Recall that the total number of ways to tile a 2 × n rectan-
gle with dominoes is fn. For m up to 9 these distinct domino tiling values have been
computed numerically by Mathar [17]. In [18], Mathar computes generating functions
for several generalizations of this problem, including using larger dominoes and three
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dimensional tilings, using the transfer matrix method on a digraph constructed to rep-
resent possible endings. The sequence presented in the following example occurs in the
OEIS as A060312 [19].

Proposition 6.2. The number of distinct tilings of a 2×n rectangle with 1×2 dominoes
is

1

2
(f2k + fk+1) (6.2)

when n = 2k and
1

2
(f2k+1 + fk) (6.3)

when n = 2k + 1.

Proof. In order to apply Burnside’s Lemma, we must count the number of elements
fixed by each group action.

Since the identity element e fixes all tilings, it contributes fn to the sum regardless of
the parity of n. To see that h accounts for fn regardless of parity, consider the bijection
between 1 × n squares and dominoes and the Fibonacci recurrence [7]. Since applying
h to a 2× n board leaves a 1× n board this is sufficient.

The last two group actions are parity dependent, so first let n = 2k and consider the
actions of r and v. In both cases either the line of symmetry is covered by two horizontal
dominoes or it is not covered at all. These observations add the final terms to the even
case: 2fk and 2fk−1 respectively. This completes the example when n is even. Figure 5
shows the symmetric centers under r and v for both parities.

When n = 2k+1 is odd, under both v and r in order for a tiling to be self–similar the
symmetric line must be covered by a single vertical domino leaving only 2fk remaining
tilings fixed by these actions. Since we have considered all of the elements of V and
|V | = 4 by Burnside’s Lemma we have that the number of distinct tilings is equal to:

1

4
(f2k + f2k + 2fk + 2fk−1) (6.4)

when n = 2k and
1

4
(f2k+1 + f2k+1 + 2fk) (6.5)

when n = 2k + 1. Simplifying with the Fibonacci recurrence then gives the result. �

Figure 5. Legitimate Symmetric Centers for 2× n Domino Tilings
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6.2.2. Tilings with Squares. In this final example we extend the motivating example of
Section 4, tiling with 1× 1 squares and 2× 2 squares.

Proposition 6.3. The number of distinct tilings of a 3 × n rectangle with squares of
size 1× 1 and 2× 2 is

1

3

(
22n−1 + 2n + 2n−1 +

1 + (−1)n

2

)
(6.6)

when n is odd, and
1

3

(
22n + 2n + 2n−1 + 1

)
(6.7)

when n is even.

Proof. Since our group of symmetric actions again has four elements, by Burnside’s
Lemma we need only compute the tilings that are fixed by each symmetric transforma-
tion. Using the notation of Heubach [11], let T3,a represent the number of traditional
tilings of a 3× a rectangle.

The identity transformation fixes every tiling, which contributes a term of T3,n. Sim-
ilarly, the horizontal reflection fixes only the tiling with all 1× 1 squares since any 2× 2
square cannot be centered across the horizontal line of symmetry.

A rotation of 180◦ fixes exactly T3,bn
2
c tilings since when n is odd the center column

must be covered with 1 × 1 tiles and when n is even the center two columns must be
covered with 1×1 tiles. If a 2×2 square infringes on one of these areas, it would overlap
itself under r and hence cannot be self–symmetric.

The vertical line of symmetry separates the two parities. When n = 2k + 1 the
symmetric line crosses the central units and must be covered by 1×1 squares contributing
T3,k to the final sum. When n = 2k is even the line of symmetry may be covered in
one of two ways by a single 2 × 2 square or be surrounded but not covered by squares
on both sides. These terms are 2T3,k−1 and T3,k respectively which completes the even
case.

Applying Burnside’s Lemma to these terms gives a representation of the number of
tilings in terms of Heubach’s recurrence relation:

1

4
(T3,2k+1 + 1 + 2T3,k) (6.8)

when n = 2k + 1 and
1

4
(T3,2n + 1 + 2T3,n + 2T3n+1) (6.9)

when n = 2k.
Constructing a generalized power sum for T3,a gives the following closed form expres-

sion [19],

T3,a =
2a+1 − (−1)a+1

3
. (6.10)

Substituting (6.10) into (6.7) and (6.8) respectively gives the desired result and com-
pletes this example. �
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ON THE q−SEIDEL MATRIX

M. CETIN FIRENGIZ AND NAIM TUGLU

Abstract. Clarke and et. al recently introduced the q-Seidel matrix, and obtained some
properties. In this article, we define a different form of q-Seidel matrix by ak

n (x, q) =

xqn+2k−3ak−1
n (x, q)+ak−1

n+1 (x, q) with k ≥ 1, n ≥ 0 for an initial sequence a0
n (x, q) = an (x, q) .

By using our definition, we obtain several properties of the q-analogues of generalized Fi-
bonacci and Lucas polynomials.

1. Introduction

The q-analogues of generalized Fibonacci and Lucas polynomials were investigated by many
authors [3, 5, 7]. Carlitz [10] defined the q-Fibonacci polynomials by

φn+1 (a)− aφn (a) = qn−1φn−1 (a) (n > 1) , (1.1)

where φ1 (a) = 1, φ2 (a) = a.
The sequence of polynomials Sn(x, q) is defined by the recurrence relation

Sn+1 (x, q) = Sn (x, q) + xqn−2Sn−1 (x, q) (n ≥ 1) , (1.2)

where S0 (x, q) = a and S1 (x, q) = b. For a = 0 and b = 1, Sn (x; q) = Un−1
(
1; 0,−xq−1

)
,

Sn (x; q) is a special case Al-Salam and Ismail polynomials Un (x; a, b) introduced in [13]. Also
the sequence of polynomials Sn(x, q) is a special case Fn (x; s, q) which is studied by Cigler in
[7]. In particular, if we take x = 1, q → 1− in (1.2), we get the classical Fibonacci and Lucas
numbers for initial values a = 0, b = 1 and a = 2, b = 1 respectively.
q-Calculus started with L. Euler in the eighteenth century. q-Analogue of the binomial

coefficients play important role in number theory, combinatorics, linear algebra and finite
geometry. Now we mention some definitions of q-calculus [1]. Given value of q > 0, the
q-integer [n]q is defined by

[n]q =





1− qn
1− q if q 6= 1

n if q = 1,

and the q-factorial [n]q! is defined by

[n]q! =

{
[n]q . [n− 1]q · · · [1]q if n = 1, 2, ...

1 if n = 0

for n ∈ N. The q−binomial coefficients are defined by

[
n

k

]

q

=
[n]q!

[n− k]q! [k]q!
, n ≥ k ≥ 0
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with
[
n
0

]
q

= 1 and
[
n
k

]
= 0 for n < k. Note that the q-binomial coefficient satisfies the

recurrence equations [
n+ 1

k

]

q

= qk
[
n

k

]

q

+

[
n

k − 1

]

q

(1.3)

and [
n+ 1

k

]

q

=

[
n

k

]

q

+ qn−k+1

[
n+ 1

k − 1

]

q

. (1.4)

In [9] Clarke and et. al give a kind of the generalization of a Seidel matrix, and obtain some
properties by using the following relation:

a0n (x, q) = an (x, q) (n ≥ 0) ,

akn (x, q) = xqnak−1n (x, q) + ak−1n+1 (x, q) (k ≥ 1, n ≥ 0) .
(1.5)

Here (an (x, q)) is a sequence of elements in a commutative ring. We can write akn (x, q) in
terms of the initial sequence as

akn (x, q) =
k∑

i=0

(xqn)k−i
[
k

i

]

q

a0n+i (x, q) . (1.6)

Moreover
(
a0n (x, q)

)
is called the initial sequence and (an0 (x, q)) the final sequence of the q-

Seidel matrix. By using the Gauss inversion formula, we obtain relations between the initial
sequence and final sequence:

an0 (x, q) =
n∑

i=0

xn−i
[
n

i

]

q

a0i (x, q) , (1.7)

a0n (x, q) =
n∑

i=0

(−x)n−i q(
n−i
2 )
[
n

i

]

q

ai0 (x, q) . (1.8)

Define the generating functions as follows:

a (t) =
∑

n≥0
a0n (x, q) tn, a (t) =

∑

n≥0
an0 (x, q) tn (1.9)

and

A (t) =
∑

n≥0
a0n (x, q)

tn

[n]q!
, A (t) =

∑

n≥0
an0 (x, q)

tn

[n]q!
. (1.10)

Thus the generating functions of the initial and final sequences are related by following equa-
tions:

a (t) =
∑

n≥0
a0n (x, q)

tn

(xt; q)n+1

, (1.11)

A (t) = eq (xt)A (t) . (1.12)

Define (t; q)n = (1− t) (1− qt) . . .
(
1− qn−1t

)
and (t; q)∞ = limn→∞ (t; q)n. Then

eq (t) =
∑

n≥0

tn

[n]q!
=

1

((1− q) t; q)∞
. (1.13)

Also
1

(t; q)n+1

=

∞∑

k=0

[
n+ k

k

]

q

tk. (1.14)
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In this paper, we define a generalization of the q-Seidel matrix and obtain some properties
for the generalized q-Seidel matrix. Furthermore we consider the q-analogues of generalized
Fibonacci and Lucas polynomials Sn (t, q) and give several properties of the sequence of poly-
nomials Sn (t, q) by using the generalized q-Seidel matrix method.

2. The Generalized q-Seidel Matrix

Let (an (x, q)) be a given real or complex sequence. The generalized q−Seidel matrix asso-
ciated with

(
a0n (x, q)

)
is defined recursively by the formula

a0n (x, q) =an (x, q) (n ≥ 0) ,

akn (x, q) =xqn+2k−3ak−1n (x, q) + ak−1n+1 (x, q) (n ≥ 0, k ≥ 1) ,
(2.1)

where akn (x, q) represent the entry in the kth row and nth column.
We note that for q → 1− and x = 1, the q-Seidel matrix turns into the usual Euler-Seidel

matrix [2, 4, 6].

Lemma 2.1. Let
(
akn (x, q)

)
satisfy equation (2.1) with initial sequence

(
a0n (x, q)

)
. Then

akn (x, q) =
k∑

i=0

xk−iq(n+k−2)(k−i)
[
k

i

]

q

a0n+i (x, q) . (2.2)

Proof. We use induction to prove the proposition. The equation clearly holds for k = 1. Now,
suppose that the equation is true for k. By (1.3) and (2.1) we have

ak+1
n (x, q) = xqn+2k−1akn (x, q) + akn+1 (x, q)

= xqn+2k−1
k∑

i=0

xk−iq(n+k−2)(k−i)
[
k

i

]

q

a0n+i (x, q)

+
k∑

i=0

xk−iq(n+k−1)(k−i)
[
k

i

]

q

a0n+1+i (x, q)

=

k∑

i=0

xk+1−iq(n+k−1)(k+1−i)
[
k

i

]

q

a0n+i (x, q)

+
k+1∑

i=1

xk+1−iq(n+k−1)(k+1−i)
[
k

i− 1

]

q

a0n+i (x, q)

= xk+1q(n+k−1)(k+1)a0n (x, q)

+
k∑

i=1

xk+1−iq(n+k−1)(k+1−i)
{
qi
[
k

i

]

q

+

[
k

i− 1

]

q

}
a0n+i (x, q) + a0n+k+1 (x, q)

=
k+1∑

i=0

xk+1−iq(n+k−1)(k+1−i)
[
k + 1

i

]

q

a0n+i (x, q) .

Hence, the equation is true for n = k + 1, which completes the proof. �

If we take q → 1−, x = 1 for (2.2), we get the well-known formula for the classical Euler-
Seidel matrix [4].
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The first row and column of the generalized q-Seidel matrix are defined by the inverse
relation as in following corollary.

Corollary 2.2. Let a0n (x, q) and an0 (x, q) be the first row and column in the generalized q-
Seidel matrix. Then a0n (x, q) and an0 (x, q) have the inverse relation

an0 (x, q) =
n∑

i=0

xn−iq(n−2)(n−i)
[
n

i

]

q

a0i (x, q) (2.3)

and

a0n (x, q) =
n∑

i=0

(−x)n−i q
(n−i)(n−3+i)

2

[
n

i

]

q

ai0 (x, q) . (2.4)

Proposition 2.3. Let a0n (x, q) and an0 (x, q) be the first row and column in the generalized
q-Seidel matrix. Then a0n (x, q) and an0 (x, q) have the orthogonality relation

n∑

j=i

(−1)j−i q(n−2)(n−j)q
(j−i)(j−3+i)

2

[
n

j

]

q

[
j

i

]

q

= δni. (2.5)

Proof. We prove this by induction on n. A similar proof can be seen in [8, 11]. �

2.1. Generating Functions.

Proposition 2.4. Let

a (t) =
∞∑

n=0

a0n (x, q) tn

be the generating function of the initial sequence
(
a0n (x, q)

)
. Then the generating function of

the sequence (an0 (x, q)) is

a (t) =
∞∑

n=0

a0n (x, q) tn
∞∑

k=0

[
n+ k

k

]

q

(xt)k qk(k−2+n). (2.6)

Proof. Considering (2.3) we write

a (t) =

∞∑

n=0

(
n∑

i=0

xn−iq(n−2)(n−i)
[
n

i

]

q

a0i (x, q)

)
tn

=

∞∑

n,k=0

[
n+ k

k

]

q

xktn+kqk(k−2+n)a0n (x, q) .

Hence we obtain

a (t) =

∞∑

n=0

a0n (x, q) tn
∞∑

k=0

[
n+ k

k

]

q

(xt)k qk(k−2+n).

�

Proposition 2.5. Let

A (t) =
∞∑

n=0

a0n (x, q)
tn

[n]q!
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be the exponential generating function of the initial sequence
(
a0n (x, q)

)
. Then the exponential

generating function of the sequence (an0 (x, q)) is

A (t) =

∞∑

n=0

a0n (x, q)
tn

[n]q!

∞∑

k=0

qk(k−2+n) (xt)k

[k]q!
. (2.7)

Proof. The proof follows from equation (2.3). �

3. Applications of Generalized q−Seidel Matrices

In this section, we show that the generalized q-Seidel matrix is quite applicable for the
q-analogues of generalized Fibonacci and Lucas polynomials. First we give the relationship
between Sn+2k (x, q) and the initial sequence Sn (x, q) by using the generalized q-Seidel matrix.

Corollary 3.1. The q-analogues of generalized Fibonacci and Lucas polynomials satisfy the
following relation:

Sn+2k (x, q) =
k∑

i=0

xk−iq(n+k−2)(k−i)
[
k

i

]

q

Sn+i (x, q) . (3.1)

Proof. Let a0n = Sn (x, q), n ≥ 0 be initial sequence. By using induction on k, (1.2) and (2.1),
we have

akn = Sn+2k (x, q) .

Using (2.2) and applying a0n = Sn (x, q) , we obtain

akn =
k∑

i=0

xk−iq(n+k−2)(k−i)
[
k

i

]

q

Sn+i (x, q) .

This completes the proof. �

Corollary 3.2. We have

S2n (x, q) =
n∑

i=0

xn−iq(n−2)(n−i)
[
n

i

]

q

Si (x, q) , (3.2)

Sn (x, q) =
n∑

i=0

(−x)n−i q
(n−i)(n−3+i)

2

[
n

i

]

q

S2i (x, q) (3.3)

and

S2n+1 (x, q) =
n∑

i=0

xn−iq(n−1)(n−i)
[
n

i

]

q

Si+1 (x, q) . (3.4)

The following remark show that the well-known formulas [12] of Fibonacci numbers can be
easily seen by using the properties of q-analogues of generalized Fibonacci and Lucas polyno-
mials.

Remark 3.3. Setting a = 0, b = 1 and x = 1, q → 1− in (3.1), we get the following equation
of the Fibonacci numbers

Fn+2k =

k∑

i=0

(
k

i

)
Fn+i.
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By taking a = 0, b = 1 and x = 1, q → 1− as a special case of the equations (3.2), (3.3) and
(3.4) we have the following identities for Fibonacci numbers:

F2n =
n∑

i=0

(
n

i

)
Fi,

Fn =
n∑

i=0

(−1)n−i
(
n

i

)
F2i,

F2n+1 =
n∑

i=0

(
n

i

)
Fi+1

respectively. Also it is easily obtain similar formulas for the Lucas numbers.

Proposition 3.4. The generating function of the polynomials Sn(t, q) is
∞∑

n=0

Sn (x, q) tn =
a+ (b− a) t

1− t− xq−1t2µt
, (3.5)

where µt is the Fibonacci operator which is µtf (t) = f (tq) for any given function f (t).

Proof. Let g (x) =
∞∑
n=0

Sn (x, q) tn. We need to show the following equation:

g (x)
(
1− t− xq−1t2µt

)
= a+ (b− a) t.

We have

g (x)
(
1− t− xq−1t2µt

)
= a+ bt+

∞∑

n=2

Sn (x, q) tn −
∞∑

n=0

Sn (x, q) tn+1 −
∞∑

n=0

Sn (x, q)xqn−1tn+2

= a+ bt− at+

∞∑

n=2

{
Sn (x, q)− Sn−1 (x, q)− xqn−3Sn−3 (x, q)

}
tn.

This completes the proof. �
Corollary 3.5. The generating function of S2n (x, q) is

∞∑

n=0

S2n (x, q) tn =
a+ (b− a) t

1− t− xq−1t2µt

∞∑

k=0

[
n+ k

n

]

q

(xt)k qk(k−2+n). (3.6)

Proof. If we want to obtain the generating function of S2n (x, q) by using equation (2.6), we
realize that by setting a0n (x, q) = Sn (x, q) in (2.1). We obtain an0 (x, q) = S2n (x, q). By
considering (2.6), we find

a (t) =
∞∑

n=0

an0 (x, q) tn =
∞∑

n=0

a0n (x, q) tn
∞∑

k=0

[
n+ k

n

]

q

(xt)k qk(k−2+n).

Therefore ∞∑

n=0

S2n (x, q) tn =
∞∑

n=0

Sn (x, q) tn
∞∑

k=0

[
n+ k

n

]

q

(xt)k qk(k−2+n).

From (3.5) we have
∞∑

n=0

S2n (x, q) tn =
a+ (b− a) t

1− t− xq−1t2µt

∞∑

k=0

[
n+ k

n

]

q

(xt)k qk(k−2+n).
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�
This corollary points out that the generating functions of the first row and column of the

generalized q-Seidel matrix are useful to obtain the generating function of S2n (x, q).

References

[1] A. Aral, V. Gupta and R.P. Agarwal, Applications of q-calculus in operator theory, New York, Springer,
2013.
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A CAYLEY-HAMILTON AND CIRCULANT APPROACH TO JUMP SUMS

RUSSELL JAY HENDEL

Abstract. Define the Pascal Triangle jump sum by
[
n
k

]
j

=
∑
m≡k (j)

(
n
m

)
, with m ≡ k (j)

meaning, as usual, m ≡ k (mod j), and with with
(
n
m

)
= 0, if either m < 0 or m > n. The jump

sum function adds every j-th entry in the n-th row of Pascal’s Triangle starting at column k.
The jump sum has been studied by several authors over the last 2 decades. Both recursions and
explicit formulae have been given as well as several interesting number-theoretic applications.
Varied proof methods have been presented including inductive, combinatoric, generating-
function, and Riordan-array proofs. The goal of this paper is to provide an extremely compact
proof of the recursions satisfied by the jump-sum functions using (i) the theory of circulant
matrices and (ii) an extension of the Cayley-Hamilton Theorem that studies the values of a
polynomial - whose zeroes are some, but not all, eigenvalues of a matrix - evaluated at that
matrix. This matrix approach allows us to derive closed functional forms for some coefficients
in the recursions.

1. Introduction

Define the (Pascal Triangle) jump-sum by
[
n

k

]

j

=
∑

m≡k (n)

(
n

m

)
, (1.1)

with m ≡ k (n) meaning, as usual, m ≡ k (mod n), and with
(
n
m

)
= 0, if either m < 0 or

m > n. The jump sum function adds every j-th entry in the n-th row of Pascal’s Triangle,
the summation process beginning at column k. Note, that although if say k < 0 that

(
n
k

)
= 0,

nevertheless,
[
n
k

]
j
6= 0, since the value of

[
n
k

]
j

depends on the congruence class of k modulo j.

The jump-sums satisfy recursions and in fact, they ”can be expressed in terms of some
linearly recurrent sequences with orders bounded by φ(j)/2,” [19]. See also [20, 3].

Varied applications of the jump-sums exist including, values of Bernoulli and Euler polyno-
mials at rational points [6, 20], values of quadratic characters [19, 13], as well as derivation of
interesting new congruences for primes and various number theoretic quotients [16, 19].

Explicit formulas for
[
n
k

]
j

for j = 3, 4, 5, 8, 10, 12 may be found in [3, 15, 14, 16, 19].

A variety of proof methods have been applied including proofs by combinatorics [1], Riordan-
arrays [10], and generating functions [12], as well as Jensen [2] and WZ proofs[5]. In this paper,
we present a very compact proof based on the theory of circulants and extensions of the Cayley-
Hamilton Theorem to the case where the factors of a polynomial contain some, but not all, of
the eigenvalues of a matrix, and that polynomial is evaluated at that matrix.

To motivate our approach, we first review in Table 1 some numerical values of
[
3
k

]
3
. Table

2 presents numerical values of 3
[
n
k

]
3
− 2n. Values of Table 2 can easily be computed from

corresponding values in Table 1. Rows 3,6, and 9 of Table 2, suggest that the value of 3
[
3n
k

]
3
−

The author gratefully acknowledges useful comments on references and suggested focus of this paper from
several attendees of the 16th Fibonacci conference held in Rochester, N.Y., July 2014.
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n Pascal Triangle Row k = 0 k = 1 k = 2

3 1 3 3 1 2 3 3
4 1 4 6 4 1 5 5 6
5 1 5 10 10 5 1 11 10 11
6 1 6 15 20 15 6 1 22 21 21
7 1 7 21 35 35 21 7 1 43 43 42
8 1 8 28 56 70 56 28 8 1 85 86 85
9 1 9 36 84 126 126 84 36 9 1 170 171 171

Table 1. Values of
[
n
k

]
3

based on (1.1), for small n.

n Pascal Row k = 0 k = 1 k = 2

3 1 3 3 1 -2 1 1
4 1 4 6 4 1 -1 -1 2
5 1 5 10 10 5 1 1 -2 1
6 1 6 15 20 15 6 1 2 -1 -1
7 1 7 21 35 35 21 7 1 1 1 -2
8 1 8 28 56 70 56 28 8 1 -1 2 -1
9 1 9 36 84 126 126 84 36 9 1 -2 1 1

Table 2. Values of 3
[
n
k

]
3
− 2n for small n. The corresponding values of

[
n
k

]
3

may be found in Table 1.

n ≡ r (3) k = 0 k = 1 k = 2

r = 0 2(−1)n −1(−1)n −1(−1)n

r = 1 −1(−1)n −1(−1)n 2(−1)n

r = 2 −1(−1)n 2(−1)n −1(−1)n

Table 3. Values of c(k, n) = 3
[
3n
k

]
3
− 23n based on the congruence class of n

and k modulo 3.

23n = c3(k, n) depends only on the congruence class modulo 3 of n and k. An elementary
proof based on the Pascal Recursion is presented in [3]. Table 3 presents all values of c3(k, n).

Closed functional forms for j
[
jn
k

]
j
− 2jn = cj(k, n), depending only on the congruence class of

k and n modulo j, have been computed for j = 4, 5, 8, 10, 12 [20, 3].
A further study of either Table 2 or Table 3 shows that for each fixed k and l ∈ {0, 1, 2} the

sequence {3
[
3n+l
k

]
3
− 23n+l}n≥1 satisfies the recursion Gn +Gn−1 = 0.

We can exploit this uniformity to obtain a new approach to the jump-sum recursions based
on matrices and vectors. Fix j and l with 0 ≤ l ≤ j − 1. Define the vector

G(j,l)
n = Gn = 〈j

[
jn+ l

0

]

j

− 2jn+l, j

[
jn+ l

1

]

j

− 2jn+l, . . . , j

[
jn+ l

k − 1

]

j

− 2jn+l〉. (1.2)
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n 3n+ 0 G
(3,0)
n 3n+ 1 G

(3,1)
n 3n+ 2 G

(3,2)
n

1 3 〈−2, 1, 1〉 4 〈−1,−1, 2〉 5 〈1,−2, 1〉
2 6 〈2,−1,−1〉 7 〈1, 1,−2〉 8 〈−1, 2,−1〉
3 9 〈−2, 1, 1〉 10 〈−1,−1, 2〉 11 〈1,−2, 1〉
4 12 〈2,−1,−1〉 13 〈1, 1,−2〉 14 〈−1, 2,−1〉

Table 4. Values of G
(3,l)
n , 0 ≤ l ≤ 2, based on (1.2), with the values of the

vector components previously computed in Tables 1-3. We have for all n and
l, Gn +Gn−1 = 0.

In the rest of the paper, we may notationally indicate such vectors by combining set notation
with angle brackets as follows.

G(j,l)
n = Gn = 〈j

[
jn+ l

k

]

j

− 2jn+l : 0 ≤ k ≤ j − 1〉.

When using such a notation, the angle brackets indicate that we are regarding the elements
of the underlying set as ordered (that is, they are a vector). As an example of our notation,
〈t : 3 ≥ t ≥ 1〉 = 〈3, 2, 1〉 while 〈t : 1 ≤ t ≤ 3〉 = 〈1, 2, 3〉.

Table 4 shows values of Gn for initial values of n for j = 3 and for all congruence classes of
l modulo j. As can be seen, the vectors {Gn}n≥1 satisfy the vector recursion Gn +Gn−1 = 0,
uniformly for all l.

The relationship between Gn and Gn−1 can be described using a matrix. To do this
we first recall that Circ(a0, a1, a2, . . . , am−1) is the m × m matrix, Q, whose first row is
a0, a1, a2, . . . , am−1 with Qi,l = Qi′,l′ if l − i ≡ l′ − i′ (m) [4].

Throughout the paper, the matrix entry in the x-th row and y-th column of a matrix Q will
be denoted by either Q(x, y) or Qx,y. Similarly v(k) or vk will indicate the k-th component of
the vector v. The notation Q∗,y or Qx,∗ will indicate the y-th column or x-th row respectively.
The notation Qj (with one subscript) indicates Q evaluated at parameter j. We abuse vector
notation so that e.g. the vector v in Qv is perceived as a column vector even though originally
defined as a row vector.

Using these notations, we define

Mj = Circ(

(
j

0

)
+

(
j

j

)
,

(
j

1

)
,

(
j

2

)
, . . . ,

(
j

j − 1

)
). (1.3)

Matrix Mj is closely related to the circulant matrix underlying Wendt’s determinant [7, 21].
In fact, Wj = Det(Mj − Ij), where Ij is the j × j identity matrix. However, this fact will not
be further used in this paper.

Proposition 1.1. For any fixed l, 0 ≤ l ≤ j − 1, and for all n ≥ 1,

MjG
(j,l)
n = G

(j,l)
n+1. (1.4)

.

Throughout the rest of the paper, except for the tables and examples, j will be fixed and
hence, when notationally convenient, we omit mention of it.

Prior to presenting the proof, we summarize well-known binomial identities used throughout
the paper.
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Proposition 1.2. For any positive integer x,

a)
x∑

p=0

(
x

p

)
= 2x.

b)
x∑

p=0

(−1)p
(
x

p

)
= 0.

c)

x−1
2∑

p=0

(
x

p

)
= 2x−1, if x is odd.

d) Furthermore, for any integer z, 1 ≤ z ≤ x− 1, and any integer y, 0 ≤ y ≤ x, we have

(
x

y

)
=

x∑

p=0

(
z

p

)(
x− z
y − p

)
. (1.5)

Proof. Well known. For example, (d) follows by comparing coefficients in the expansions of
both sides of the identity, (1+V )x = (1+V )z(1+V )x−z. When z = 1 we obtain the traditional
Pascal Recursion. �

Proof. We now return to the proof of (1.4).
Equation (1.4) is equivalent to the j equations,

Mk,∗Gn = j

[
j(n+ 1) + l

k

]

j

− 2j(n+1)+l, 0 ≤ k ≤ j − 1. (1.6)

Equation (1.6) implies that for each k, Mk.∗ defines a linear homogeneous recursion with

constant coefficients on the sequence {j
[j(n+1)+l

k

]
j
− 2j(n+1)+l}n≥1. Since the order-j linear

recursive sequences with constant coefficients form a vector space, to prove (1.6), it suffices to

show that the recursion defined by Mk,∗ holds for each summand in j
[j(n+1)+l

k

]
j
− 2j(n+1)+l.

We deal separately with each summand. Since the second summand is straightforward, we
deal with it first.

Second summand.
By (1.3), the rows of M are permutations of the binomial coefficients with

(
j
0

)
and

(
j
j

)
added

together. Hence, by Proposition 1.2(a),

2j(n+1)+l =

j∑

p=0

(
j

p

)
2jn+l.

First summand. It suffices to prove
[
j(n+ 1) + l

k

]

j

= Mk,∗〈
[
jn

q

]
: 0 ≤ q ≤ j − 1〉, 0 ≤ k ≤ j − 1. (1.7)

By (1.3) and the identity
(
j
x

)
=
(

j
j−x
)
, we have

Mk,∗(q) =





(
j

k−q
)
, for 0 ≤ q ≤ k − 1,(

j
0

)
+
(
j
j

)
, for q = k( j

j−(q−k)
)
, for k + 1 ≤ q ≤ j − 1.

(1.8)
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Equation (1.1) shows that jump-sums are sums of binomial coefficients and hence they
inherit the recursions satisfied by these binomial coefficients. Consequently, by (1.5),

[
j(n+ 1) + l

k

]

j

=
∑

0≤q≤j
p+q≡k (j)

(
j

p

)[
jn+ l

q

]

j

=
∑

0≤q≤k−1
p+q≡k (j)

(
j

p

)[
jn+ l

q

]

j

+
∑

q=k
p+q≡k (j)

(
j

p

)[
jn+ l

q

]

j

+
∑

k+1≤q≤j−1
p+q≡k (j)

(
j

p

)[
jn+ l

q

]

j

.

(1.9)

Using (1.9), we can prove (1.7) by showing that for the 3 cases in (1.8) corresponding to the
three summands on the right hand side of (1.9) we have that the sum of q with the bottom
argument of the binomial coefficient is congruent to k modulo j. But for the top case we clearly
have k − q + q = k, for the middle case we trivially have k + 0 = k + j ≡ k (j), and for the
bottom case we similarly have j − (q − k) + q ≡ k (j). This completes the proof of (1.7) and
hence of (1.6). �

A similar proof, exploiting the fact that by (1.1) the jump-sum function inherits the recur-
sions satisfied by the Pascal Triangle, yields the following proposition.

Proposition 1.3. For any positive integers j, n and any non-negative integers l, k, 0 ≤ l, k ≤
j − 1, [

jn+ l + 1

k

]

j

=

[
jn+ l

k

]

j

+

[
jn+ l

k − 1

]

j

, (1.10)

from which we derive

j

[
jn+ l + 1

k

]

j

− 2jn+l+1 =

(
j

[
jn+ l

k

]

j

− 2jn+l

)
+

(
j

[
jn+ l

k − 1

]

j

− 2jn+l

)
. (1.11)

From (1.7), we directly have

M〈
[
jn

k

]

j

: 0 ≤ k ≤ j − 1〉 = 〈
[
j(n+ 1)

k

]

j

: 0 ≤ k ≤ j − 1〉. (1.12)

Tables 1 and 2 illustrate (1.10) and (1.11) respectively. Note that by (1.1), when applying
the Pascal recursions of (1.10) and (1.11), k is interpreted modulo j so that -1 is interpreted
as j − 1.

Matrices are an established technique to derive recursions [8]. Equation (1.4) immediately
gives us recursions satisfied by {Gn}n≥1, since by letting p = pj be the characteristic polyno-
mial of Mj , we have p(M) = 0, and therefore p(M)Gn = 0, for all n ≥ 1. Consequently, p(X)
is the associated polynomial of a recursion satisfied by the vector sequence {Gn}n≥1.

However, the degree of p(X) is j while G in fact satisfies a recursion of order b j−12 c. One
approach to lowering the degree of p is to modify the Cayley-Hamilton polynomial by writing
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p′(X) =
∏

(X − ri), where the ri are the distinct eigenvalues of p. This modified Cayley-
Hamilton polynomial, under appropriate conditions (such as diagonalizability), also satisfies
p′(M) = 0 [9] and hence p′(M)Gn = 0, for all n ≥ 1. However, this too is not sufficient, since

the degree of p′ is greater (by 1 for odd j and by 2 for even j) than b j−12 c. We must therefore
extend the Cayley-Hamilton theory by studying polynomials, whose zeroes are a partial set of
eigenvalues, evaluated at the underlying matrix.

This motivates the following outline of the rest of the paper. In Section 2, we present
prerequisites summarizing important facts about circulants and values of polynomials whose
roots are eigenvalues evaluated on the underlying matrices (Cayley-Hamilton theory). We
also construct a modified Cayley-Hamilton polynomial, q. In Section 3, we show that although

q(M) 6= 0, nevertheless, q(M)G
(j,l)
n = 0, for all j, n, l. Consequently, q is the associated poly-

nomial of a recursion of order b j−12 c. In Section 4, we derive exact formulas for some of the
coefficients of q(X).

2. Prerequisites

We need prerequisites on circulants, Vandermonde determinants, and Cayley-Hamilton.
The following proposition and definitions summarize major aspects of circulants [4].

Proposition 2.1. Let ζj = e
2πi
j , be a j − th root of unity. Then the eigenvalues of any j × j

circulant matrix are given by the following.

λk =

j∑

p=0

(
j

k

)
ζpk, 0 ≤ k ≤ j − 1. (2.1)

Define the Vandermonde matrix Vj by
√
jVi,k = ζik, 0 ≤ i, k ≤ j − 1. (2.2)

Then V −1 = V and

Mj = VjDjV
−1
j , (2.3)

with D = Dj the diagonal matrix of eigenvalues of Mj, with

Dj(i, i) = λi, 0 ≤ i ≤ j − 1. (2.4)

.

Corollary 2.2. The eigenvalues of M are given by (2.1).

Proof. Proposition 2.1 applies to any j × j circulant and hence by (1.3) applies to M. �

The following proposition summarizes some basic facts about the eigenvalues, λk.

Proposition 2.3.

a) λk =
∑j

i=0

(
j
i

)
ζkij = (1 + ζkj )j .

b) λ0 = 2j .
c) λ j

2
= 0, if j is even.

d) λk = λj−k, k 6= 0.
e) λ0 has multiplicity 1; when j is even, λ j

2
has multiplicity 1; all other roots have multiplicity

2.
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Proof. (a) follows from (2.1) and the binomial expansion as shown. (b)-(d) follow from (a)
and Proposition 1.2. (e) follows from (a). For example, (1 + ζk)j = 2j requires ζk = 1 which
requires k = 0; hence, λ0 has multiplicity 1. �

We now present propositions about polynomials evaluated at matrices.

Proposition 2.4. Let B = HEH−1 be a matrix equation about m×m matrices. Let r(X) be
any polynomial. Then r(B) = Hr(E)H−1.

Proof. The proposition is clearly true for polynomials of the form r(x) = Xt and hence extends
to arbitrary polynomials by scalar multiplication and addition. �

Define the corner matrix C = C(x), by

Cx(i, j) =

{
x, if (i, j) = (0, 0),

0, if (i, j) 6= (0, 0).
(2.5)

The corner matrices are useful because of the following proposition.

Proposition 2.5. With D = Dj defined by (2.4) and λk defined by (2.1), define a polynomial
q = qj(x) by

q(X) =





j−1
2∏

k=1

(X − λk), if j is odd,

j
2
−1∏

k=1

(X − λk), if j is even.

(2.6)

Then

q(D) = C(q(λ0)). (2.7)

Comment 2.6. The zeroes of q(X) are the eigenvalues of M, without multiplicity, except for
λ0 = 2j and except for λ j

2
= 0, when j is even. We prove in Section 3 that even though

q(M) 6= 0, q(M)Gn = 0, n ≥ 1. Consequently, qj is the associated polynomial of a recursion

of order b j−12 c satisfied by the vector sequence {Gn}n≥1. We thus see that q(X) is the desired
modification of the Cayley-Hamilton polynomial. Therefore, prior to the proof of Proposition
2.4, it might be worthwhile to see some examples.

Example 2.7. Let j = 3. Then by (2.1), the three eigenvalues of M3 = Circ(2, 3, 3) are
λ0 = 23 = 8, λ1 = λ2 = 2 + 3ω + 3ω2, with ω a primitive cube root of unity. In this case
q3(X) = (X−λ1). But 1+ω+ω2 = 0 implying that λ1 = −1, and consequently q3(x) = X+1,
which is the associated polynomial of the recursion Gn +Gn−1 = 0, which as we saw in Section

1, is satisfied by the vector sequence {G(3,0)
n }n≥1.

Example 2.8. Let j = 4. Then by (2.1), the 4 eigenvalues of M4 = Circ(2, 4, 6, 4), are
λ0 = 16, λ1 = λ3 = 1 + 4i+ 6i2 + 4i3 + i4 = −4, and λ2 = 1 + 4i2 + 6i4 + 4i6 + i8 = 0. In this
case, q4(X) = (X − λ1) = X + 4. One can check that Gn + 4Gn−1 = 0.

One can write down the coefficients of qi, i = 3, 4, . . . , with one polynomial per row. This
gives rise to the jump sum recursion triangle [11], displayed in Table 5. The closed functional

forms 2j−1 − j for the second column and ( j2)
j
2 for right-most diagonal on rows where j is

even, will be proven in Section 4.
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j Coefficients of qj(X)

3 1, 1
4 1, 4
5 1, 11, -1
6 1, 26, -27
7 1, 57, -289, -1
8 1, 120, -2160, -256
9 1, 247, -13359, -13604, 1
10 1, 502, -73749, -383750, 3125

Table 5. Coefficients of qj(X), (2.6), in descending exponent order. The last
coefficient has degree 0. For example, q5(X) = X2 + 11X−1. q(X) is the asso-
ciated polynomial of a recursion on the vectors {Gn}n≥1, (1.2). For example,
if j = 5, Gn + 11Gn−1 −Gn−2 = 0, n ≥ 1.

Proof. We return to the proof of Proposition 2.4. We may think of D as arranged in blocks of
λi. By Proposition 2.3(e), λ0 has multiplicity 1 so the upper left block has dimensions 1× 1.
Consider the effect of the factor X − λi on M. (i) The upper left cell has λ0 − λi, (ii) the
block with λi down the diagonal has all zeroes, and (iii) other blocks have λk − λi down the
diagonal. Upon multiplication, we have zeroes in all blocks except the leftmost cell which has
(λ0 − λ1)(λ0 − λ2) . . . = q(λ0) as was to be shown.

�

We need one more concept. Besides I = Ij which is the j × j identity matrix we need a
matrix J = Jj defined as follows.

Jx,y = 1, 0 ≤ x, y ≤ j − 1. (2.8)

We have the following elementary results.

Proposition 2.9.
a)J2 = jJ.
b) JM = MJ = 2jJ.
c) For any positive integer n, JMn = MnJ = 2jnJ
d) With V ,C and q defined by (2.2),(2.5) and (2.6) and for any complex z0, we have q(V C(z0)V

−1) =
1
j q(z0)J.

Proof. (a) and (b) are clear. For example, to prove (b), all the rows of J are ones and hence
the entries of JM are dot products of a vector of ones with the binomial coefficients in some
permutation and therefore equal to 2j by Proposition 1.2(a). (c) Follows from (b) by a routine
induction. (d) follows from the fact that V and V = V −1 have a left column and top row of
all ones. The 1

j comes from the normalization factor in (2.2). �

.

Proposition 2.10. With M = Mj defined by (1.3) and q = qj defined by (2.6), we have

q(M) =
1

j
q(2j)J. (2.9)
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Proof.

q(M) =q(V DV −1), by (2.3),

=V q(D)V −1, by Proposition 2.4,

=V C(q(λ0))V
−1, by Proposition 2.5,

=V C(q(2j))V −1, by Proposition 2.3(b),

=
1

j
q(2j)J, by Proposition 2.9(d).

�

3. The Main Theorem

Theorem 3.1. For any integers n ≥ 1, j ≥ 3, and 0 ≤ l ≤ j − 1, and with q, M, and Gn

defined by (2.6), (1.3), and (1.2) respectively, we have

qj(Mj)G
(j,l)
n = 0, n ≥ 1. (3.1)

Corollary 3.2. For fixed j, l, qj(X) is the associated polynomial to a recursion satisfied by

the {G(j,l)
n }n≥1.

Proof. We first prove (3.1) assuming l = 0.
By (1.2), (3.1) is equivalent to

q(M)〈j
[
jn

k

]

j

: 0 ≤ k ≤ j − 1〉 = q(M)〈2jn : 0 ≤ k ≤ j − 1〉. (3.2)

But, by (2.8),

q(M)〈2jn : 0 ≤ k ≤ j − 1〉 = q(M)2jnJ∗,0, (3.3)

and similarly by (1.2) and (1.8) evaluated at k = 0,

G1 = 〈
(
j

0

)
+

(
j

j

)
,

(
j

1

)
,

(
j

2

)
, . . . ,

(
j

j − 1

)
〉 = M0,∗. (3.4)

Hence, by (1.12),

q(M)〈j
[
jn

k

]

j

: 0 ≤ k ≤ j − 1〉 = q(M)jMn−1M0,∗. (3.5)

In proving (3.2), a crucial step is replacement of the vectors in (3.3) and (3.5) by matrices.
In other words, by (3.2)-(3.5), to prove (3.1) it suffices to prove

q(M)jMn−1M = q(M)2jnJ. (3.6)

.
We prove (3.6) by showing the left and right sides equal. By (2.9) and Proposition 2.9(c),

we have

q(M)jMn = jq(M)Mn = j
1

j
q(2j)JMn = q(2j)2jnJ.

Similarly, by (2.9) and Proposition 2.9(a), we have

q(M)2jnJ = 2jn
1

j
q(2j)JJ = 2jn

1

j
q(2j)jJ = q(2j)2jnJ.

This completes the proof of (3.1) when l = 0.
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To prove (3.1) for l > 1, we use an inductive argument. We assume (3.1) is proven for the
case l and proceed to prove it for the case l + 1. The base case occurs when l = 0. But by
(1.11), if a recursion holds for l then it holds for l + 1.

This completes the proof of the Main Theorem. �

4. Coefficient Results

Certain patterns emerge for the second and last coefficient in the jump sum triangle dis-
played in Table 5. We formally state them as a corollary to the Main Theorem.

Corollary 4.1. With q defined by (2.6), let m = b j−12 c. Further, define ci by

q(X) = Xm + c1X
m−1 + c2X

m−2 + . . .+ cm. (4.1)

Then

c1 = 2j−1 − j. (4.2)

Furthermore, if j is even, then

|cm| =
(
j

2

) j
2

. (4.3)

.

Proof. Technically, by (2.6), to prove (4.2), we have to consider j even and odd separately. To
prove (4.2), we assume j odd, the proof for the even case being similar and hence omitted. To
prove (4.3), we assume j even. By (2.6), (4.1), (2.1) and Proposition 2.3(a), we have

−c1 =

j−1
2∑

k=1

λk =

j−1
2∑

k=1

j∑

p=0

(
j

p

)
ζpk; cm =

j
2
−1∏

p=1

λp =

j
2
−1∏

p=1

(1 + ζpj )j . (4.4)

Proof of (4.2). In (4.4) we may interchange the order of summation and carve out the 0
and j term separately.

−c1 =

j∑

p=0

(
j

p

) j−1
2∑

k=1

ζpk

=
∑

p=0

(
j

p

) j−1
2∑

k=1

ζpk +
∑

p=j

(
j

p

) j−1
2∑

k=1

ζpk +

j−1∑

p=1

(
j

p

) j−1
2∑

k=1

ζpk

= j − 1 +

j−1∑

p=1

(
j

p

) j−1
2∑

k=1

ζpk.

(4.5)

For the last summand in (4.5), since
(
j
k

)
=
(

j
j−k
)
, we have

j−1∑

p=1

(
j

p

) j−1
2∑

k=1

ζpk =

j−1
2∑

p=1

(
j

p

) j−1
2∑

k=1

(
ζpk + ζ−pk

)
. (4.6)
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p is fixed in the inner summand. Since we are looking at exponents of j-th roots of unity
we can evaluate these exponents modulo j. Let g equal the greatest common divisor of p and
j. Then, for each fixed p, and evaluating modulo j, we have

{0}
⋃
{kp : 1 ≤ k ≤ j − 1

2
}
⋃
{−kp : 1 ≤ k ≤ j − 1

2
} = {0, g, 2g, 3g, . . . , ( j

g
− 1)g}.

Hence,

ζ0 +

j−1
2∑

k=1

(
ζpk + ζ−pk

)
= 0. (4.7)

Applying (4.7) to (4.6) and using Proposition 1.2(c), we have

j−1∑

p=1

(
j

p

) j−1
2∑

k=1

ζpk =

j−1
2∑

p=1

(
j

p

)
(−1) = −(2j−1 − 1). (4.8)

Equation (4.2) now follows from (4.1), (4.5) and (4.8).
Proof of (4.3). Since j is assumed even, let

j = 2n. (4.9)

By (4.4), (4.9) and Proposition 2.3(d),

cm =
n−1∏

p=1

λp =
n−1∏

p=1

λ2n−p =
n−1∏

p=1

(1 + ζp+n
2n )j =

n−1∏

p=1

(1− ζp2n)j . (4.10)

Combining (4.4),(4.10) with Proposition 2.3(a) and using the identity (1 − ζp2n)(1 + ζp2n) =
(1− ζpn), we have

c2m =

n−1∏

p=1

λp

n−1∏

p=1

λ2n−p =

n−1∏

p=1

(1− ζp2n)j
n−1∏

p=1

(1 + ζp2n)j =

n−1∏

p=1

(1− ζpn)j . (4.11)

To evaluate the last product we use the formula for geometric series and the fundamental
theorem of algebra, to obtain

1 +X + . . . Xn−1 =
Xn − 1

X − 1
= (X − ζn)(X − ζ2n) . . . (X − ζn−1n ).

Letting X = 1 in the last equation, yields

n =

n−1∏

p=1

(1− ζpn). (4.12)

By (4.11), (4.9) and (4.12) we have c2m = n2n =

(
j
2

)j

, proving (4.1). �
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THE INFINITE FIBONACCI TREE

AND OTHER TREES GENERATED BY RULES

CLARK KIMBERLING AND PETER J. C. MOSES

Abstract. Suppose that I is a subset of a set U and that C is a collection of operations
f defined in U. Create a set S by these rules: every element of I is in S, and if x is in S,
then f(x) is in S for all f in C for which f(x) is defined. Then S “grows” in successive
generations. If I consists of a single number r then S can be regarded as a tree with root r.
We examine several examples, including these: (1) 1 ∈ S, and if x ∈ S then x + 1 ∈ S and
1/x ∈ S; (2) 1 ∈ S, and if x ∈ S then x + 1 ∈ S and 2x ∈ S; (3) 1 ∈ S, and if x ∈ S then
x+ 1 ∈ S, and if x 6= 0 then −1/x ∈ S; (4) 1 ∈ S, and if x ∈ S then x+ 1 ∈ S and

√
−1x ∈ S,

and if x 6= 0 then 1/x ∈ S. The first of these examples is the infinite Fibonacci tree, in which
every positive rational number occurs as a node.

1. Introduction

As early as 1619, Johannes Kepler created a tree of fractions using these rules: begin with
1/1, and thereafter, each node i/j has two descendants, (i+ j)/i and i/(i+ j). Kepler’s tree
[1, 3] can be recast by saying that 1 is present, and if x is present, then so are x + 1 and
1/(x+ 1). The tree starts with a single node which spawns 2 nodes (2 and 1/2), which spawn
4 nodes (3, 1/3, 3/2, 2/2), and so on, so that the nth generation has 2n nodes. Moreover,
every positive rational number occurs exactly once.

Now consider the set S defined by these rules: 1 ∈ S, and if x ∈ S, then x + 1 ∈ S and
1/x ∈ S. Deleting duplicates as they occur leaves the infinite Fibonacci tree, represented in
Figure 1 (in Section 7) and discussed in Example 3.4. Another tree with Fibonacci connections
is given by the rules 1 ∈ S, and if x ∈ S, then x + 1 ∈ S and 2x ∈ S, where duplicates are
deleted as they occur. This tree, which includes every positive integer, is represented by
Figure 2 and Corollary 2.2. A third tree, containing all the rational numbers, is given by the
rules 1 ∈ S, and if x ∈ S, then x + 1 ∈ S and −1/x ∈ S; a fourth tree, containing all the
Gaussian rational numbers is given by the rules 1 ∈ S, and if x ∈ S, then x+1 ∈ S and ix ∈ S
and if x ∈ S and x 6= 0, then 1/x ∈ S.

The purpose of this paper is to discuss those four trees and others. Certain notations
will be helpful; e.g., a, b, c, d, e, f, g, h, k,m, n, r, s, t, u, v will denote integers, although f and
g will also be used for functions. In particular, suppose that f1(x) = (ax + b)/(cx + d) and
f2(x) = (ex + f)/(gx + h). For any initial x0, we have a set S defined by the rules x0 ∈ S,
and if x ∈ S, then f1(x) ∈ S and f2(x) ∈ S, and we shall refer to S not only as a set, but also
as a tree determined by the rules, with deletion of duplicates as they occur. The set (and
tree) is partitioned into generations g(n) defined inductively by g(1) = {x0} and

g(n) = {f1(x) : x ∈ g(n− 1)} ∪ {f2(x) : x ∈ g(n− 1)}\ n−1∪
i=1

g(i). (1.1)

for n ≥ 2. Note that the generations are, by definition, pairwise disjoint. We are interested in
cases in which S includes every positive integer, or every positive rational number, etc. Also
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of interest are the sizes |g(n)| of the generations, recurrence relations for |g(n)| and related
sequences, and limits.

2. Multinacci Trees

Let S be the set defined by these rules: 1 ∈ S, and if x ∈ S, then x + 1 ∈ S and mx ∈ S.
The generations are given by g(1) = {1} and, following (1.1),

g(n) = {x+ 1 : x ∈ g(n− 1)} ∪ {mx : x ∈ g(n− 1)}\ n−1∪
i=1

g(i).

Theorem 2.1. If n ≥ m ≥ 2, then

|g(n)| = |g(n− 1)|+ · · ·+ |g(n−m)| . (2.1)

Proof: Each number i in {0, 1, . . . ,m− 1} is generated by x in g(n− i− 1). Summing on
i gives

|g(n)| ≤ |g(n− 1)|+ · · ·+ |g(n−m)| . (2.2)

In view of (2.2), to prove (2.1), we must show that the numbers mx+ i in g(n) are distinct.

As an induction hypothesis, suppose that the numbers in
n−1∪
i=1

g(i) are distinct. Suppose further

that two numbers u and v in g(n) are equal. Clearly they cannot both be of the form mx for
x in g(n − 1), nor both of the form y + 1 for y in g(n − 1), so, write u = mx = y + 1, where
{x, y} ⊆ g(n − 1). Then y = mx − 1 ∈ g(n − 1), whence y − 1 = mx − 2 ∈ g(n − 2), and
so on to y − (m − 1) = mx −m = m(x − 1) ∈ g(n −m), so that (y −m + 1)/m = x − 1 ∈
g(n−m− 1). Consequently, (y+ 1)/m = x ∈ g(n−m), contrary to the induction hypothesis,
since x ∈ g(n− 1) and m > 1. Therefore, (2.1) holds. �

Corollary 2.2. If m = 2, then |g(n)| = F (n), the nth Fibonacci number.

This corollary is simply a special case of Theorem 2.1, and the proof of the theorem shows
more: that g(n) consists of F (n− 1) even numbers and F (n− 2) odd numbers. See Figure
2 in Section 7.

Corollary 2.3. Let x(n, i) be the subset of g(n) consisting of numbers ≡ i mod m. Then
for each i, |x(n, i)| satisfies the recurrence |x(n, i)| = |x(n− 1, i)|+ · · ·+ |x(n−m, i)| .

A proof of this corollary is essentially given by the proof of Theorem 2.1.

3. More Fibonacci-Related Trees

Corollary 2.2 describes a tree of integers satisfying |g(n)| = F (n); in this section, we consider
other trees of fractions whose generations have sizes that are Fibonacci numbers. We begin
with a lemma.

Lemma 3.1. Suppose that m ≥ 1. The greatest k for which k2 + 4km is a square is
(m− 1)2.

Proof: If k = (m − 1)2, then k2 + 4km = (m − 1)4 + 4(m − 1)2m = (m2 − 1)2. Now
suppose that k > (m− 1)2. Then

(k + 2m− 2)2 < k2 + 4km < (k + 2m)2,

so that if k2 + 4km is a square, then k2 + 4km = (k + 2m − 1)2. However, this implies
2k = (2m− 1)2, contrary to the fact that 2m− 1 is odd. �
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Theorem 3.2. Suppose that k is a positive integer. Let S be the set defined by these
rules: 1 ∈ S, and if x ∈ S, then x + k ∈ S and k/x ∈ S. Partition S into generations g(n)
inductively: g(1) = {1}, and for n ≥ 2,

g(n) = {x+ k : x ∈ g(n− 1)} ∪ {k/x : x ∈ g(n− 1)}\ n−1∪
i=1

g(i).

If k = 1, then |g(n)| = F (n) for n ≥ 1, and if k > 1, then |g(n)| = F (n+ 1) for n ≥ 1.

Proof: First, suppose that k = 1. Clearly |g(n)| = F (n) for n ≤ 2. Assume for arbitrary
n ≥ 2 that g(n) consists of F (n − 1) numbers x > 1 together with F (n − 2) numbers x ≤ 1.
Each of the former spawns x+ 1 and 1/x in g(n+ 1), and each of the others spawns the single
number x+ 1 in g(n+ 1). These numbers are distinct because the equation x+ 1 = 1/x has
no integer solution. Therefore, g(n+ 1) consists of 2F (n−1) +F (n−2) = F (n+ 1) numbers.

Next, suppose that k > 1. Clearly g(n) = F (n) for n ≤ 2. Assume for arbitrary n ≥ 2
that g(n) consists of F (n) numbers x > k together with F (n− 1) numbers x ≤ k. Each of the
former spawns x + k and k/x in g(n + 1), and each of the others spawns the single number
x + k in g(n + 1). To confirm that these numbers are distinct, suppose that x + k = k/x
for some x. Then x2 + kx− k = 0, so that k2 + 4k must be a square, contrary to Lemma 1.
Therefore, g(n+ 1) consists of 2F (n) + F (n− 1) = F (n+ 2) numbers. �

Consider the rule “if x ∈ S, then x+ k ∈ S” in the statement of Theorem 3.2. If this rule
is changed to “if x ∈ S, then x+ 1 ∈ S” and the other rule remains “if x ∈ S, then k/x ∈ S”,
then the resulting tree, for k > 1, has generation sizes |g(n)| which form a sequence not closely
related to the Fibonacci sequence; indeed, the sequence appears to be not linearly recurrent.
Nevertheless, the tree S contains every positive rational number, in accord with the following
theorem.

Theorem 3.3. Suppose that k is a positive integer. Let S be the set defined by these
rules: 1 ∈ S, and if x ∈ S, then x+ 1 ∈ S and k/x ∈ S. Then S is the set of positive rational
numbers.

Proof: Clearly, every positive rational b/1 ∈ S. For arbitrary d ≥ 1, assume that if
u/v is a reduced positive rational with v ≤ d, then u/v ∈ S. Suppose that b/(d + 1) is a
reduced positive rational. As a first case, suppose that b ≤ d. By the induction hypothesis,
(d + 1)/b ∈ S and, by the same hypothesis, the number x = k(d + 1)/b ∈ S. Consequently,
k/x ∈ S; i.e., b/(d + 1) ∈ S. To cover all remaining cases, suppose that b > d + 1, so that
b = (d+ 1)q + r, where 0 ≤ r < d+ 1. Then b/(d+ 1) = q + r/(d+ 1). As in the first case,
r/(d+ 1) ∈ S. Now q applications of x→ x+ 1 show that b/(d+ 1) ∈ S. �

Example 3.4 Taking k = 1 in Theorem 3.2 and Theorem 3.3 gives the infinite Fibonacci
tree represented by Figure 1. In the following array, row n shows the numbers in generation
g(n) arranged in decreasing order:

1
2
3 1/2
4 3/2 1/3
5 5/2 4/3 2/3 1/4
6 7/2 7/3 5/3 5/4 3/4 2/5 1/5
7 9/2 10/3 8/3 9/4 7/4 7/5 6/5 4/5 3/5 3/7 2/7 1/6
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Note that the F (n) numbers in row n ≥ 3, taken in order, consist of F (n−1) numbers x+1
from x in row n− 1, followed by F (n− 2) numbers 1/(x+ 1) from x in row n− 2.

Not every tree having |g(n)| = F (n) for n ≥ 1 is given by Corollary 2.2 and Example 3.4,
as indicated by the following example.

Example 3.5. Let S be the tree defined by these rules: 1 ∈ S, and if x ∈ S, then 1/x ∈ S
and 1/(x+ 1) ∈ S. Inductively, for n ≥ 2, g(n) consists of F (n− 2) numbers ≥ 1, each of the
form x+ 1 for x in g(n− 2), together with F (n− 1) numbers < 1, each of the form 1/(x+ 1)
for x in g(n− 1). Hence, |g(n)| = F (n). It is easy to prove by induction that every fraction
u/v in S is reduced to lowest terms and that if v = 1, then u is the only integer in g(2u− 1).
Next, assume for arbitrary v ≥ 1 that every fraction a/b with b ≤ v is in S, and suppose that
u/(v + 1) is a fraction. If u < v + 1, then by the induction hypothesis, (v + 1)/u ∈ S, so
that the rule x → 1/x applies, and u/(v + 1) ∈ S. On the other hand, if u > v + 1, write
u = (v + 1)q + r with 0 ≤ r < v + 1, so that (v + 1)/r ∈ S. Then r/(v + 1) ∈ S. Let g(n) be
the generation containing r/(v + 1). Then u/(v + 1) = r/(v + 1) + q ∈ g(n+ 2q). Therefore,
S contains every positive rational number.

Example 3.6. We have already seen examples of trees in which all the positive rational
numbers occur. Consider next the tree S1 given by the rules 1 ∈ S1, and if x ∈ S1, then
x + 4 ∈ S1 and 12/x ∈ S1. It is easy to see that the numbers 2 and 3 are missing from S1.
Starting another tree, S3, with 3 and the same iterative membership requirements leads to a
tree that includes 1 (in g(5)) and hence contains S1 as a subtree, as in Figure 3. Regarding
S3, we observe that all positive integers not congruent to 2 mod 4 occur, that |g(n)| = F (n+1)
for n ≥ 1, and that all fractions, as generated, are in reduced form. Since 2 is missing, it is
natural to examine the tree S2 having 2 as root, where, again, if x ∈ S2, then x+ 4 ∈ S2 and
12/x ∈ S2, as in Figure 4. The method of proof for Example 3.5 can be used to prove that
S2 ∪ S3 includes every positive rational number.

Example 3.7. Let S be the tree generated by these rules: 1 ∈ S, and if x ∈ S, then
2x ∈ S and 1 − x ∈ S. To see that every integer h is in S, note first that this holds for
|h| ≤ 2, and assume for arbitrary h ≥ 2 that if |m| < h, then m ∈ S. Now suppose that m
satisfies |m| = h > 2. If m is even, write m = 2k, so that k = m/2, whence |k| < |m| = h, so
that k ∈ S, whence m ∈ S. On the other hand, if m = 2k + 1, then k = (m − 1)/2, whence
|k| < |m| = h, so that −k ∈ S; therefore −2k ∈ S, so that 1−(−2k), which is m, is in S. Thus,
S contains every integer. Moreover, |g(n)| = F (n) for n ≥ 3. Conjecture: every generation
g(n) contains ±F for some Fibonacci number F.

Example 3.8. Let S be the tree generated by these rules: 1 ∈ S, and if x ∈ S then
1 + 1/x ∈ S and 1/x ∈ S. An easy induction argument shows that in arbitrary g(n), for
n > 2, each node x greater than 1 begets a new node in (0, 1) and a new node in (1,∞), and
each node x less than 1 begets a single new node in (1,∞). Thus, g(n) consists of F (n − 1)
nodes in (1,∞) and F (n − 2) nodes in (0, 1), leading to |g(n)| = F (n) for n ≥ 1. To see
that every positive rational number is in S, the following lemma is useful: if x ∈ S and
x > 1 then x − 1 ∈ S; to prove this, write x = 1 + 1/u, u ∈ S; then x − 1 = 1/u, which is
in S. Clearly every b/1 is in S; suppose that b/d is an arbitrary fraction in reduced terms,
with d > 1. By the lemma, we may assume that b < d, so that by induction hypothesis,
d/b ∈ S. Consequently, b/d ∈ S. A final observation is that F (n+ 1)/F (n) ∈ g(n), and that
the numerator and denominator of this fraction are maximal for fractions in g(n).
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Example 3.9. Let S be the tree generated by these rules: 1 ∈ S, and if x ∈ S, then
x/(x+ 1) ∈ S and 1/x ∈ S. For every n, the set g(n) has F (n− 1) numbers < 1 and F (n− 1)
numbers ≥ 1, so that |g(n)| = F (n) for all n. An induction proof on the size of denominators
establishes that S contains every positive rational number. Another way to obtain this tree
is to apply the reciprocation mapping x→ 1/x to each node in the tree at Example 3.4.

4. All the Rational Numbers

Previous examples include trees which contain every positive integer, or every integer, or
every positive rational number. We turn now to trees which contain every rational number.

Example 4.1. Decree that 0 ∈ S and that if x ∈ S, then x + 1 ∈ S and if x + 1 6= 0
then −1/(x + 1) ∈ S. Then g(1) = {0} and for all other generations, g(n + 1) consists of
F (n) negative numbers and F (n) positive numbers, so that |g(n+ 1)| = 2F (n). A proof
that S contains every rational number depends on the method for Example 3.8: first, clearly
every positive integer is in S; then inductively, every 1/n and −n − 1 are in S, because
1/n = f1(f2(1/n)) and −n−1 = f2(f2(1/n)), where f1(x) = x+1 and f2(x) = −1/(x+1). The
rest of the proof follows by induction on the size of denominators, together with reciprocation
and the fact that if x ∈ S, then x − 1 = f2(f2(f1(f2(f2(x))))) ∈ S. Every negative integer is
a terminal node in S. The F (n) positive numbers in g(n + 1) consist of F (n − 1) numbers
x+ 1 from x in g(n), together with F (n− 2) numbers x/(x+ 1) from x in g(n− 1); the F (n)
negative numbers in g(n+ 1) are the negative reciprocals of the positive numbers in g(n+ 1).

Example 4.2. Let S be the tree generated by these rules: 1 ∈ S, and if x ∈ S then
x + 1 ∈ S, and if x ∈ S and x 6= 0, then −1/x ∈ S. A proof that S contains every rational
number is similar to the proof for Example 4.1; here, the corresponding lemma, that if x ∈
S then x − 1 ∈ S, stems from the fact that if f1(x) = x + 1 and f2(x) = −1/x, then
x − 1 = f2(f1(f2(f1(f2(x))))). For n ≥ 1, let S(n, i) be the set of nodes in g(n) that have i

offspring in
n−1∪
h=1

g(h); e.g., S(n, 0) counts terminal nodes, and S(n, 2) counts nodes that beget

2 new nodes. The sequence (S(n, i)) satisfies the recurrence a(n) = a(n − 1) + a(n − 3)
for n ≥ 7, so that the sequence (|g(n)|), starting with (1, 2, 3, 3, 5, 7, 10, 15, 22, . . . , satisfies
|g(n)| = |g(n− 1)|+ |g(n− 3)| for n ≥ 7.

Example 4.3. Here, we show another way to generate the set S of Example 4.2, but in a
more general manner. Suppose that m ≥ 3, and define hm(n) = {n} for n = 1, 2, . . . ,m and

hm(n) = {x+ 1 : x ∈ hm(n− 1)} ∪ {x/(x+ 1) : x ∈ hm(n−m)}, Sm =
∞∪
n=1

hm(n)

for n ≥ 4. The now familiar proof by “denominator induction” shows that Sm is the set of
positive rational numbers, and clearly, |hm(n)| = |hm(n− 1)| + |hm(n− 3)| for n ≥ m + 1,
with |hm(n)| = 1 for n ≤ m. To obtain the numbers in the set S of Example 4.2, let
g(1) = h3(1) = {1}, g(2) = {−1, 2}, g(3) = {−1/2, 0, 3}, and for n ≥ 4, let g(n) be the set of
numbers in h3(n) together with −1/x for each x in h3(n− 1). The array having g(n) as row
n, consisting of all the rational numbers, has these first six rows:

1
−1 2
−1/2 0 3
−1/3 1/2 4
−2 −1/4 2/3 3/2 5
−3/2 −2/3 −1/5 3/4 5/3 5/2 6
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Example 4.4. As a generalization of Example 4.2, suppose that m ≥ 2 and that “−1/x ∈
S” is replaced by “−m/x ∈ S”. Then S contains every rational number.

5. Limits

Suppose that S is given by these rules: 1 ∈ S, and if x ∈ S, then

ax+ b

cx+ d
∈ S and

ex+ f

gx+ h
∈ S.

All the previously mentioned trees are special cases of S; e.g., the infinite Fibonacci tree is
given by (a, b, c, d) = (1, 1, 0, 1) and (e, f, g, h) = (0, 1, 1, 0). When S includes all the positive
rationals, every convergent sequence of rationals can be identified with a sequence of nodes in
S. If the nodes lie in a single path, their limit is of interest. In order to study such paths,

call an edge of the form x → ax+ b

cx+ d
an up-edge, denoted by U, and an edge of the form

x→ ex+ f

gx+ h
a down-edge, denoted by D. An up-edge followed by a down-edge corresponds to

x→ ax+ b

cx+ d
→ (ae+ cf)x+ be+ df

(ag + ch)x+ bg + dh
=

(
α β
γ δ

)(
x
1

)
, (5.1)

where (
α β
γ δ

)
=

(
e f
g h

)(
a b
c d

)

and a down edge followed by an up-edge corresponds to

x→ ex+ f

gx+ h
→ (ae+ bg)x+ af + bh

(ce+ dg)x+ cf + dh
=

(
α′ β′

γ′ δ′

)(
x
1

)
, (5.2)

where (
α′ β′

γ′ δ′

)
=

(
a b
c d

)(
e f
g h

)
.

In (5.1) and (5.2), the matrix product notation has the usual meaning but also serves as a
useful way to represent the indicated fraction. An infinite path of the form UDUDUD . . .
is a zigzag path. Call nodes of the form (5.1) upper nodes and those of the form (5.2) lower
nodes. We shall see that under suitable conditions, the upper nodes converge and the lower
nodes converge. In order to state the conditions, let

∆ = (ae− dh+ cf − bg)2 + 4(be+ df)(ag + ch),

and deem S regular if ∆ 6= 0, ag + ch 6= 0 and ce + dg 6= 0, where a, b, c, d, e, f, g are all
nonnegative. A first theorem about convergence along paths in S follows.

Theorem 5.1: Suppose that path p is a zigzag graph in a regular tree S and that the
limits of the upper nodes and lower nodes on p exist. The limits are, respectively,

ae− dh+ cf − bg +
√

∆

2(ag + ch)
and

ae− dh− cf + bg +
√

∆

2(ce+ dg)
. (5.3)

Proof: We begin with upper nodes, for which the limit, if it exists, is given by iterating
the mapping (5.1). Let p be a zigzag path UDUDUD . . . . Then the node given by x(UD)n

has the form (
αn βn
γn δn

)(
x
1

)
=

(
α β
γ δ

)n(
x
1

)
, (5.4)
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so that (
αn+1 βn+1

γn+1 δn+1

)(
x
1

)
=

(
α β
γ δ

)(
α β
γ δ

)n(
x
1

)
,

or equivalently,

αn+1x+ βn+1

γn+1x+ δn+1
=

(ααnx+ βγn)x+ αβn + βδn
(γαnx+ δγn)x+ γβn + δδn

. (5.5)

Let u = lim
n→∞

αn/γn, v = lim
n→∞

βn/γn, w = lim
n→∞

δn/γn. Taking limits in (5.5) gives

ux+ v

x+ w
=

(αu+ β)x+ αv + βw

(γu+ δ)x+ γv + δw
.

Cross-multiplying, collecting coefficients of x2, x, 1, and regarding x as an indeterminate, we
find u2γ + u(δ − α)− β = 0 and v2γ + vw(δ − α)− βw2 = 0, so that

u = v/w = (α− δ ±
√

∆)/2γ. (5.6)

The hypothesis that a, b, c, d, e, f, g are all nonnegative forces u to be the greater of the two
possibilities, that is,

u =
v

w
=
α− δ +

√
(α− δ)2 + 4βγ

2γ
. (5.7)

The limit is then simply u, since, from uw = v, we have ux+uw = ux+v, so that (ux+v)/(x+
w) = u. Now substituting α = ea+ fc, β = eb+ fd, γ = ga+ hc, δ = gh+ hd into (5.7) gives
(5.3). A proof for lower nodes following the same steps finds a discriminant (α′−δ′)2+4β′γ′ =
(α− δ)2 + 4βγ. Of course, by (5.2), the second limit in (5.3) is (eu+ f)/(gu+ h). �

Limits for selected choices of a, b, c, d, e, f, g, h are shown below. The first two rows match
the infinite Fibonacci tree (Example 3.4) and the Kepler tree of fractions (Section 1).

a, b, c, d e, f, g, h (UD)∞ (DU)∞

1, 1, 0, 1 0, 1, 1, 0 (−1 +
√

5)/2 (1 +
√

5)/2

1, 1, 0, 1 0, 1, 1, 1 −1 +
√

2
√

2

1,−1, 0, 1 1, 0, 1, 5 (−3 +
√

5)/2 (−5 +
√

5)/2

1,−1, 0, 1 1, 0, 1, 6 −2 +
√

3 −3 +
√

3
2, 1, 0, 1 0, 1, 1, 0 1/2 2

3, 1, 0, 1 0, 1, 1, 0 (−1 +
√

13)/6 (1 +
√

13)/2

1, 2, 1, 1 0, 1, 1, 0 (−1 +
√

5)/2 (1 +
√

5)/2

1, 3, 1, 1 0, 1, 1, 0 −1 +
√

2 1 +
√

2

1, 3, 2, 1 0, 1, 1, 0 (−1 +
√

5)/2 (1 +
√

5)/2

2, 5, 3, 1 0, 1, 1, 0 (−1 +
√

3)/2 1 +
√

3

Limits other than those indicated by (UD)∞ and (DU)∞ are also of interest. Consider an
infinite path p of the form Uk1DUk2D · · ·UkmD · · · in the infinite Fibonacci tree. Clearly,
the nodes of p converge if and only if the sequence (ki) is bounded. Assuming (ki) bounded,
we now study limits along periodic paths—where a period is a finite branch of the form B =
Uk1DUk2D · · ·UkmD, and the periodic path is the infinite concatenation BBB · · · , denoted
by B∞.
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Theorem 5.2. Suppose that f(x) = (αx + β)/(γx + δ), where α 6= 0, γ 6= 0, and
(α−δ)2+4βγ > 0. Define f1(x) = f(x) and (fn(x) = f(fn−1(x)) for n ≥ 2. Then lim

n→∞
fn(x) =

(v − δ)/γ, where v is an eigenvalue of

(
α β
γ δ

)
.

Proof: Define (αn, βn, γn, δn) as in (5.4), so that (7) and (5.6) hold, which is to say that
the number u = lim

n→∞
fn(x) is one of the two numbers

u1 =
α− δ +

√
(α− δ)2 + 4βγ

2γ
, u2 =

α− δ −
√

(α− δ)2 + 4βγ

2γ
.

The eigenvalues of

(
α β
γ δ

)
are

v1 =
α+ δ +

√
(α− δ)2 − 4(αδ − βγ)

2γ
, v2 =

α+ δ −
√

(α− δ)2 − 4(αδ − βγ)

2γ
.

Thus, if u = u1, then u = (v1 − δ)/γ, and if u = u2, then u = (v2 − δ)/γ. �

Returning to any suitable choice of a, b, c, d, e, f, g, h, let U =

(
a b
c d

)
and D =

(
e f
g h

)
;

that is, f1(x) = (ax+ b)/(cx+ d) and f2(x) = (ex+ f)/(gx+ h). Then

fk11 f2f
k2
1 f2 · · · fkm1 f2(x) = (αx+ β)/(γx+ δ), (5.8)

where (
α β
γ δ

)
= B = Uk1DUk2D · · ·UkmD, (5.9)

Therefore, Theorem 5.2 applies, so that the limit along B∞, starting at any node x in S, is
(v − δ)/γ, where v is an eigenvalue of B. Next, we show the connection between such a limit
and its continued fraction as determined by B.

Corollary 5.3. Let S be the infinite Fibonacci tree given by (a, b, c, d, e, f, g, h) =
(1, 1, 0, 1, 0, 1, 1, 0). Let B∞ be the infinite path formed by concatenating the finite path
B = Uk1DUk2D · · ·UkmD, represented by the matrix in (5.9), and let u = lim

n→∞
fn(x). Then

u = [0, km, km−1, . . . , k1].

Proof: The assertion follows from the fact that left multiplication

(
α β
γ δ

)(
α β
γ δ

)n

matches attaching [km, km−1, . . . , k1] at the end of the continued fraction consisting of n copies
of [km, km−1, . . . , k1].

Example 5.4. In the infinite Fibonacci tree of Corollary 5.3, let B = UUDUUUDUD,
so that (k1, k2, k3) = (2, 3, 1). By Corollary 5.3, lim

n→∞
fn(x) = [0, 1, 3, 2] = (−3 +

√
37)/4.

6. Gaussian Fractions

In this section, the set (or tree) S is given by these rules: 1 ∈ S, and if x ∈ S, then
x + 1 ∈ S and ix ∈ S, and if x 6= 0, then 1/x ∈ S. We shall prove that S contains every
Gaussian rational number; that is, every number (a+ bi)/(c+ di), where c2 + d2 > 0.

Lemma 6.1. Suppose that b, c, d are integers. If any one of the numbers (b + ci)/d,
(bi− c)/d, (−b− ci)/d, (bi+ c)/d is in S, then the other three are also in S.
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Proof: Iterating the rule that if x ∈ S, then ix ∈ S shows that ix, −x, and −ix are in
S. �

Lemma 6.2. If x ∈ S, then x− 1 ∈ S.
Proof: If x ∈ S, then by Lemma 6.1, −x ∈ S. Consequently, −x + 1 ∈ S, so that

x− 1 ∈ S by Lemma 6.1. �
Lemma 6.3. If x ∈ S and a+ bi is a Gaussian integer, then x+ a+ bi ∈ S.
Proof: Suppose that x ∈ S and that a is a real integer. If a > 0, then x → x + 1 →

x + 2 → · · · → x + a are in S; if a < 0, then x → x − 1 → x − 2 → · · · → x − a are in
S, by Lemma 6.2. So, we have x + a in S for every integer a. Suppose now that b is an
integer. Then −i(x+ a) ∈ S, by Lemma 6.1, whence −ix− ia+ b ∈ S, by Lemma 6.3. Then
i(−ix− ia+ b) ∈ S, which is to say that x+ a+ bi ∈ S. �

Theorem 6.4. Every Gaussian rational number (a+ bi)/(c+ di) is in S.
Proof: 1 ∈ S, so that −1 ∈ S by Lemma 6.1. Then 0 ∈ S, by rule 1, whence a + bi ∈ S

for every Gaussian integer a + bi. Now suppose that w/z is an arbitrary Gaussian rational,
where w and z are Gaussian integers and |z| is least possible. If |z| = 1, then w is a Gaussian
integer, so that w/z ∈ S. Assume then, that w/z /∈ S. Then there is a least integer δ > 1 for
which there is a Gaussian rational w′/z′ such that |z′| = δ and w′/z′ /∈ S. We may and do
assume that w′ = w and z′ = z. By the division algorithm [2], there exist Gaussian integers q
and r such that w = qz + r, where |r| < |z| . Then w/z = q + r/z. If r/z ∈ S, then w/z ∈ S,
by Lemma 6.3, a contradiction. On the other hand, if r/z /∈ S, then z/r ∈ S since |r| < |z| .
But then r/z ∈ S, another contradiction. Therefore, w/z ∈ S. �

We conclude this section with a tree of Gaussian integers.
Example 6.5. Let S be the tree generated by these rules: 0 ∈ S, and if x ∈ S then

x + 1 ∈ S and ix ∈ S. Iterating the mapping x → x + 1 shows that every positive integer n
is in S. Then in, −n, and −in are in S, so that 0 = −1 + 1 ∈ S, and b′i+ 1, b′i+ 2, b′i+ 3, ...
are in S for every integer b′. For each of these numbers b′i + c, the number −b′i − c is in
S, so that, in conclusion, S includes every Gaussian integer a + bi. For n ≥ 1, let S(n, i) be

the set of nodes in g(n) that have i offspring in
n−1∪
h=1

g(h); e.g., S(n, 0) counts terminal nodes,

and S(n, 2) counts nodes that beget 2 new nodes. We conjecture that S(n, 0) = n − 5 for
n ≥ 5, that S(n, 1) = 2n − 7 for n ≥ 4, and that S(n, 2) = n − 1 for n ≥ 1, so that, if
the conjectures are true, then the sequence (g(n)), starting with 1, 1, 2, 4, 7, 11, 15, 19, 23, . . . ,
satisfies |g(n)| = 4n− 13 for n ≥ 5.

7. Figures
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Figure 1. x→ x+ 1, x→ 1/x; Example 3.4
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Figure 2. x→ x+ 1, x→ 2x; Theorem 2.1

8. Concluding Remarks

In many of the foregoing trees of rational numbers, the numbers in g(n) occur as “already
reduced” fractions This observation leads to the question of conditions on a, b, c, d under which
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Figure 3. x→ 1/x, x→ 1/(x+ 1); Example 3.5
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Figure 5. x→ x+ 4, x→ 12/x; from 2; Example 3.6
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Figure 6. x→ x+ 1, x→ −1/(x+ 1); Example 4.1
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the numbers in g(n) given by (1.1) are reduced fractions; i.e., for each x = u/v in g(n − 1),
the integers au + bv and cu + dv in the fraction (au + bv)/(cu + dv) are relatively prime. It
is easy to prove that one such condition (which holds for many of the trees considered in this
paper) is that ∣∣∣∣

a b
c d

∣∣∣∣ = ±1.

Examples in which the fractions are not automatically reduced are given by Theorem 3.3 with
k > 1. A number of the trees are represented in the Online Encyclopedia of Integer Sequences
[3]; for Kepler’s tree, see A020651, and for a list of others, see the Comments section at
A226080. We conclude with three representative Mathematica (version ≥ 7) programs which
may be useful for further research.

Program 1. All the positive rational numbers, generated as in Figure 1, Ex-
ample 3.4, and A226080

z=10;g[1]={1};g[2]={2};g[3]={3,1/2};

d[s_,t_]:=Part[s,Sort[Flatten[Map[Position[s,#]&,Complement[s,t]]]]];

n=3;While[n<=z,n++;g[n]=d[Riffle[g[n-1]+1,1/g[n-1]],g[n-2]]];

Table[g[n],{n,z}]

Program 2. All the rational numbers, generated as in Example 4.1, with a
ListPlot of the 20th generation

g[1]= {0};f1[x_]:=x+1;f2[x_]:=-1/(x+1);h[1]=g[1];

b[n_]:=b[n]=Union[f1[g[n-1]],f2[g[n-1]]];

h[n_]:=h[n]=Union[h[n-1],g[n-1]];

g[n_]:=g[n]=Complement[b[n],Intersection[b[n],h[n]]]

Table[g[n], {n,12}]

ListPlot[g[20]]

Program 3. All the Gaussian rationals, generated as in Theorem 6.4, with
positions of real integers

Off[Power::infy];x= {0};

Do[x=DeleteDuplicates[

Flatten[Transpose[{x,x+1,1/x,I*x}/.ComplexInfinity-> 0]]

], {6}];x

On[Power::infy];

t1=Flatten[Position[x, _?(IntegerQ[#] && NonNegative[#]&)]] (*A233694*)

t2=Flatten[Position[x, _?(IntegerQ[#] && Negative[#]&)]] (*A233695*)

Union[t1,t2] (*A233696*)
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TAKAO KOMATSU, ZUZANA MASÁKOVÁ, AND EDITA PELANTOVÁ

Abstract. Let Fn be the n-th Fibonacci number. In this paper, we give some explicit
expressions of

∑2r−3
l=0

(
2r−3

l

)∑
j1+···+jr=n−2l

j1,...,jr≥1

Fj1 · · ·Fjr as well as
∑

j1+···+jr=n
j1,...,jr≥1

Fj1 · · ·Fjr .

1. Introduction

It is known that the generating function f(x) of Fibonacci numbers Fn is given by

f(x) :=
x

1− x− x2 =
∞∑

n=0

Fnx
n .

Then f(x) satisfies the relation

f(x)2 =
x2

1 + x2
f ′(x) (1.1)

or

(1 + x2)f(x)2 = x2f ′(x) . (1.2)

The left-hand side of (1.2) is

(1 + x2)

( ∞∑

n=0

Fnx
n

)( ∞∑

m=0

Fmx
m

)

= (1 + x2)
∞∑

n=0

n∑

j=0

FjFn−jxn

=

∞∑

n=0

n∑

j=0

FjFn−jxn +

∞∑

n=2

n−2∑

j=0

FjFn−j−2xn .

The right-hand side of (1.2) is

x2

( ∞∑

n=1

nFnx
n−1
)

=

∞∑

n=1

(n− 1)Fn−1xn .
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Comparing the coefficients of both sides, we get

(n− 1)Fn−1 =
n∑

j=0

FjFn−j +
n−2∑

j=0

FjFn−j−2

=

n−1∑

j=1

FjFn−j +

n−2∑

j=0

FjFn−j−2

=
n−1∑

j=1

(FjFn−j + Fj−1Fn−j−1) .

Hence, we get the identity which can be identical with Fm+n = Fm+1Fn +FmFn−1 (see e.g.
[1, Lemma 5].

Theorem 1.1. For n ≥ 1, we have

nFn =

n∑

j=1

(FjFn−j+1 + Fj−1Fn−j) .

Differentiating both sides of (1.1) by x and dividing them by 2, we obtain

f(x)f ′(x) =
x

(1 + x2)2
f ′(x) +

x2

2(1 + x2)
f ′′(x) . (1.3)

By (1.1) and (1.3), we get

f(x)3 =
x2

1 + x2
f(x)f ′(x)

=
x3

(1 + x2)3
f ′(x) +

x4

2(1 + x2)2
f ′′(x) (1.4)

or

(1 + x2)3f(x)3 = x3f ′(x) +
1

2
x4(1 + x2)f ′′(x) . (1.5)

The left-hand side of (1.5) is

(1 + 3x2 + 3x4 + x6)
∞∑

n=0

∑

j1+j2+j3=n
j1,j2,j3≥0

Fj1Fj2Fj3x
n

=
3∑

l=0

∞∑

n=2l

(
l

3

) ∑

j1+j2+j3=n−2l
j1,j2,j3≥1

Fj1Fj2Fj3x
n .

The right-hand side of (1.5) is

x3
∞∑

n=1

nFnx
n−1 +

x4

2

∞∑

n=2

n(n− 1)Fnx
n−2 +

x6

2

∞∑

n=2

n(n− 1)Fnx
n−2

=

∞∑

n=2

(n− 1)(n− 2)

2
Fn−2xn +

∞∑

n=4

(n− 4)(n− 5)

2
Fn−4xn .

Comparing the coefficients of both sides, we get the following.
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Theorem 1.2. For n ≥ 6, we have

3∑

l=0

(
3

l

) ∑

j1+j2+j3=n−2l
j1,j2,j3≥1

Fj1Fj2Fj3 =

(
n− 1

2

)
Fn−2 +

(
n− 4

2

)
Fn−4 .

In this paper, we give some explicit expressions of
∑2r−3

l=0

(
2r−3
l

)∑
j1+···+jr=n−2l

j1,...,jr≥1
Fj1 · · ·Fjr as

well as
∑

j1+···+jr=n
j1,...,jr≥1

Fj1 · · ·Fjr .

2. Main result

In general, we can state the following.

Theorem 2.1. Let r ≥ 2. Then for n ≥ 3r − 5, we have

2r−3∑

l=0

(
2r − 3

l

) ∑

j1+···+jr=n−2l
j1,...,jr≥1

Fj1 · · ·Fjr

=
r−1∑

k=1

n− 2k − r + 3

r − 1

(
n− 2k + 1

r − k − 1

)(
n− k − 2r + 3

k − 1

)
Fn−2k−r+3 .

Lemma 2.2. For r ≥ 2, we have

f(x)r =
x2r−2f (r−1)(x)

(r − 1)!(1 + x2)r−1
+

r−2∑

k=1

∑k−1
j=0(−1)j

(
k
j

)(
r−2
k−j−1

)
x2r−k−2+2j

k(r − k − 2)!(1 + x2)r+k−1
f (r−k−1)(x) . (2.1)
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Proof. The proof is done by induction. It is trivial to see that the identity holds for r = 2.
Suppose that the identity holds for some r. Differentiating both sides by x, we obtain

rf(x)r−1f ′(x)

=
x2r−2f (r)(x)

(r − 1)!(1 + x2)r−1
+

(2r − 2)x2r−3f (r−1)(x)

(r − 1)!(1 + x2)r

+
r−2∑

k=1

∑k−1
j=0(−1)j

(
k
j

)(
r−2
k−j−1

)
x2r−k−2+2j

k(r − k − 2)!(1 + x2)r+k−1
f (r−k)(x)

+
r−2∑

k=1

∑k−1
j=0(−1)j(2r − k − 2 + 2j)

(
k
j

)(
r−2
k−j−1

)
x2r−k−3+2j

k(r − k − 2)!(1 + x2)r+k
f (r−k−1)(x)

−
r−2∑

k=1

∑k−1
j=0(−1)j(3k − 2j)

(
k
j

)(
r−2
k−j−1

)
x2r−k−1+2j

k(r − k − 2)!(1 + x2)r+k
f (r−k−1)(x)

=
x2r−2f (r)(x)

(r − 1)!(1 + x2)r−1
+

2x2r−3f (r−1)(x)

(r − 2)!(1 + x2)r

+
r−2∑

k=1

∑k−1
j=0(−1)j

(
k
j

)(
r−2
k−j−1

)
x2r−k−2+2j

k(r − k − 2)!(1 + x2)r+k−1
f (r−k)(x)

+
r−1∑

k=2

∑k−2
j=0(−1)j(2r − k − 1 + 2j)

(
k−1
j

)(
r−2
k−j−2

)
x2r−k−2+2j

(k − 1)(r − k − 1)!(1 + x2)r+k−1
f (r−k)(x)

+
r−1∑

k=2

∑k−1
j=1(−1)j(3k − 2j − 1)

(
k−1
j−1
)(

r−2
k−j−1

)
x2r−k−2+2j

(k − 1)(r − k − 1)!(1 + x2)r+k−1
f (r−k)(x)

=
x2r−2f (r)(x)

(r − 1)!(1 + x2)r−1
+ r

r−1∑

k=1

∑k−1
j=0(−1)j

(
k
j

)(
r−1
k−j−1

)
x2r−k−2+2j

k(r − k − 1)!(1 + x2)r+k−1
f (r−k)(x) .

Here, we used the relations

2

(r − 2)!
+

1

(r − 3)!
=

r

(r − 2)!
(k = 1)

and

r − k − 1

k

(
k

j

)(
r − 2

k − j − 1

)
+

2r − k − 1 + 2j

k − 1

(
k − 1

j

)(
r − 2

k − j − 2

)

+
3k − 2j − 1

k − 1

(
k − 1

j − 1

)(
r − 2

k − j − 1

)

=
r

k

(
k

j

)(
r − 1

k − j − 1

)
(k ≥ 2) .
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Together with (1.1), we get

f(x)r+1 =
x2

1 + x2
f(x)r−1f ′(x)

=
x2

1 + x2

(
x2r−2f (r)(x)

r!(1 + x2)r−1
+

r−1∑

k=1

∑k−1
j=0(−1)j

(
k
j

)(
r−1
k−j−1

)
x2r−k−2+2j

k(r − k − 1)!(1 + x2)r+k−1
f (r−k)(x)

)

=
x2rf (r)(x)

r!(1 + x2)r
+

r−1∑

k=1

∑k−1
j=0(−1)j

(
k
j

)(
r−1
k−j−1

)
x2r−k+2j

k(r − k − 1)!(1 + x2)r+k
f (r−k)(x) .

�

Proof of Theorem 2.1. By Lemma 2.2 we get

(1 + x2)2r−3f(x)r = (1 + x2)r−2
x2r−2f (r−1)(x)

(r − 1)!

+

r−2∑

k=1

(1 + x2)r−k−2
∑k−1

j=0(−1)j
(
k
j

)(
r−2
k−j−1

)
x2r−k−2+2j

k(r − k − 2)!
f (r−k−1)(x) . (2.2)

Since F0 = 0, the left-hand side of (2.2) is equal to

(1 + x2)2r−3
∞∑

n=0

∑

j1+···+jr=n
j1,...,jr≥0

Fj1 · · ·Fjrxn

=
2r−3∑

l=0

∞∑

n=2l

(
2r − 3

l

) ∑

j1+···+jr=n−2l
j1,...,jr≥1

Fj1 · · ·Fjrxn .

On the other hand,

(1 + x2)r−2
x2r−2f (r−1)(x)

(r − 1)!

=

r−2∑

i=0

(
r − 2

i

)
x2i

x2r−2

(r − 1)!

∞∑

n=r−1

n!

(n− r + 1)!
Fnx

n−r+1

=
1

(r − 1)!

r−2∑

i=0

(
r − 2

i

) ∞∑

n=2r+2i−2

(n− r − 2i+ 1)!

(n− 2r − 2i+ 2)!
Fn−r−2i+1x

n .

For i = r − 2, we have

1

(r − 1)!

∑

n=4r−6

(n− 3r + 5)!

(n− 4r + 6)!
Fn−3r+5x

n

=
∑

n=3r−5

n− 3r + 5

r − 1

(
n− 3r + 4

r − 2

)
Fn−3r+5x

n ,

which yields the term for k = r − 1 on the right-hand side of the identity in Theorem 2.1.
Notice that (

γ′

γ

)
= 0 (γ′ < γ) .
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The second term of the right-hand side of (2.2) is

r−2∑

k=1

r−k−2∑

i=0

(
r − k − 2

i

)
x2i

1

k(r − k − 2)!

k−1∑

j=0

(−1)j
(
k

j

)(
r − 2

k − j − 1

)
x2r−k−2+2j

×
∞∑

n=r−k−1

n!

(n− r + k + 1)!
Fnx

n−r+k+1

=

r−3∑

i=0

r−i−3∑

j=0

r−i−3∑

k=j

1

(k + 1)(r − k − 3)!(n− 2r + k − 2i− 2j + 3)!

(
r − k − 3

i

)

×
(
k + 1

j

)(
r − 2

k − j

) ∑

n=2r+2i+2j−k−3
(−1)j(n− r − 2i− 2j + 1)!Fn−r−2i−2j+1x

n

=

r−3∑

i=0

r−2∑

κ=i+1

r−i−3∑

k=κ−i−1

1

(k + 1)(r − k − 3)!(n− 2r + k − 2κ+ 5)!

(
r − k − 3

i

)

×
(

k + 1

κ− i− 1

)(
r − 2

k − κ+ i+ 1

) ∑

n=2r+2κ−k−5
(−1)κ−i−1(n− r − 2κ+ 3)!Fn−r−2κ+3x

n .

Together with the first term of the right-hand side of (2.2) we can prove that

1

(r − 1)!

(
r − 2

k − 1

)
(n− r − 2k + 3)!

(n− 2r − 2k + 4)!

+
k−1∑

i=0

r−i−3∑

l=k−i−1

1

(l + 1)(r − l − 3)!(n− 2r + l − 2k + 5)!

×
(
r − l − 3

i

)(
l + 1

k − i− 1

)(
r − 2

l − k + i+ 1

)
(−1)k−i−1(n− r − 2k + 3)!

=
n− 2k − r + 3

r − 1

(
n− 2k + 1

r − k − 1

)(
n− k − 2r + 3

k − 1

)
. (2.3)

Then the proof is done. �

3. Examples 1

When r = 2 and r = 3, Theorem 2.1 is reduced to Theorem 1.1 and Theorem 1.2, respec-
tively. When r = 3, 4, 5 in Theorem 2.1, we get the following Corollaries as examples.

Theorem 3.1. For n ≥ 7, we have

5∑

l=0

(
5

l

) ∑

j1+j2+j3+j4=n−2l
j1,j2,j3,j4≥1

Fj1Fj2Fj3Fj4

=

(
n− 1

3

)
Fn−3 +

(n− 3)(n− 5)(n− 7)

3
Fn−5 +

(
n− 7

3

)
Fn−7 .
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Theorem 3.2. For n ≥ 10, we have

7∑

l=0

(
7

l

) ∑

j1+j2+j3+j4+j5=n−2l
j1,j2,j3,j4,j5≥1

Fj1Fj2Fj3Fj4Fj5

=

(
n− 1

4

)
Fn−4 +

(n− 3)(n− 4)(n− 6)(n− 9)

8
Fn−6

+
(n− 5)(n− 8)(n− 10)(n− 11)

8
Fn−6 +

(
n− 10

4

)
Fn−10 .

Theorem 3.3. For n ≥ 13, we have

9∑

l=0

(
9

l

) ∑

j1+···+j6=n−2l
j1,...,j6≥1

Fj1 · · ·Fj6

=

(
n− 1

5

)
Fn−5 +

(n− 3)(n− 4)(n− 5)(n− 7)(n− 11)

30
Fn−7

+
(n− 5)(n− 6)(n− 9)(n− 12)(n− 13)

20
Fn−9

+
(n− 7)(n− 11)(n− 13)(n− 14)(n− 15)

30
Fn−11 +

(
n− 13

5

)
Fn−13 .

4. Another result

In this section, we shall give an expression of
∑

j1+···+jr
j1,...,jr≥1

Fj1 · · ·Fjr .

The left-hand side of (1.1) is
( ∞∑

n=0

Fnx
n

)( ∞∑

m=0

Fmx
m

)
=
∞∑

n=0

n∑

j=0

FjFn−jxn .

The right-hand side of (1.1) is

x2



∞∑

j=0

(−1)jx2j



( ∞∑

m=1

mFmx
m−1

)
= x2



∞∑

j=0

αjx
j



( ∞∑

m=0

(m+ 1)Fm+1x
m

)

= x2
∞∑

n=0

n∑

m=0

αn−m(m+ 1)Fm+1x
n

=

∞∑

n=0

n−2∑

m=0

αn−m−2(m+ 1)Fm+1x
n ,

where αj = cos jπ2 (j ≥ 0), satisfying {αj}j≥0 = 1, 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, 0, . . . . Compar-
ing the coefficients of both sides, we have the following.
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Theorem 4.1. For n ≥ 2, we have

n∑

j=0

FjFn−j =
n−1∑

m=1

mFm cos
(n−m− 1)π

2
. (4.1)

In general, we have the following.

Theorem 4.2. For n ≥ r ≥ 2, we have

∑

j1+···+jr=n
j1,...,jr≥1

Fj1 · · ·Fjr

=
Cr−2

(2r − 4)!22r−4

n−r+1∑

m=1

(n+m+ r − 3)!!(n−m+ r − 3)!!

(n+m− r + 1)!!(n−m− r + 1)!!
mFm cos

(n−m− r + 1)π

2
,

where Cn is the n-th Catalan number ([4, A000108]) given by

Cn =
1

n+ 1

(
2n

n

)
(n ≥ 0)

and n!! = n(n− 2)(n− 4) · · · 1 if n is odd; n!! = n(n− 2)(n− 4) · · · 2 if n is even.

Proof. The left-hand side of (2.1) in Lemma 2.2 is equal to

∞∑

n=0

∑

j1+···+jr=n
j1,...,jr≥1

Fj1 · · ·Fjrxn .
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The first term on the right-hand side of (2.1) in Lemma 2.2 is equal to

x2r−2f (r−1)(x)

(r − 1)!(1 + x2)r−1

=
x2r−2

(r − 1)!

∞∑

i=0

(
i+ r − 2

r − 2

)
x2i

∞∑

m=0

(m+ r − 1)!

m!
Fm+r−1xm

=
x2r−2

(r − 1)!

∞∑

k=0

1

(r − 2)!2r−2
(k + 2r − 4)!!

k!!
cos

kπ

2
xk

∞∑

m=0

(m+ r − 1)!

m!
Fm+r−1xm

=
x2r−2

(r − 1)!

∞∑

n=0

n∑

m=0

1

(r − 2)!2r−2
(n−m+ 2r − 4)!!

(n−m)!!

× cos
(n−m)π

2

(m+ r − 1)!

m!
Fm+r−1xn

=
1

(r − 1)!(r − 2)!2r−2

∞∑

n=2r−2

n−2r+2∑

m=0

(n−m− 2)!!

(n−m− 2r + 2)!!

× cos
(n−m− 2r + 2)π

2

(m+ r − 1)!

m!
Fm+r−1xn

=
1

(r − 1)!(r − 2)!2r−2

∞∑

n=2r−2

n−r+1∑

m=r−1

(n−m+ r − 3)!!

(n−m− r + 1)!!

× cos
(n−m− r + 1)π

2

m!

(m− r + 1)!
Fmx

n .

Concerning the second term, we have

∑k−1
j=0(−1)j

(
k
j

)(
r−2
k−j−1

)
x2r−k−2+2j

(1 + x2)r+k−1
f (r−k−1)(x)

=
k−1∑

j=0

(−1)j
(
k

j

)(
r − 2

k − j − 1

)
x2r−k−2+2j

∞∑

i=0

(−1)i
(
i+ r + k − 2

r + k − 2

)
x2i

×
∞∑

m=0

(m+ r − k − 1)!

m!
Fm+r−k−1x

m

=

k−1∑

j=0

(−1)j
(
k

j

)(
r − 2

k − j − 1

)
x2r−k−2+2j

∞∑

l=0

1

(r + k − 2)!2r+k−2
(l + 2r + 2k − 4)!!

l!!

× cos
lπ

2
xk

∞∑

m=0

(m+ r − k − 1)!

m!
Fm+r−k−1x

m
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=
k−1∑

j=0

(−1)j
(
k

j

)(
r − 2

k − j − 1

)
x2r−k−2+2j

∞∑

n=0

n∑

m=0

1

(r + k − 2)!2r+k−2
(n−m+ 2r + 2k − 4)!!

(n−m)!!

× cos
(n−m)π

2

(m+ r − k − 1)!

m!
Fm+r−k−1x

n

=
1

(r + k − 2)!2r+k−2

k−1∑

j=0

(−1)j
(
k

j

)(
r − 2

k − j − 1

) ∞∑

n=2r−k−2+2j

n−2r+k+2−2j∑

m=0

(n−m+ 3k − 2− 2j)!!

(n−m− 2r + k + 2− 2j)!!
cos

(n−m− 2r + k + 2− 2j)π

2

(m+ r − k − 1)!

m!
Fm+r−k−1x

n .

Since

(n−m+ r + 2k − 3− 2j)!!

(n−m− r + k + 3− 2j)!!
= 0 if m = n− 2r + k + 2− 2j (j = 1, 2, . . . , k − 2)

and

cos
(n−m− r + 1− 2j)π

2
= 0 if m = n− 2r + k + 1− 2j (j = 0, 1, . . . , k − 1) ,

this is equal to

1

(r + k − 2)!2r+k−2

k−1∑

j=0

(−1)j
(
k

j

)(
r − 2

k − j − 1

) ∞∑

n=2r−k−2

n−2r+k+2∑

m=0

× (n−m+ 3k − 2− 2j)!!

(n−m− 2r + k + 2− 2j)!!
cos

(n−m− 2r + k + 2− 2j)π

2

(m+ r − k − 1)!

m!
Fm+r−k−1x

n

=
1

(r + k − 2)!2r+k−2

∞∑

n=2r−k−2

n−r+1∑

m=r−k−1

k−1∑

j=0

(−1)j
(
k

j

)(
r − 2

k − j − 1

)

× (n−m+ r + 2k − 3− 2j)!!

(n−m− r + k + 3− 2j)!!
cos

(n−m− r + 1− 2j)π

2

m!

(m− r + k + 1)!
Fmx

n .

Since cos(α+ π) = − cosα, this is also equal to

1

(r + k − 2)!2r+k−2

∞∑

n=2r−k−2

n−r+1∑

m=r−k−1

k−1∑

j=0

(
k

j

)(
r − 2

k − j − 1

)
(n−m+ r + 2k − 3− 2j)!!

(n−m− r + k + 3− 2j)!!

× cos
(n−m− r + 1)π

2

m!

(m− r + k + 1)!
Fmx

n

=
1

(r + k − 2)!2r+k−2

∞∑

n=2r−k−2

n−r+1∑

m=r−k−1

(n−m+ r − 1)!!

(n−m− r + 1)!!

(
r + k − 2

k − 1

)
(n−m+ r − 3)!!

(n−m+ r − 2k − 1)!!

× cos
(n−m− r + 1)π

2

m!

(m− r + k + 1)!
Fmx

n .
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Therefore, the right-hand side of the relation in Theorem 4.2 is

1

(r − 1)!(r − 2)!2r−2

∞∑

n=2r−2

n−r+1∑

m=r−1

(n−m+ r − 3)!!

(n−m− r + 1)!!
cos

(n−m− r + 1)π

2

m!

(m− r + 1)!
Fmx

n

+
r−1∑

k=1

1

k(r − k − 2)!

1

(r + k − 2)!2r+k−2

∞∑

n=2r−k−2
n−r+1∑

m=r−k−1

(n−m+ r − 1)!!

(n−m− r + 1)!!

(
r + k − 2

k − 1

)
(n−m+ r − 3)!!

(n−m+ r − 2k − 1)!!

× cos
(n−m− r + 1)π

2

m!

(m− r + k + 1)!
Fmx

n

=
1

(r − 1)!(r − 2)!2r−2

∞∑

n=2r−2

n−r+1∑

m=r−1

(n−m+ r − 3)!!

(n−m− r + 1)!!
cos

(n−m− r + 1)π

2

m!

(m− r + 1)!
Fmx

n

+

∞∑

n=r−1

1

(r − 1)!2r−2

r−2∑

m=1

r−2∑

k=r−m−1

1

k!(r − k − 2)!2k
(n−m+ r − 1)!!

(n−m− r + 1)!!

× (n−m+ r − 3)!!

(n−m+ r − 2k − 1)!!
cos

(n−m− r + 1)π

2

m!

(m− r + k + 1)!
Fmx

n

+
∞∑

n=r−1

1

(r − 1)!2r−2

n−r+1∑

m=r−1

r−2∑

k=1

1

k!(r − k − 2)!2k
(n−m+ r − 1)!!

(n−m− r + 1)!!

× (n−m+ r − 3)!!

(n−m+ r − 2k − 1)!!
cos

(n−m− r + 1)π

2

m!

(m− r + k + 1)!
Fmx

n .

Since for 1 ≤ m ≤ r − 2 we have

1

(r − 1)!2r−2

r−2∑

k=r−m−1

1

k!(r − k − 2)!2k
(n−m+ r − 1)!!

(n−m− r + 1)!!

× (n−m+ r − 3)!!

(n−m+ r − 2k − 1)!!

m!

(m− r + k + 1)!

=
1

(r − 1)!(r − 2)!22r−4
(n+m+ r − 3)!!

(n+m− r + 1)!!

(n−m+ r − 3)!!

(n−m− r + 1)!!
m

and for r − 1 ≤ m ≤ n− r + 1 we have

1

(r − 1)!(r − 2)!2r−2
(n−m+ r − 3)!!

(n−m− r + 1)!!

m!

(m− r + 1)!

+
1

(r − 1)!2r−2

r−2∑

k=r−m−1

1

k!(r − k − 2)!2k
(n−m+ r − 1)!!

(n−m− r + 1)!!

× (n−m+ r − 3)!!

(n−m+ r − 2k − 1)!!

m!

(m− r + k + 1)!

=
1

(r − 1)!(r − 2)!22r−4
(n+m+ r − 3)!!

(n+m− r + 1)!!

(n−m+ r − 3)!!

(n−m− r + 1)!!
m,
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the proof is done. �

5. Examples 2

When r = 2, Theorem 4.2 is reduced to Theorem 4.1. When r = 3, 4, 5, we have the
following results as examples.

Theorem 5.1. For n ≥ 3, we have

∑

j1+j2+j3=n
j1,j2,j3≥1

Fj1Fj2Fj3 =

n−2∑

m=1

(n+m)(n−m)mFm
8

cos
(n−m− 2)π

2
,

Theorem 5.2. For n ≥ 4, we have

∑

j1+j2+j3+j4=n
j1,j2,j3,j4≥1

Fj1Fj2Fj3Fj4

=
n−3∑

m=1

(n+m+ 1)(n+m− 1)(n−m+ 1)(n−m− 1)mFm
4!23

cos
(n−m− 3)π

2
.

Theorem 5.3. For n ≥ 5, we have

∑

j1+···+j5=n
j1,...,j5≥1

Fj1 · · ·Fj5

=
n−4∑

m=1

5(n+m+ 2)(n+m)(n+m− 2)(n−m+ 2)(n−m)(n−m− 2)mFm
6!26

× cos
(n−m)π

2
.

6. Remarks

In [3, Theorem 32.4], it is shown that
∑n

j=0 FjFn−j = h2,n, where hi,j = hi,j−2 + hi,j−1 +

hi−1,j−1 (i ≥ 1, j ≥ 2) with h0,j = 0 (j ≥ 2), hj,j = 1 (j ≥ 1) and hi,j = 0 (i > j). In addition,
an explicit form is given by h2,n =

(
(n − 1)Fn + 2nFn−1

)
/5 ([3, (32.13)]). We can show that

Theorem 4.1 matches this fact.
In addition, in [3, Theorem 32.4 and (32.14)], it is shown that the left-hand side of (5.1) is

equal to
(
(5n2 − 3n− 2)Fn − 6nFn−1

)
/50.

Proposition 6.1. For n ≥ 2

n−1∑

m=1

mFm cos
(n−m− 1)π

2
=

(n− 1)Fn + 2nFn−1
5

.
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Lemma 6.2. For n ≥ 0 and k ≥ 1 with k > j, we have

n∑

i=0

Fki+j =
F(n+1)k+j − (−1)kFnk+j − Fj − (−1)jFk−j

Lk − (−1)k − 1
, (6.1)

n∑

i=0

iFki−j =
1

(
Lk − (−1)k − 1

)2
(
nF(n+2)k−j −

(
2(−1)kn+ n+ 1

)
F(n+1)k−j

+
(
2(−1)k(n+ 1) + n

)
Fnk−j − (n+ 1)F(n−1)k−j

−(−1)k+jFk+j + Fk−j + 2(−1)k+jFj

)
, (6.2)

Proof. (6.1) is Theorem 5.11 in [3]. We shall prove (6.2). Since

z + 2z2 + 3z3 + · · ·+ nzn = z
d

dz
(1 + z + z2 + · · ·+ zn) =

nzn+2 − (n+ 1)zn+1 + z

(z − 1)2
,

by α = (1 +
√

5)/2 and β = (1 +
√

5)/2 with αβ = −1, we have

n∑

i=1

iFki−j =

n∑

i=1

i
αki−j − βki−j√

5

=
1√
5

(
1

αj
n(αk)n+2 − (n+ 1)(αk)n+1 + α

(αk − 1)2
− 1

βj
n(βk)n+2 − (n+ 1)(βk)n+1 + β

(βk − 1)2

)

=
1√

5
(
(αβ)k − (αk + βk) + 1

)2
(
n(αnk−j − βnk−j)− (n+ 1)(α(n−1)k−j − β(n−1)k−j)

− (−1)k(αkβ−j − βkα−j)− 2n(−1)k(α(n+1)k−j

− β(n+1)k−j) + 2(−1)k(n+ 1)(αnk−j − βnk−j)− 2(−1)k(α−j − β−j)
+ n(α(n+2)k−j − β(n+2)k−j)− (n+ 1)(α(n+1)k−j − β(n+1)k−j) + (αk−j − βk−j)

)

=
1

(
Lk − (−1)k − 1

)2
(
nF(n+2)k−j −

(
2(−1)kn+ n+ 1

)
F(n+1)k−j

+
(
2(−1)k(n+ 1) + n

)
Fnk−j − (n+ 1)F(n−1)k−j

− (−1)k+jFk+j + Fk−j + 2(−1)k+jFj

)
.

Here, we used the fact F−j = (−1)j−1Fj (j ≥ 1). �
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Proof of Proposition 6.1. Let n = 4k. Other cases n 6≡ 0 (mod 4) can be proven similarly. By
Lemma 6.2

n−1∑

m=1

mFm cos
(n−m− 1)π

2

= −
k∑

l=1

(4l − 3)F4l−3 +

k∑

l=1

(4l − 1)F4l−1

= 4
k∑

l=1

lF4l−2 +
k∑

l=1

F4l−5

=
4

25

(
kF4k+6 − (3k + 1)F4k+2 + (3k + 2)F4k−2 − (k + 1)F4k−6 − 5

)

+
1

5
(F4k−1 − F4k−5 + 4)

=
(4k − 1)F4k + 2F4k−1

5
=

(n− 1)Fn + 2Fn−1
5

.

�
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ON FIBONACCI NUMBERS WHICH ARE ELLIPTIC KORSELT

NUMBERS

FLORIAN LUCA AND PANTELIMON STĂNICĂ

Abstract. Here, we show that if E is a CM elliptic curve with CM field Q(
√
−d), then

the set of n for which the nth Fibonacci number Fn satisfies an elliptic Korselt criterion for
Q(
√
−d) (defined in the paper) is of asymptotic density zero.

1. Introduction

Let b ≥ 2 be an integer. A composite integer n is a pseudoprime to base b if the congruence
bn ≡ b (mod n) holds. There are infinitely many pseudoprimes with respect to any base b,
but they are less numerous than the primes. That is, putting πb(x) for the number of base b
pseudoprimes n ≤ x, a result of Pomerance [9] shows that the inequality

πb(x) ≤ x/L(x)1/2 where L(X) = exp (log x log log log x/ log log x)

holds for all sufficiently large x. It is conjectured that πb(x) = x/L(x)1+o(1) as x→∞.
Let {Fn}n≥0 be the sequence of Fibonacci numbers Fn+1 = Fn + Fn−1 for n ≥ 1 with

F0 = 0, F1 = 1, and {Ln}n≥0 be its companion Lucas sequence satisfying the same recurrence
with initial conditions, L0 = 2, L1 = 1. For the Fibonacci sequence {Fn}n≥1 is was shown in
[7] that the set of n ≤ x such that Fn is a prime or a base b pseudoprime is of asymptotic
density zero. More precisely, it was shown that the number of such n ≤ x is at most 5x/ log x
if x is sufficiently large.

Since elliptic curves have become very important in factoring and primality testing, several
authors have defined and proved many results on elliptic pseudoprimes. To define an elliptic
pseudoprime, let E be an elliptic curve over Q with complex multiplication by Q(

√
−d).

Here, d ∈ {1, 2, 3, 7, 11, 19, 43, 67, 163}. If p is a prime not dividing 6∆E , where ∆E is the
discriminant of E, and additionally (−d|p) = −1, where (a|p) denotes the Legendre symbol of
a with respect to p, then the order of the group of points on E modulo p denoted #E(Fp),
equals p+ 1. In case p - ∆E and (−d|p) = 1, we have #E(Fp) = p+ 1− ap for some nonzero
integer ap with |ap| < 2

√
p. Gordon [3], used the simple formula for #E(Fp) in the case

(−d|p) = −1 to define the following test of compositeness: Let Q be a point in E(Q) of infinite
order. Let N > 163 be a number coprime to 6 to be tested. We compute (−d|N). If it is
1 we do not test and if it is 0, then N is composite. If it is −1, then we compute [N + 1]Q
(mod N). If it is not O (the identity element of E(Q)), then N is composite while if it is O,
then we declare N to be a probable prime for Q ∈ E. So, we can define N to be a pseudoprime
for Q ∈ E if it is composite and probable prime for Q ∈ E. The counting function of elliptic
pseudoprimes for Q ∈ E has also been investigated by several authors. The record belongs to
Gordon and Pomerance [4], who showed that this function is at most exp(log x − 1

3 logL(x))
for x sufficiently large depending on Q and E. We are not aware of research done on the set
of indices n for which Fn can be an elliptic pseudoprime for Q ∈ E.
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There are composite integers n which are pseudoprimes for all bases b. They are called
Carmichael numbers and there exist infinitely many of them as shown by Alford, Granville
and Pomerance in 1994 in [1]. They are also characterized by the property that n is composite,
squarefree and p− 1 | n− 1 for all prime factors p of n. This characterization is referred to as
the Korselt criterion.

Analogously, given a fixed curve E having CM by Q(
√
−d), a composite integer n which is

an elliptic pseudoprime for all points Q of infinite order on E is called an elliptic Carmichael
number for E. Fix d ∈ D. The authors of [2] defined the following elliptic Korselt criterion
which ensures that n is an elliptic Carmichael number for any E with CM by Q(

√
−d) provided

that (N,∆E) = 1.

Theorem 1.1. (EPT) Let N be squarefree, coprime to 6, composite, with an odd number of
prime factors p all satisfying (−d|p) = −1 and p+1 | N+1. Then N is an elliptic Carmichael
number for any E with CM by Q(

√
−d) provided that (N,∆E) = 1.

We call positive integers N satisfying the first condition of Theorem 1.1 elliptic Korselt for
Q(
√
−d). In [2], it is shown that there are infinitely many elliptic Korselt numbers for Q(

√
−d)

for all d ∈ D under some believed conjectures from the distribution of prime numbers. It was
recently shown by Wright [10] that the number of elliptic Carmichael numbers up to x is

≥ exp

(
K log x

(log log log x)2

)
with some positive constant K

for all x > 100.
Here, we fix d ∈ D := {1, 2, 3, 7, 11, 19, 43, 67, 163} and look at the set of numbers

N (d) = {n : Fn is elliptic Korselt for Q(
√
−d)}.

It is easy to prove that N (1) = ∅. Namely, since F2n+1 = F 2
n + F 2

n+1, it follows that if r ≥ 5
is an odd prime, then all prime factors of Fr are congruent to 1 modulo 4. In particular,
(−1|p) = 1 for all prime factors p of Fr. Since Fr | Fn for all r | n, then the primes p|Fr (recall
that they all satisfy (−1|p) = 1) would divide Fn but that is impossible since Fn is Korselt

and its prime factors must satisfy (−1|p) = −1. This shows that if n ∈ N (1), then n cannot
have prime factors r ≥ 5, therefore n = 2a · 3b, which is impossible since Fn must be coprime
to 6. It is likely that N (d) is finite for all d ∈ D\{1} (or even empty) but we do not know how

to prove such a strong result. Instead, we settle for a more modest goal and prove that N (d)

is of asymptotic density 0. For a subset A of the positive integers and a positive real number
x put A(x) = A ∩ [1, x].

2. The result

We prove the following result.

Theorem 2.1. For d ∈ D\{1}, we have

N (d)(x)� x(log log x)1/2

(log x)1/2
.

Proof. Let Q be the set of primes q ≡ 2, 3 (mod 5). Let x be a large positive real number
and y be some parameter depending on x to be made more precise later. Consider n ∈ N (x),
where we omit the dependence on d for simplicity. Put N = Fn. Our proof uses the fact that
N is coprime to 6 but it does not use the fact that (−d|p) = −1 for all prime factors p of N .
We distinguish several cases.
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Case 1. n ∈ N1(x) = {n ≤ x : q - n for any q ∈ Q ∩ (y, x)}.
By Brun’s sieve (see, for example, Theorem 2.3 on Page 70 in [5]), we have

#N1(x)� x
∏

p∈Q
y≤p≤x

(
1− 1

p

)
� x

(
log y

log x

)1/2

. (2.1)

From now on, we work with n ∈ N (x)\N1(x), so there exists q ∈ Q with q ≥ y such that q | n.
Since such q ≡ 2, 3 (mod 5), it follows that Fq ≡ −1 (mod q). Furthermore, let p be any
prime factor of Fq. Then p ≡ ±1 (mod q). Since Fq ≡ −1 (mod q), at least one of the prime
factors p of Fq has the property that p ≡ −1 (mod q). Thus, q | p + 1. Since p + 1 | Fn + 1,
we get that q | Fn + 1. Note that 4 - n because otherwise Fn is a multiple of F4 = 3, which is
not possible. We now use the fact that

Fn + 1 = F(n+δ)/2L(n−δ)/2,

for some δ ∈ {±1,±2} such that n ≡ δ (mod 4). Thus,

q | F(n+δ)/2L(n−δ)/2 | Fn−δFn+δ.
Hence, either q | Fn−δ or q | Fn+δ. This shows that if we put z(q) for the index of appearance
of q in the Fibonacci sequence, then n ≡ ±δ (mod z(q)).

Put R = {q : z(q) ≤ q1/3}. By a classical argument due to Hooley [6], we have

#R(t)� t2/3. (2.2)

Case 2. N2(x) = {n ∈ N1(x)\N (x) : q ∈ R}.
If n ∈ N2(x), then q | n for some q > y in R. For a fixed q, the number of such n ≤ x is

bx/qc ≤ x/q. Hence,

#N2(x) ≤
∑

y≤q≤x
q∈R

x

q
≤ x

∑

q≥y
q∈R

1

q
� x

y1/3
, (2.3)

where the last estimate follows from estimate (2.2) by the Abel summation formula.

Case 3. N3(x) = N (x)\ (N1(x) ∪N2(x)) .

If n ∈ N3(x), then we saw that there exists q ≥ y in Q\R dividing n such that n ≡ δ
(mod z(q)) for some δ ∈ {±1,±2}. Since q ≡ 2, 3 (mod 5), z(q) divides q + 1, therefore q
and z(q) are coprime. Fixing q and writing n = qm, the congruences mq ≡ δ (mod z(q)) put
m ≤ x/q into one of four possible arithmetic progressions modulo z(q). The number of such
integers for a fixed q is therefore at most 4bx/qz(q)c + 4 ≤ 4x/qz(q) + 4. Summing up the
above bound over all q ≤ x in Q\R, we get that

#N3(x) ≤ 4
∑

y≤q≤x
q 6∈R

x

qz(q)
+ 4π(x) ≤ 4x

∑

q≥y

1

q4/3
+ 4π(x)� x

y1/3
+

x

log x
. (2.4)

Comparing estimates (2.1), (2.3), (2.4), it follows that we should choose y such that

y1/3 = (log x/ log y)1/2, giving y = (2/3 + o(1))
(log x)3/2

(log log x)3/2

as x→∞. With this choice for y, we get the desired result from (2.1), (2.3) and (2.4), because

#N (x) ≤ #N1(x) + #N2(x) + #N3(x).
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�

3. Comments and Remarks

If d 6= 1, we used neither the condition that (−d|p) = −1 for all prime factors p of Fn, nor
the condition that Fn is squarefree and has an odd number of prime factors. It is likely that
if one can find a way to make use of these conditions, then one can give sharper (smaller)

upper bound on #N (d)(x) than that of Theorem 2.1. Finally, there are other definitions of
elliptic Carmichael numbers N which apply to elliptic curves without CM (see for example
[7]). It was shown in [7] that the set of N which are Carmichael for E in that sense is of
asymptotic density zero. It would be interesting to show that the set of n such that Fn is
elliptic Carmichael in that sense is also a set of asymptotic density zero. The methods of this
paper do not seem to shed much light on this modified problem.
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THREE ANALOGUES OF STERN’S DIATOMIC SEQUENCE

SAM NORTHSHIELD

Abstract. We present three analogues of Sterns diatomic sequence by altering various def-
initions of that sequence: the first involves replacing addition by another binary operation,
the second by replacing a pair of complementary sequences by another, the third by replacing
the binary representation of an integer by its Zeckendorf representation.

1. Introduction

Stern’s diatomic sequence a1 = 1, a2n = an, a2n+1 = an + an+1 is a particularly well studied
sequence (see, e.g., [1], [8], [9] and references therein, as well as [13]). The first section
is devoted to showing that this sequence is interesting. In particular, we shall look at the
following properties.

• n 7→ an+1/an is a bijection between the positive natural numbers and the positive
rational numbers,
• n/2k 7→ an/an+2k extends to a continuous strictly increasing function on [0, 1] known

as “Conway’s box function” (it’s inverse is ?(x), Minkowski’s question-mark function),
• It shares a number of similarities to the Fibonacci sequence; in particular, it has a

Binet type formula.

The remaining three sections are devoted to three analogues of Stern’s sequence:

• We replace addition by another binary operation; in particular, we define b1 = 0, b2n =
bn, b2n+1 = bn ⊕ bn+1 where x ⊕ y = x + y +

√
4xy + 1. This sequence is related

to Stern’s sequence and arises from certain sphere packings. It has apparently not
appeared before in the literature.
• We replace the complementary indexing sequences {2n} and {2n+ 1} by another pair

of complementary sequences; in particular, let R1 = 1, Rα(n) = Rn, Rβ(n) = Rn+Rn+1

where α(n) = bnφ − 1/φ2c, β(n) = bnφ2 + φc form a specific pair of complementary
Beatty sequences. This sequence has been extensively studied as Rn is the number of
ways n can be represented as a sum of distinct Fibonacci numbers.
• The known Binet type formula for Stern’s sequence [9] is written in terms of the

sequence s2(n) (:= the number of terms in the binary expansion of n). We replace
s2(n)by sF (n)(:= the number of terms in the Zeckendorf representation of n). This new
sequence, apparently not studied before, is an integer sequence with several interesting
(and several conjectural) properties.
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2. Stern’s Diatomic Sequence

Consider the following “diatomic array” [1] formed as a variant of Pascal’s triangle; each
entry is either the value directly above or else the sum of the two above it.

1 1
1 2 1
1 3 2 3 1
1 4 3 5 2 5 3 4 1
1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1
. . . . . . . . . . . . . . . . .

The word “diatomic” is used here since every entry of the diatomic array gets its value from
either one or two entries above and gives that value to three entries below, hence has “valence”
4 or 5 (hence the diatomic array models a kind of crystalline alloy of two elements).

Ignoring the right most column and reading the numbers as in a book, we get Stern’s
diatomic sequence:

1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, ...

The sequence is thus defined by the recurrence

a1 = 1, a2n = an, a2n+1 = an + an+1. (1)

We define a0 to be 0 (the value consistent with a2·0+1 = a0 + a1).
Perhaps the most celebrated property of this sequence is that every positive rational number

is represented exactly once as an+1/an. See, for example, [4] or [9]. We rephrase this fact as
a theorem.

Theorem 2.1. Every ordered pair of relatively prime positive integers appears exactly once in
the sequence {(an, an+1)}.
Proof. For an ordered pair, consider the process of subtracting the smallest from largest (stop
if equal). For example, (4, 5) 7→ (4, 1) and (7, 3) 7→ (4, 3). By the definition of Stern’s sequence,

(a2n, a2n+1), (a2n+1, a2n+2) 7−→ (an, an+1).

Every relatively prime pair appears (if not, then there is an ordered pair not on the list with
lowest sum. Apply the process; the result has lower sum and so is (an, an+1) for some n and so
the original pair is either (a2n, a2n+1) or (a2n+1, a2n+2)). Every relatively prime pair appears
exactly once since, if not, then there exist m < n with (am, am+1) = (an, an+1) and such that
m is as small as possible. Applying the process to both implies bm/2c = bn/2c and thus
am = am+1 = am+2 which is impossible. �

One can then rewrite any sum over relatively prime pairs in terms of Stern’s sequence. As
an example, we rephrase the Riemann hypothesis. First note that n 7−→ a2n/a2n+1 is an
explicit bijection from Z+ to Q ∩ (0, 1). Then the Riemann hypothesis is equivalent to

∑

a2n+1<x

e2πia2n/a2n+1 = O(x1/2+ε).

Briefly why this is so: the Möbius function can be written as µ(n) :=
∑

1≤k≤n,gcd(n,k)=1 e
2πik/n

and so the left hand side is really just Merten’s function M(x) :=
∑

n<x µ(n). The connection
between Merten’s function and the Riemann hypothesis is well-known; see for example [5].
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Minkowski’s question mark function was introduced in 1904 as an example of a “singular
function” (it is strictly increasing yet its derivative exists and equals 0 almost everywhere). It
is defined in terms of continued fractions:

?(x) = 2

∞∑

n=1

(−1)n+1

2a1+a2+...+an

where x = 1/(a1+1/(a2+1/(a3+ ...))). By Lagrange’s theorem that states that the continued
fraction representation of a quadratic surd must eventually repeat, it is clear that ?(x) takes
quadratic surds to rational numbers.

The function

f :
k

2n
7−→ ak

a2n+k

extends to a continuous strictly increasing function on [0, 1]. This function is known as “Con-
way’s box function” and its inverse is Minkowski’s question mark function ?(x). See [9] for a

0

0

1

1

0

0

1

1

Figure 1. The graphs of y = f(x) and its inverse y =?(x).

proof.
The functions f(x) and ?(x) extends to homeomorphisms (or, equivalently, are restrictions

of homeomorphisms) between two fractals.

Figure 2. Sierpinski gasket and an Apollonian circle packing
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Stern’s sequence is related to the Fibonacci sequence in a number of ways. For example,
the Fibonacci sequence is a subsequence:

1 1

1 2 1

1 3 2 3 1

1 4 3 5 2 5 3 4 1

1 5 4 7 3 8 5 7 2 7 5 8 3 7 4 5 1
. . . . . . . . . . . . . . . . .

It is easy to see that
aJ(n) = Fn (2)

where J(n) := (2n − (−1)n)/3 is the Jacobsthal sequence [12, A001405].
A new result by Coons and Tyler [3] identifies and proves the asymptotic upper bound:

lim sup
n→∞

an
(3n)log2 φ

=
1√
5
.

The constants involved in this formula are perhaps not so surprising since, by formula (2), it
is clear that

lim
n→∞

aJ(n)/((3J(n))log2 φ) = 1/
√

5.

Stern’s sequence has a few remarkable similarities to the Fibonacci sequence (see [9] and
[10]). For example, Stern’s sequence satisfies a modified Fibonacci recurrence:

an+1 = an + an−1 − 2(an−1 mod an).

Next, certain diagonal sums across Pascal’s triangle yield the Fibonacci sequence while the
corresponding sums across Pascal’s triangle modulo 2 yield Stern’s sequence:

1
1 1

1 2 1

1 3 3 1

1 4 6 4 1
· · · · · ·

,

1
1 1

1 0 1

1 1 1 1

1 0 0 0 1
· · · · · ·

Fn+1 =
∑

2i+j=n

(
i+ j

i

)
, an+1 =

∑

2i+j=n

[(
i+ j

i

)
mod 2

]

Recall Binet’s formula

Fn+1 =
φn+1 − φn+1

φ− φ
=

n∑

k=0

φkφ
n−k

. (3)

Stern’s sequence satisfies a similar formula:

an+1 =

n∑

k=0

σs2(k)σs2(n−k)

where σ := (1 +
√
−3)/2 is a sixth root of unity and s2(n) is the number of ones in the binary

expansion of n [12, A000120]:

n 0 1 2 3 4 5 6 7 8...
s2(n) 0 1 1 2 1 2 2 3 1...
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Why this is true: If G(x) :=
∑
σs2(n)xn and F (x) is the generating function for {an+1}, then

G(x) = (1 + σx)G(x2) and F (x) = (1 + x + x2)F (x2). For real x, since (1 + σx)(1 + σx) =
1 + x+ x2, |G(x)|2 = F (x) and the result follows by equating coefficients.

3. Replacing addition by another operation

Definition 3.1. For non-negative real numbers a, b, let

a⊕ b = a+ b+
√

4ab+ 1

a	 b = a+ b−
√

4ab+ 1
.

Proposition 3.2. If a, b, c, d > 0 and |ad− bc| = 1 then (ac)⊕ (bd) = (a+ b)(c+ d).

Proof. If (ad− bc)2 = 1, then
(ad+ bc)2 = 1 + 4abcd

and thus
(ac)⊕ (bd) = ac+ bd+

√
4abcd+ 1 = ac+ bd+ ad+ bc.

�
Remark 3.3. By the Fibonacci identity

Fn−1Fn+1 = F 2
n + (−1)n,

it follows that

(Fn−1Fn)⊕ (FnFn+1) = (Fn−1 + Fn)(Fn + Fn+1) = Fn+1Fn+2.

and so the sequence xn := FnFn+1 satisfies the modified Fibonacci recurrence

xn+1 = xn ⊕ xn−1.

Here we define the first new sequence.

Definition 3.4. Let b1 = 0, and for n ≥ 1,

b2n = bn

b2n+1 = bn ⊕ bn+1.

The sequence begins

0, 0, 1, 0, 2, 1, 2, 0, 3, 2, 6, 1, 6, 2, 3, 0, 4, 3, 10, 2, 15, 6, 12, 1, 12, 6, 15, ...

It is not immediately clear that this sequence must always be integral. One way to show
this is to express each bk as a product of elements of Stern’s sequence (Theorem 3.6, below).
First we must prove a lemma.

Lemma 3.5. For m,n ≥ 0, if m+ n = 2j − 1 then am+1an+1 − aman = 1.

Proof. We prove this by induction on j. If m+n = 1, then am+1an+1−aman = a1a2−a0a1 = 1
and the result holds for j = 1. Suppose now that the result holds for a fixed j and that
m + n = 2j+1 − 1. Without loss of generality, m = 2k + 1 and n = 2l for some k, l ≥ 0 (and
so k + l = 2j − 1). Then

am+1an+1 − aman = a2k+2a2l+1 − a2k+1a2l

= ak+1(al + a2l+1)− (ak + ak+1)al = ak+1al+1 − akal = 1
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and the result follows. �
Theorem 3.6. If 2j ≤ k ≤ 2j+1, then

bk = a2j+1−kak−2j .

Proof. If k = 2j then, because a0 = 0, bk = 0 = a2j+1−kak−2j = a2j−kak−2j−1 .
Let xk := a2j+1−kak−2j where k ∈ (2j , 2j+1). Then 2k, 2k + 1 ∈ (2j+1, 2j+2) and thus

x2k = a2j+1−2ka2k−2j = a2j−kak−2j−1 = xk

and, by lemma 3.5 and proposition 3.2,

x2k+1 = a2j+1−(2k+1)a2k+1−2j

= a2(2j−k−1)+1a2(k−2j−1)+1

= (a2j−k−1 + a2j−k) · (ak−2j−1 + ak+1−2j−1)

= (a2j−k−1ak+1−2j−1)⊕ (a2j−kak−2j−1) = xk+1 ⊕ xk

.

Hence bk = xk for all k, and the result follows. �
Corollary 3.7. bn ∈ N.

As seen in section 2, Stern’s diatomic sequence leads to a construction of Conway’s box
function f(x), the inverse of Minkowski’s question-mark function. The sequence {bk} gives
rise to a similar function that turns out to be closely related to f(x).

Definition 3.8. For k, n ∈ N, k ≤ 2n, let

g

(
k

2n

)
:=

bk
b2n+k

.

Theorem 3.9. The function g(x) extends to a continuous function on [0, 1] that satisfies, for
x ∈ (2−j−1, 2−j),

g(x) = f(2j+1x− 1)[1− jf(2x)]

where f(x) is Conway’s box function.

Proof. Let x = k/2n. Then 2n−j−1 ≤ k ≤ 2n−j for some j ≥ 0. Since 2n ≤ 2n + k ≤ 2n+1, it
follows from Theorem 3.6 that

bk = a2n−j−kak−2n−j−1 and b2n+k = a2n−kak.

By [9, formulas (2) and (3)],
a2n−k = jak + a2n−j−k

and thus

g(x) = g

(
k

2n

)
=

bk
b2n+k

=
a2n−j−kak−2n−j−1

a2n−kak

=
(a2n−k − jak)ak−2n−j−1

a2n−kak
=
ak−2n−j−1

ak

(
1− jak

a2n−k

)

= f

(
k

2n−j−1
− 1

)[
1− jf

(
k

2n−1

)]
= f(2j+1x− 1)[1− jf(2x)].

The extension of g(x) to a continuous function on [0, 1] follows from the facts that f extends
to a continuous function on [0, 1] and f(2−j) = 1/(j + 1). �

The restriction of g(x) to [1/2, 1] is just a scaled version of f(x):
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Figure 3. Singular function associated with {bn}

Corollary 3.10. g(x) = f(2x− 1) for x ∈ [1/2, 1].

Recall that every positive rational number appears exactly once in the set {ak+1/ak : k ∈ N}.
We prove an analogue for the sequence {bk}. We use the expression “A = �” to mean that
A = n2 for some integer n.

Theorem 3.11. Every element of {(a, b) ∈ N2 : 4ab + 1 = �} appears exactly once in the
sequence {(bk, bk+1) : k ∈ N}.

Proof. Consider the following analogue of the (slow) Euclidean algorithm.

M⊕ : (a, b) 7−→





(a, a	 b) if a < b,

(a	 b, b) if b < a,

stop if a = b.

Suppose (a, b) ∈ N2, with 4ab+ 1 = �. If a	 b < 0 then it is easy to see that (a− b)2 < 1
and thus a = b. In this case, since 4a2 + 1 6= � unless a = 0, the only possibility is a = b = 0.
Hence, M⊕((a, b)) ∈ N2 and, if this algorithm terminates at all, it must terminate at (0, 0).

With (a, b) ∈ N2, with 4ab+ 1 = �, let k :=
√

4ab+ 1. If 0 < a < b, then a2 < ak and thus

a(a	 b) = a(a+ b− k) = a2 + ab− ak < ab.

In general, the product of numbers in M⊕((a, b)) is strictly less than the product ab and
thus the algorithm will eventually reach, without loss of generality, (0, b). If b = 0 then the
algorithm stops. On the other hand, if b > 0, it is easy to see that M⊕((0, b)) = (0, b− 1), and
thus the algorithm will terminate at (0, 0).

Let Bn := (bn, bn+1). By the definition of the sequence {bk}, it’s easy to see that for n > 1,

M⊕ : B2n, B2n+1 7−→ Bn

and, moreover, if M⊕ : (a, b) 7→ Bn, then either (a, b) = B2n or (a, b) = B2n+1.
If (a, b) ∈ N2, with 4ab+ 1 = � is not of the form Bn for some n, then all of its successors

under M⊕, including (0, 0), are not either – a contradiction. Hence every (a, b) ∈ N2, with
4ab+ 1 = � is of the form Bn for some n.

The pair (0, 0) appears only once and, in general, no pair appears more than once in {Bn}
for, otherwise, there exists a smallest n > 1 such that Bn = Bm for some m > n. Applying M⊕
to both Bm and Bn forces bn/2c = bm/2c and therefore m = n+ 1. Thus bn = bn+1 = bn+2,
a contradiction. �
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A generalization of ⊕ is as follows: For a given number N , define

x⊕
N
y := x+ y +

√
4xy +N.

Remark 3.12. a, b, a⊕
N
b solve

2(x2 + y2 + z2)− (x+ y + z)2 = N.

Defining 	
N

in the obvious manner,

(a⊕
N
b)	

N
b = a.

Every non-zero complex number z can be represented uniquely as reiθ for some positive r
and some θ ∈ [0, 2π) and so we define

√
z :=

√
reiθ/2. Hence ⊕

N
and 	

N
are well defined for

complex N .

We may then generalize {bk}.
Definition 3.13. Given a (complex) number A, let c1 = c2 = A and, for n ≥ 1,

c2n = cn

c2n+1 = cn ⊕
N
cn+1.

It turns out that such a sequence can be expressed as a linear combination of the sequences
{a2k} and {bk}. We first need a lemma.

Lemma 3.14. For k ≥ 1,

a2kbk+1 + a2k+1bk + 1 = akak+1

√
4bkbk+1 + 1.

Proof. Let sk :=
√

4bkbk+1 + 1. Note that

b2k+1 = bk + bk+1 + sk.

Then
s22k = 4b2kb2k+1 + 1 = 4bk(bk + bk+1 + sk) + 1

= 4b2k + s2k + 4bksk = (2bk + sk)
2

and so

s2k = 2bk + sk.

Similarly,

s22k+1 = 4b2k+1b2k+2 + 1 = 4bk+1(bk + bk+1 + sk) + 1

= 4b2k+1 + s2k + 4bk+1sk = (2bk+1 + sk)
2

and so

s2k+1 = 2bk+1 + sk.

Note that

a21b2 + a22b1 + 1 = 1 = a1a2
√

4b1b2 + 1

and so the lemma holds for k = 1.
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Suppose the lemma holds for a particular k. We show it works for 2k and 2k + 1 and thus,
by induction, the lemma will be shown.

a22kb2k+1a
2
2k+1b2k + 1 = a2k(bk + bk+1 + sk) + (ak + ak+1)

2bk + 1

= a2kbk + a2kbk+1 + a2ksk + a2kbk + 2akak+1bk + a2k+1bk + 1

= a2k(2bk + sk) + 2akak+1bk + a2kbk+1 + a2k+1bk + 1

= a2k(2bk + sk) + 2akak+1bk + aka+ k + 1sk

= ak(ak + ak+1)(2bk + sk) = a2ka2k+1s2k

and thus the lemma works for 2k.

a22k+1b2k+2a
2
2k+2b2k+1 + 1 = (ak + ak+1)

2bk+1 + a2k+1(bk + bk+1 + sk) + 1

= a2kbk+1 + 2akak+1bk+1 + a2k+1bk+1 + a2k+1bk + a2k+1bk+1 + a2k+1sk + 1

= a2k(2bk+1 + sk) + a2kbk+1 + a2k+1bk + 1 + 2akak+1bk+1

= a2k(2bk+1 + sk) + akak+1sk + 2akak+1bk+1

= ak+1(ak + ak+1)(2bk+1 + sk) = a2k+2a2k+1s2k+1

and thus the lemma works for 2k + 1. �

Theorem 3.15. Given A,B, let ck := Aa2k + Bbk. Then {ck} has c1 = c2 = A and, for
N = 4AB +B2,

c2n = cn

c2n+1 = cn ⊕
N
cn+1.

Proof.

ckck+1 +AB = (Aa2k +Bbk)(Aa
2
k+1 +Bbk+1) +AB

= A2a2ka
2
k+1 +B2bkbk+1 +AB(a2k+1bk + a2kbk+1 + 1)

= A2a2ka
2
k+1 +B2bkbk+1 +ABakak+1

√
4bkbk+1 + 1

and so

4ckck+1 +N = 4A2a2ka
2
k+1 + 4B2bkbk+1 +B2 + 4ABakak+1

√
4bkbk+1 + 1

= (2Aakak+1 +B
√

4bkbk+1 + 1)2

and thus

ck ⊕
N
ck+1 = (Aa2k +Bbk) + (Aa2k+1 +Bbk+1) +

√
4ckck+1 +N

= Aa2k +Bbk +Aa2k+1 +Bbk+1 + 2Aakak+1 +B
√

4bkbk+1 + 1

= A(ak + ak+1)
2 +B(bk + bk+1 +

√
4bkbk+1 + 1

= Aa22k+1 +Bb2k+1 = c2k+1.

Since

c2k = Aa22k +Bb2k = Aa2k +Bbk = ck,

the theorem is shown. �

Example 3.16. Let N = −3, c1 = c2 = 1, we see that A = 1, B = −1, and thus ck = a2k− bk.
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If to every local cut point P in the fractal CP appearing in figure 2 one attaches a sphere
above but tangent to the plane at that point with curvature (1/radius) equal to the sum of
the curvatures of the two circles meeting there, then one gets a 3-dimensional generalization
of Ford circles. The curvatures (similarly, the product of local cut points and corresponding
curvatures) along any circular arc are from a sequence {cn} for appropriately chosen N (see
[11] and references therein for a discussion of various types of “Ford spheres”).

Consider the sequence {bk} written in tabular form:

0
0 1
0 2 1 2
0 3 2 6 1 6 2 3
0 4 3 10 2 15 6 12 ...
. . . . . . . . .

It is apparent that every column is an arithmetic sequence and, moreover, the defining differ-
ences are respectively

0, 1, 1, 4, 1, 9, 4, 9, ...,

the squares of Stern’s diatomic sequence {a2k}. This is, in fact, true. We shall express this
result as a formula.

Theorem 3.17. For 0 ≤ k < 2j,

b2j+1+k = a2k + b2j+k.

Proof. Assume 0 ≤ k < 2j . Since 2j ≤ 2j + k < 2j+1, Theorem 3.6 implies

b2j+1+k = b2j+2j+k = a2j+1−(2j+k)a2j+k−2j = a2j−kak.

By [9, formulas (2) and (3)] ,

a2j+1−k = ak + a2j−k
and thus

b2j+2+k = a2j+1−kak = (ak + a2
j−k)ak = a2k + a2j−kak = a2k + b2j+1+k.

The result follows by induction. �
Remark 3.18. {b2k−1} appears as [12, A119272], the product of numerators and denominators
in the Stern-Brocot tree.

Remark 3.19. For a fixed (x, y), z = x⊕ y and z = x	 y are the two solutions of

2(x2 + y2 + z2)− (x+ y + z)2 = 1.

4. Fibonacci representations

A Fibonacci representation of a number n is a way of writing that number as a sum of distinct
Fibonacci numbers. One such representation is, of course, the Zeckendorf representation which
is gotten by the greedy algorithm and which is characterized by having no two consecutive
Fibonacci numbers. In general, a given n has several Fibonacci representations, the number
of such we call Rn. The sequence {Rn} is extremely well studied; see papers by Klarner [7],
Bicknell-Johnson [1, 2], and Stockmeyer [14], for example.
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A string of 0s and 1s is a finite word with alphabet {0, 1} (equivalently, an element of
{0, 1}∗). Often we denote such a word by ω. We shall think of such strings as Fibonacci
representations: we shall assign a numerical value [ω] to a string ω by the formula

[i1i2...ik] =
∑

ijFk+2−j .

For example, [0100] = [0011] = 3 and [01010011] = 21 + 8 + 2 + 1 = 32.
The generating function for {Rn} has an obvious product formulation.

Proposition 4.1. The sequence (Rn) satisfies
∞∑

n=0

Rnx
n =

∞∏

i=2

(
1 + xFi

)

where Fn denotes the nth Fibonacci number.

Next, we define the Fibonacci shift :

ρ(n) := bnφ+ 1/φc
that satisfies ρ([ω]) = [ω0] for every string ω. This shift has been studied before; for example,
it appears in [6, graffiti, p. 301].

Theorem 4.2. For ci ∈ {0, 1}, i = 2, ..., N ,

ρ

(
N∑

i=2

ciFi

)
=

N∑

i=2

ciFi+1.

Proof. By Binet’s formula (3),

φFn = Fn+1 − φn.
For any choice ci ∈ {0, 1} for i = 2, ..., N , note that

−1/φ2 =
∞∑

n=1

φ
2n+1

<
N∑

i=2

ciφ
i
<
∞∑

n=1

φ
2n

= 1/φ

and therefore

0 < −
N∑

i=2

ciφ
i − φ < 1.

Hence,

ρ

(
N∑

i=2

ciFi

)
=

⌊
φ

N∑

i=2

ciFi − φ
⌋

=

N∑

i=2

ciFi+1 +

⌊
−

N∑

i=2

ciφ
i − φ

⌋
=

N∑

i=2

ciFi+1.

�
In terms of ρ(n), we may define {Rn} recursively. Clearly, R0 = R1 = 1. A representation

of n either ends in 0 in which case n = [ω0] where ρ([ω]) = n or else it ends in 1 in which case
n = [ω1] and so n− 1 = [ω0] = ρ([ω]). Hence, for all n ≥ 1,

Rn :=
∑

ρ(i)∈{n,n−1}
Ri.
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Note that the function ρ2(n) := ρ(ρ(n)) = bnφ2 + 1/φc is an example of a Beatty sequence
(i.e., of the form ban + bc) and so has a complementary Beatty sequence, namely T (n) :=
bnφ+ 2/φc. For example,

ρ2(n) = 0, 3, 5, 8, 11, 13, 16, 18, 21, 24, ...

and
T (n) = 1, 2, 4, 6, 7, 9, 10, 12, 14, 15, ...

The following characterization could be used as a new definition of {Rn}.
Theorem 4.3. For n ≥ 1, and T (n) := bnφ+ 2/φc,

Rρ2(n) = Rn +Rn−1

and
RT (n) = Rn.

Proof. Since φ ∈ (1, 2), ρ(n) ∈ {ρ(n + 1) − 1, ρ(n + 1) − 2}. Since 2φ > 3, (n − 1)φ + 1/φ ≤
(n+ 1)φ+ 1/φ− 3 and so ρ(n− 1) < ρ(n+ 1)− 2. Note that

T (n) = bnφ+ 2/φc = b(n+ 1)φ+ 1/φc − 1 = ρ(n+ 1)− 1

and therefore
RT (n) =

∑

ρ(i)∈{ρ(n+1)−1,ρ(n+1)−2}
Ri = Rn.

We show the first equation in the theorem by a counting argument. By the definition of
ρ(n), ρ2(n) = ρ(n) + n and so

ρ2(n+ 1)− ρ2(n) = ρ(n+ 1)− ρ(n) + 1 ∈ {2, 3}.
For a given n, if n = [ω] then ρ(ρ(n)) = [ω00] and ρ(ρ(n+ 1)) equals either [ω10] or [ω11].

Suppose ρ2(n + 1) − ρ2(n) = 2. The map ω 7→ ω00 is a bijection from representations of
n to the representations of ρ2(n) ending in 00 while the map ω 7→ ω10 is a bijection from
representations of n − 1 to the representations of ρ2(n) not ending in 00. Hence the first
equation holds.

A similar argument holds when ρ2(n+ 1)− ρ2(n) = 3. �
Remark 4.4. The sequence {Rn} is thus analogous to the alternative form of Stern’s sequence:

a2n = an, a2n−1 = an + an−1.

For every word ω := ω0ω1...ωn ∈ {0, 1}∗, we let |ω| := n + 1 denote the length of ω and
define a point in the complex plane

P (ω) :=

n∑

k=0

φ−k(2ωk − 1− i).

We form a graph G by putting an edge between P (ω) and P (ωj) for j = 0, 1, ω ∈ {0, 1}∗.
This graph is illustrated in Figure 4 below. Note further that P (ω) = P (ω′) iff |ω| = |ω′|
and [ω] = [ω′]. Hence, we may consistently assign the integer [ω] to each vertex P (ω) of the
graph. This shows that R[ω] is the number of downward paths from P (∗) to P (ω) and the
graph can be thought of as a kind of hyperbolic Pascal’s triangle. In fact, the portion between
0,01,010,0101,... and 1,10,101,1010,... is really just the “Fibonacci diatomic array” appearing
in [2].

For v a vertex of the Fibonacci representation graph, let [v] be the number of downward
paths from the top vertex to v.
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Figure 4. Fibonacci Representation Graph with words in {0, 1}∗.

Lemma 4.5. Along the nth row of the graph G, the function [v] forms an increasing sequence
of consecutive integers 0, . . . , Fn+2 − 2.

Proof. Iterates of ρ(n)+1 starting at 0 yields the sequence 0, 1, 3, 6, 11, ..., Fn+2−2, ... (provable
by induction). Hence the last value of [v] in the nth row is Fn+2 − 2. Since ρ(n+ 1)− ρ(n) ∈
{1, 2}, the lemma follows. �

A consequence is the following surprising formula:

ρ(ρ(ρ(n) + 1))) = ρ(ρ(ρ(n)) + 1) + 1.

This graph has numerous interesting properties:

• Every quadrilateral in the closure of the graph is either a square or a golden rectangle.
• All the squares (actually hexagons) are congruent in hyperbolic space with area lnφ

(and, as hexagons, each edge has length lnφ). The figure is thus an aperiodic tiling of
part of the upper half-plane H (and can be extended to all of H ) where all the tiles
are congruent!
• The points along any row, when embedded in R form part of a one-dimensional qua-

sicrystal. The lengths of the segments, appropriately scaled, form a word: φ, 1, φ, φ, 1, φ, ...,
the “Fibonacci word”.
• The vertices form a quasicrystal in H .
• The graph is the Cayley graph of the “Fibonacci monoid” 〈a, b|abb = baa〉.
• The graph can be constructed by the following recursive procedure starting with a

single vertex; from each of the latest generation of vertices, draw two edges going
southeast and southwest respectively, connect if a hexagon can be formed. Repeat.

Something new with respect to the study of {Rn} is the development of an analog of
Conway’s box function. For k < Fn−1, define

q(k, Fn) := Rk/RFn+k.

Lemma 4.6. For k = 0, ..., Fn−1 − 1,

q(T (k), Fn+1) = q(k, Fn)

and
q(ρ2(k), Fn+2) = q(k, Fn) ∗ q(k − 1, Fn)

where ∗ denotes “mediant addition”.
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Proof. Note that

T (n) = ρ(n+ 1)− 1

and so, if k ≤ Fn−1 − 1,

T (Fn + k) = Fn+1 + T (k).

Then

q(k, Fn) =
Rk

RFn+k
=

RT (k)

RT (Fn+k)

=
RT (k)

RFn+1+T (k)
= q(T (k), Fn+1)

and the first equation follows. Similarly,

q(k, Fn) ∗ q(k − 1, Fn) =
Rk

RFn+k
∗ Rk−1
RFn+k−1

=
Rk +Rk−1

RFn+k +RFn+k−1

=
Rρ2(k)

Rρ2(Fn+k)
=

Rρ2(k)

RFn+2+ρ2(k)

= q(ρ2(k), Fn+2)

and the second equation follows. �

As a consequence, if, as n→∞, k/Fn converges to x ∈ [0, 1/φ], then q(k, Fn) converges to
some value, say Q(x). The function Q : [0, 1/φ]→ [0, 1] is increasing and continuous.

Figure 5. Analogue of Conway’s box function

Note, however, it is not strictly increasing.

Lemma 4.7. For j = 0, ..., Fn−1 − 1,

RFn+2+j = RFn+j +Rj .
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Theorem 4.8. The inverse of Q satisfies, on its irrational points of continuity,

Q−1(x) =
∞∑

k=1

(−1)k+1

φ2(c1+c2+...+ck)−1

where x has continued fraction decomposition x = 1/(c1 + 1/(c2 + 1/(c3 + ...))).

Proof. Recall that RFm+k = RFm+1−k and so

1

n+ q(k, Fm)
=

RFm+1−k
Rk + nRFm+1−k

= q(Fm+1 − k, Fm+2n).

Letting k/Fm → x where x is a point of continuity of B, we see that

1

n+Q(x)
= Q

(
φ− x
φ2n

)
.

We may then rewrite:

φ−Q−1(x)

φ2n
= Q−1

(
1

n+ x

)

and the theorem follows. �

The function Q(x) extends past 1/φ but is no longer monotonic.

Figure 6. Analogue of Conway’s box function; larger domain
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Patterns can be found by looking at the “crushed array” which is found by stacking rows
of terms RFn−1, ..., RFn+1−2 sliding terms to the left on rows:

1
1 2
1 2 2
1 3 2 2 3
1 3 3 2 4 2 3 3
1 4 3 3 5 2 4 4 2 5 3 3 4
. . . . . . . . . . . . . . . . .

The kth column satisfies: xn+2 = xn + c with common difference c = Rk (R0 = 0).
Alternatively, xn+1 = xn + xn−1 − xn−2 (a “dying rabbit” sequence).

xn+1 = xn + xn−1 − xn−2

Characteristic polynomial factors x3 − x2 − x+ 1 = (x− 1)2(x+ 1) so every example is of the
form xn = a+ bn+ c(−1)n. Hence, {x2n} and {x2n+1} are arithmetic sequences.

xn+1 = xn + xn−1 − xn−3

e.g., [12, A023434] x4 − x3 − x2 + 1 = (x − 1)(x3 − x − 1), so every example is of the form
a+brn1 +crn2 +drn3 where r1 is the “plastic constant”, 1.32471795..., the smallest Pisot number,
and r2, r3 are its algebraic conjugates. Such examples are always a constant plus a Padovan
sequence yn+1 = yn−1 + yn−2. E.g., [12, A000931]

xn+1 = xn + xn−1 − xn−1,

is always a constant sequence.

5. Extending Binet’s formula

Let sF (n) be the number of terms in the Zeckendorf representation of n (e.g., sF (27) = 3).
Equivalently, sF (n) is the least number of Fibonacci numbers that sum to n. This sequence,
for n = 0, 1, ..., is [A007895] and starts

0, 1, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 3, 1, 2, 2, 2, 3, 2, 3, 3, ...

Using notation of the previous section, we see that sF (n) satisfies the recursion:

sF ([ω0]) = sF ([ω]), sF ([ω01]) = sF ([ω]) + 1

which translates to

sF (ρ(n)) = sF (n), sF (ρ2(n) + 1) = sF (n) + 1
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where ρ(n) is the “Fibonacci shift” defined in Section 4 (just after Proposition 4.1). The
crushed array for this sequence is

1
1
1 2
1 2 2
1 2 2 2 3
1 2 2 2 3 2 3 3
1 2 2 2 3 2 3 3 2 3 3 3 4
. . . . . . . . . . . . . . . . .

Note that columns are constant and that the limiting row is sF (n) + 1.
Replacing s2(n) by sF (n) in Binet’s formula for Stern’s sequence yields our third variant of

Stern’s sequence:

cn+1 =
n∑

k=0

σsF (k)σsF (n−k).

The sequence starts, for n = 1, 2, ...,

1, 1, 2, 3, 2, 4, 3, 3, 6, 4, 6, 6, 4, 8, 6, 7, 10, 6, 9, 7, 5, 11, 8, ....

It is always integral since cn+1 is an algebraic integer in Z[σ] invariant under complex conju-
gation.

A crushed array for this sequence is:

1
1
2 3
2 4 3
3 6 4 6 6
4 8 6 7 10 6 9 7
5 11 8 11 13 8 14 10 9 15 9 13 11
7 15 11 15 19 12 19 14 11 21 14 19 19

The first column, xn := {cFn} apparently satisfies the Padovan recurrence: xn+2 = xn +xn−1.
Moreover, every column is apparently a “dying rabbit” sequence: xn+1 = xn + xn−1 − xn−3
or, more precisely, if xn := cFn+k + ck, then xn+2 = xn + xn−1. This is indeed the case which
we now prove.

Theorem 5.1. For k ≤ Fn−2, cFn+2+k = cFn+k + ck + cFn−1+k.

Proof. Given a string X of integers, let X denote the reverse of string X, let X+ denote the
string X with 1 added to every integer, and let X− denote the string X with 1 subtracted

from every integer (e.g., if X = 1223, then X = 3221, X+ = 2334, and X
−

= 2110). If

X := t0...tk−1, let G(X) :=
∑k−1

j=0 σ
tj . Finally, given strings X, Y , we let XY denote the

concatenation of the two strings and X − Y denote the pointwise difference (e.g., if X = 457
and Y = 123 then XY = 457123 and X − Y = 334).

Let sn := sF (n) be the number of terms in the Zeckendorf representation of n. For any
interval I, let sI denote the string si1si2 ...sik where i1 < i2 < ... < ik and {i1, i2, ..., ik} = I∩N.
Then cn = G((s[0,n) − s[0,n))) where the difference of two strings is the string of differences.
Since we will use this formula, we let ∆I = sI − sI so that cn = G(∆[0,n)).
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By the definition of s, it’s clear that s[Fn,Fn+k) = s+[0,k) if k ≤ Fn−1. Since

s[0,Fn+k) = s[0,k)s[k,Fn)s[Fn,Fn+k) = s[0,k)s[k,Fn)s
+
[0,k),

it follows that

s[0,Fn+k) = s+[0,k)s[k,Fn)s[0,k),

and thus

∆[0,Fn+k) = ∆−[0,k)∆[k,Fn)∆
+
[0,k).

Hence, because σ−1 + σ = 1,

cFn+k = σ−1ck +G(∆[k,Fn)) + σck = ck +G(∆[k,Fn)). (∗)
Assuming k ≤ Fn−2, we see that

s[0,Fn+2+k) = s[0,k)s[k,Fn)s[Fn,Fn+k)s[Fn+k,Fn+1)s[Fn+1,Fn+1+k)s[Fn+1+k,Fn+2)s[Fn+2,Fn+2+k)

= s[0,k)s[k,Fn)s
+
[0,k)s

+
[k,Fn−1)

s+[0,k)s
+
[k,Fn)

s+[0,k)

and thus

s[0,Fn+2+k) = s+[0,k)s
+
[k,Fn)

s+[0,k)s
+
[k,Fn−1)

s+[0,k)s[k,Fn)s[0,k).

Hence,

∆[0,Fn+2+k) = ∆−[0,k)∆
−
[k,Fn)

∆[0,k)∆[k,Fn−1)∆[0,k)∆
+
[k,Fn+k)

∆+
[0,k).

Applying G:

cFn+2+k = σ−1ck + σ−1G(∆[k,Fn)) + ck +G(∆[k,Fn−1)) + ck + σG(∆[k,Fn)) + σck.

Again, since σ−1 + σ = 1, and by (*), we have

cFn+2+k = 3ck +G(∆[k,Fn)) +G(∆[k,Fn−1)) = ck + cFn+k + cFn−1+k.

�

There are many patterns in the crushed array. Two such patterns can be proven by induction
based on the previous theorem.

Corollary 5.2. cFn + cFn−1+2 = cFn+1 and cFn+1 = cFn+1+2 for all n.

We have many other questions or apparent properties, all waiting for a proof (though, of
course, of varying difficulty).

• Five inequalities: cσ2(n)+1 ≥ cbnφ2c ≥ cbnφc ≥ cσ(n) ≥ cn ≥ 0.
• The minimum of each row in the crushed array is the leftmost element. (If true, then

the last inequality above, cn ≥ 0, is true).
• If cn ≥ 0 for all n, then what do these numbers count?
• The following sequences have crushed arrays with columns satisfying xn+1 = xn +
xn−1 − xn−j for given j:

{sF (n)} has j = 1,

{Rn} has j = 2,

{cn} has j = 3.

Is there a general principle at work in this progression? Is there a similarly defined
sequence with j = 4 for example?
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BALANCING-LIKE SEQUENCES ASSOCIATED WITH INTEGRAL

STANDARD DEVIATIONS OF CONSECUTIVE NATURAL NUMBERS

G. K. PANDA AND A. K. PANDA

Abstract. The variance of first n natural numbers is n2−1
12

and is a natural number if n
is odd, n > 1 and is not a multiple of 3.The values of n corresponding to integral standard
deviations constitute a sequence behaving like the sequence of Lucas-balancing numbers and
the corresponding standard deviations constitute a sequence having some properties identical
with balancing numbers. The factorization of the standard deviation sequence results in two
other interesting sequences sharing important properties with the two original sequences.

1. INTRODUCTION

The concept of balancing numbers was first given by Behera and Panda [1] in connection
with the Diophantine equation 1+2+· · ·+(n−1) = (n+1)+(n+2)+· · ·+(n+r), wherein, they
call n a balancing number and r the balancer corresponding to n. The nth balancing number
is denoted by Bn and the balancing numbers satisfy the binary recurrence Bn+1 = 6Bn−Bn−1
with B0 = 0 and B1 = 1 [1]. In [3], Panda explored many fascinating properties of balancing
numbers, some of them are similar to the corresponding results on Fibonacci numbers, while
some others are more exciting.

A detailed study of balancing and some related number sequences is available in [5]. In a
latter paper [4], as a generalization of the sequence of balancing numbers, Panda and Rout
studied a class of binary recurrences defined by xn+1 = Axn −Bxn−1 with x0 = 0 and x1 = 1
where A and B are any natural numbers. They proved that when B = 1 and A /∈ {1, 2},
sequences arising out of these recurrences have many important and interesting properties
identical to those of balancing numbers. We, therefore, prefer to call this class of sequences as
balancing-like sequences.

For each natural number n, 8B2
n + 1 is a perfect square and Cn =

√
8B2

n + 1 is called
a Lucas-balancing number [5]. We can, therefore, call {Cn}, the Lucas-balancing sequence.
In a similar manner, if xn is a balancing-like sequence with kx2n + 1 is a perfect square for

some natural number k and for all n and yn =
√
kx2n + 1, we call {yn} a Lucas-balancing-like

sequence.
Khan and Kwong [2] called sequences arising out of the above class of recurrences corre-

sponding to B = 1 as generalized natural number sequences because of their similarity with
natural numbers with respect to certain properties. Observe that, the sequence of balancing
numbers is a member of this class corresponding to A = 6, B = 1. In this paper, we establish
the close association of another sequence of this class to an interesting Diophantine problem
of basic statistics.

The variance of the real numbers x1,x2,· · · ,xn is given by 1
nΣn

i=1(xi−x̄)2, where x̄ = 1
nΣn

i=1xi
is the mean of x1,x2,· · · xn. Using the above formula, it can be checked that the variance of
first n natural numbers (and hence the variance of any n consecutive natural numbers) is

s2n = n2−1
12 . It is easy to see that this variance is a natural number if and only if n is odd but
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not a multiple of 3. Our focus is on those values of n that correspond to integral values of
the standard deviation sn. Observe that for some N , sN is a natural number say, sN = σ if
N2 − 1 = 12σ2 which is equivalent to the Pell’s equation N2 − 12σ2 = 1. The fundamental
solution corresponds to N1 = 7 and σ1 = 2. Hence, the totality of solutions is given by

Nk + 2
√

3σk = (7 + 4
√

3)k; k = 1, 2, · · · . (1.1)

This gives

Nk =
(7 + 4

√
3)k + (7− 4

√
3)k

2
(1.2)

and

σk =
(7 + 4

√
3)k − (7− 4

√
3)k

4
√

3
. (1.3)

Because (Nk, σk) is a solution of the Pell’s equation N2 − 12σ2 = 1, both Nk and σk are
natural numbers for each k.

2. RECURRENCE RELATIONS FOR Nk AND σk

In the last section, we obtained the Binet forms for Nk and σk where σk is the standard
deviation of Nk consecutive natural numbers. Notice that the standard deviation of a single
number is zero and hence we may assume that N0 = 1 and σ0 = 0, and indeed, from the last
section, we already have N1 = 7 and σ1 = 2. Observe that un = (7+4

√
3)n and vn = (7−4

√
3)n

both satisfy the binary recurrences

un+1 = 14un − un−1, vn+1 = 14vn − vn−1;
hence, the linear binary recurrences for both {Nk} and {σk} are given by

Nk+1 = 14Nk −Nk−1;N0 = 1, N1 = 7

and
σk+1 = 14σk − σk−1;σ0 = 0, σ1 = 2.

The first five terms of both sequences are thus N1 = 7, N2 = 97, N3 = 1351, N4 = 18817, N5 =
262087 and σ1 = 2, σ2 = 28, σ3 = 390, σ4 = 5432, σ5 = 75658. Using the above binary
recurrences for Nk and σk, some useful results can be obtained. The following theorem deals
with two identities in which Nk and σk behave like hyperbolic functions.

Theorem 2.1. For natural numbers k and l, σk+l = σkNl+Nkσl and Nk+l = NkNl+12σkσl.

Proof. Since the identity

Nk + 2
√

3σk = (7 + 4
√

3)k

holds for each natural number k, it follows that

Nk+l + 2
√

3σk+l = (7 + 4
√

3)k+l = (7 + 4
√

3)k(7 + 4
√

3)l

= (Nk + 2
√

3σk)(Nl + 2
√

3σl)

= (NkNl + 12σkσl) + 2
√

3(σkNl +Nkσl)

Comparing the rational and irrational parts,the desired follows. �
The following corollary is a direct consequence of Theorem 2.1

Corollary 2.2. If k ∈ N , σk+1 = 7σk + 2Nk, Nk+1 = 7Nk + 24σk, σ2k = 2σkNk, N2k =
N2
k + 12σ2k.
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Theorem 2.1 can be used for the derivation of another similar result. The following theorem
provides formulas for σk−l and Nk−l in terms of Nk, Nl, σk and σl.

Theorem 2.3. If k and l are natural numbers with k > l, then σk−l = σkNl − Nkσl and
Nk−l = NkNl − 12σkσl.

Proof. By virtue of Theorem 2.1,

σk = σ(k−l)+l = σk−lNl +Nk−lσl

and
Nk = N(k−l)+l = 12σk−lσl +Nk−lNl.

Solving these two equations for σk−l and Nk−l, we obtain

σk−l =

∣∣∣∣
σk σl
Nk Nl

∣∣∣∣
∣∣∣∣
Nl σl

12σl Nl

∣∣∣∣
=
σkNl −Nkσl
N2
l − 12σ2l

and

Nk−l =

∣∣∣∣
Nk σk

12σl Nk

∣∣∣∣
∣∣∣∣
Nl σl

12σl Nl

∣∣∣∣
=
NkNl − 12σkσl
N2
l − 12σ2l

.

Since for each natural number l, (Nl, σl) is a solution of the Pell equation N2 − 12σ2 = 1, the
proof is complete. �

The following corollary follows from Theorem 2.3 in the exactly same way Corollary 2.2
follows from Theorem 2.1.

Corollary 2.4. For any natural number k > 1, σk−1 = 7σk − 2Nk and Nk−1 = 7Nk − 24σk.

Theorems 2.1 and 2.3 can be utilized to form interesting higher order non-linear recurrences
for both {Nk} and {σk} sequences. The following theorem is crucial in this regard.

Theorem 2.5. If k and l are natural numbers with k > l, σk−1σk+1 = σ2k−σ2l and Nk−lNk+l+
1 = N2

k +N2
l .

Proof. By virtue of Theorems 2.1 and 2.3,

σk−lσk+l = σ2kN
2
l −N2

kσ
2
l

and since for each natural number r, N2
r = 12σ2r + 1,

σk−lσk+l = σ2k(12σ2l + 1)− σ2l (12σ2k + 1) = σ2k − σ2l .
Further,

Nk−lNk+l = N2
kN

2
l − 144σ2kσ

2
l = N2

kN
2
l − 144.

N2
k − 1

12
.
N2
l − 1

12
implies

Nk−lNk+l + 1 = N2
k +N2

l .

�
The following corollary is a direct consequence of Theorem 2.5.

Corollary 2.6. For any natural number k > 1, σk−1σk+1 = σ2k−4 and Nk−1Nk+1 = N2
k + 48.
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In view of Theorem 2.5, we also have σ2k+1 − σ2k = 2σ2k+1. Adding this identity for k =
0, 1, · · · , l − 1, we get the identity

2(σ1 + σ3 + · · ·+ σ2l−1) = σ2l .

This proves

Corollary 2.7. Twice the sum first l odd ordered terms of the standard deviation sequence is
equal to the variance of first Nl natural numbers.

Again from Theorem 2.5,

7N2k+1 + 1 = N2
k+1 +N2

k

Summing over k = 0 to k = l − 1, we find

Corollary 2.8. For each natural number l, 7(N1 +N3 + · · ·+N2l−1) + (l− 1) = 2(N2
1 +N2

2 +
· · ·+N2

l−l) +N2
l .

3. BALANCING-LIKE SEQUENCES DERIVED FROM {Nk} AND {σk}
The linear binary recurrences for the sequences {Nk} and {σk} along with their proper-

ties suggest that{σk2 } is a balancing-like sequence whereas {Nk} is the corresponding Lucas-
balancing-like sequence [3]. In addition, these sequences are closely related to two other
sequences that can also be described by similar binary recurrences.

The following theorem deals with a sequence derived from {Nk}, the terms of which are
factors of corresponding terms of the sequence {σk} .

Theorem 3.1. For each natural number k, Nk+1
2 is a perfect square. Further, Mk =

√
Nk+1

2

divides σk.

Proof. By virtue of Theorem 2.1 and the Pell’s equation N2 − 12σ2 = 1

N2k + 1

2
=
N2
k + 12σ2k + 1

2
= N2

k

implying that M2k = Nk. Since σ2k = 2σkNk, M2k divides σ2k for each natural number k.
Further

N2k+1 + 1

2
=

7N2k + 24σk + 1

2
=

7(N2
k + 12σ2k) + 48σkNk + 1

2

= 84σ2k + 24σkNk + 4 = 36σ2k + 24σkNk + 4N2
k = (6σk + 2Nk)

2 = (7σk + 2Nk − σk)2

= (σk+1 − σk)2

from which we obtain M2k+1 = σk+1−σk. By virtue of Theorem 2.5, σ2k+1− σ2k = 2σ2k+1 and
thus

σ2k+1 =
σk+1 + σk

2
(σk+1 − σk) = δk(σk+1 − σk)

where δk =
σk+1+σk

2 is a natural number since σk is even for each k and hence M2k+1 divides
σ2k+1. �

We have shown while proving Theorem 3.1 that M2k+1 = σk+1 − σk. Thus, we have

Corollary 3.2. The sum of first l odd terms of the sequence {Mk} is equal to the standard
deviation of the first Nl natural numbers.

190 VOLUME 52, NUMBER 5



BALANCING-LIKE SEQUENCES

By virtue of Theorem 3.1, Mk divides σk for each natural number k. Therefore, it is natural
to study the sequence Lk = σk

Mk
. From the proof of Theorem 3.1, it follows that L2k = 2σk

and L2k+1 =
(σk+1+σk)

2 .
Our next objective is to show that the sequence {Lk}∞k=1 is a balancing-like sequence and

{Mk}∞k=1 is the corresponding Lucas-balancing-like sequence. This claim is validated by the
following theorem.

Theorem 3.3. For each natural number k, M2
k = 3L2

k + 1. Further, the sequences {Lk}∞k=1
and {Mk}∞k=1 satisfy the binary recurrences Lk+1 = 4Lk−Lk−1, k ≥ 1 with L0 = 0 and L1 = 1
and Mk+1 = 4Mk −Mk−1, k ≥ 1 with M0 = 1 and M1 = 2.

Proof. In view of the Pell’s equation N2−12σ2 = 1, Corollary 2.4 and the discussion following
Corollary 3.2,

3L2
2k + 1 = 3(2σk)

2 + 1 = N2
k = M2

2k

and

3L2
2k−1 + 1 = 3(

σk + σk−1
2

)2 + 1 = 3(4σk −Nk)
2 + 1

= (6σk − 2Nk)
2 = (σk − σk−1)2 = M2

2k−1.

To this end, using Corollary 2.2, we get

4M2k+1 −M2k = 4(σk+1 − σk)−Nk = 4(6σk + 2Nk)−Nk = Nk+1 = M2k+2

and

4M2k −M2k−1 = 4Nk − (σk+1 − σk) = 4Nk − (−6σk + 2Nk)

= 6σk + 2Nk = σk+1 − σk = M2k+1.

Thus, the sequence Mk satisfies the binary recurrence

Mk+1 = 4Mk −Mk−1.

Similarly, the identities

4L2k+1 − L2k = 2(σk+1 + σk)− 2σk = 2σk+1 = L2k+2

and

4L2k − L2k−1 = 8σk −
σk + σk−1

2
= 8σk − (4σk −Nk = 4σk +Nk =

σk + σk
2

= L2k+1

confirm that the sequence Lk satisfies the binary recurrences Lk+1 = 4Lk − Lk−1. �
It is easy to check that the Binet forms of the sequences {Lk} and {Mk} are respectively

Lk =
(2 +

√
3)k − (2−

√
3)k

2
√

3

and

Mk =
(2 +

√
3)k + (2−

√
3)k

2
k = 1, 2, · · · .

Using the Binet forms or otherwise, the interested reader is invited the following identities.

(1) L1 + L3 + · · ·+ L2n−1) = L2
n,

(2) M1 +M3 + · · ·+M2n−1 = L2n
2 ,

(3) L2 + L4 + · · ·+ L2k = LkLk+1,

(4) M2 +M4 + · · ·+M2k =
(L2k+1−1)

2 ,
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(5) Lx+y = LxMy +MxLy,
(6) Mx+y = MxMy + 3LxLy.
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NORMIC CONTINUED FRACTIONS IN TOTALLY AND TAMELY

RAMIFIED EXTENSIONS OF LOCAL FIELDS

PANTELIMON STĂNICĂ

Abstract. The goal of this paper is to introduce a new way of constructing continued frac-
tions in a Galois, totally and tamely ramified extension of local fields. We take a set of
elements of a special form using the norm of that extension and we show that the set such
defined is dense in the field by the means of continued fractions.

1. Introduction

A ring A is a discrete valuation ring (DVR) if it has a unique maximal ideal mA, it is a
principal ideal domain, but not a field. The residue field of A is the quotient field kA = A/mA.
Recall that a complete discrete valuation ring is a DVR that is complete with respect to the
topology in which {mn

A}n≥1 forms a basis of open neighborhoods of 0; that is, every series∑∞
j=0 ajπ

j converges to an element of A, where π is a generator (often called uniformizer) of

the (principal) maximal ideal mA.
Throughout this paper, k denotes a local field with a discrete valuation vk, which is a

field of fractions of a complete discrete valuation ring Ak [7, §2, P.3], with finite residue class
fields. Its maximal ideal is πk, its finite residue field is k = Ak/πk, and Uk = Ak − πk is the
multiplicative group of invertible elements of Ak. The local fields are the p-adic fields, which
are finite extensions of the field Qp of p-adic numbers (characteristic char = 0), and the finite
extensions of the power series field Fp((x)) (case char = p > 0); these are also locally compact,
but we do not need that here. We refer to [7, 3], for example, for more on this topic.

If K is a finite extension of k (here, we write this as k ↪→ K), we denote by AK the integral
closure of Ak in K. We define vK, ΠK, UK, K as before. We will always assume that k ↪→ K
is Galois, totally and tamely ramified extension. The ramification index of K/k, which is the
degree of this extension will be denoted by e. We also assume that vk is the restriction to
k of vK, so we will use the same notation v for both of them. Choose Π ∈ K, π ∈ k prime
elements, such that Πe = π (see [5, Theorem 5.11]). Denoting the norm of K/k by NK/k, it is
known that

v(x) =
1

e
v
(
NK/k(x)

)
, ∀ x ∈ K.

and we may assume that v(Π) = 1 and v(π) = e.
For easy writing, we use the notation [α, β, γ, . . .] to mean

α+
1

β +
1

γ +
1

. . .

.

We want to mention that there are several nonequivalent definitions of continued fractions
in the the field Qp of p-adic numbers (see [1, 2] and the references therein). There are similar-
ities as well as differences between these definitions and the classical real continued fractions.
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Among other continued fractions approaches, we want to mention the expansion of α ∈ Qp in
the form

α = [b0, b1, . . .],

where bj ∈ Z
[
1
p

]
∩ (0, p) (see Ruban [6]), and bj ∈ Z

[
1
p

]
∩
(
−p

2 ,
p
2

)
(see Browkin [1, 2] and the

references therein).
The groups of norms in such extensions play a very important role in class field theory. The

goal of this paper is to introduce a new way of constructing continued fractions in a Galois,
totally and tamely ramified extension of local fields K/k. We take a set of elements of a
special form using the norm of that extension and we show that the defined set is dense in the
larger field K by the means of continued fractions. This will give a glance to the “topological
distance” between the set of norms of K/k and K. The approximation will be exact, and we
will give the degree of the approximation as exact as we can by our method. In the last section
we solve an equation in two variables using our continued fraction expansion.

We take A ∪ {0} to be a complete system of representatives of K = k, such that A ⊂ Ak,
Ap = A where p is the (prime) characteristic of the residue field k. A has the structure of a
group that is isomorphic to k− {0} = K− {0} [4, Theorem 4.10]. Put

< :=
{

[Πp1N0c0, . . . ,Π
psNscs] | pi ∈ (1− e)Z, ci ∈ A1−e

and ∃xi ∈ K, NK/k(xi) = Ni, i = 1, . . . , s
}
.

We define the choice map c : UK → A∗ = A−{0} by c(u) := a, where a is the unique element
of A such that u ≡ a (mod Π) [4, Theorem 4.10]. The map c has the following properties:

(i) c is surjective and c|A = 1A.
(ii) c(u1u2) = c(u1)c(u2).

(iii) c(u−1) = c(u)−1.

2. The normic continued fractions approach

We shall need the following lemma.

Lemma 2.1. We have

v
(
1 + Πx−NK/k(1 + Πx)

)
≥ 1 + v(x), whenever v(x) ≥ 0.

Proof. We have

1 + Πx−NK/k(1 + Πx) = 1 + Πx− (1 + Πx)(1 + Π(1)x) · · · (1 + Π(e−1)x)

= Πx− TrK/k(Πx)−
∑

Π(i)Π(j)x(i)x(j) − · · ·

where x(i),Π(i) are the conjugates of x,Π in the extension. Since v(Π(i)) = v(Π) and v(x(i)) =

v(x) for all conjugates Π(i) of Π and x(i) of x, we get

v
(
1 + Πx−NK/k(1 + Πx)

)
≥ min

(
v(Πx), v

(
TrK/k(Πx)

)
, . . .

)
= 1 + v(x)

when v(x) ≥ 0. We have used here the fact that we deal with local fields, hence with Henselian
fields (fields where Hensel’s lemma holds, that is, a simple root in a residue field can be lifted
in the field above). �

Take an element α ∈ K − {0}, and define the (finite or infinite) sequences {αn}n, {an}n,
{un}n as follows:

α0 :=α, a0 := NK/k(α), u0 := αΠ−v(α)
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If αn, an, un are defined, then

αn+1 :=
(
αn − c(un)1−eΠ(1−e)v(αn)NK/k(αn)

)−1
, (2.1)

(if the inverse exists, otherwise the sequence “terminates” at n)

an+1 :=NK/k(αn+1), un+1 := αn+1Π
−v(αn+1),

where c is the choice map defined in Section 1. Putting

αn = Πv(αn)un = Πv(αn)c(un)u′n
where u′n is a unit in UK which starts with 1 in the canonical expansion after powers of Π and
coefficients in A, that is, u′n = 1 + Πxn and v(xn) ≥ 0, we see that (2.1) can be rewritten in
the following form:

αn+1 = (c(un))−1Π−v(αn)
(
u′n −NK/k(u′n)

)−1
. (2.2)

Thus, the sequence terminates if u′n − NK/k(u′n) = 0 (we will deal with this condition in
Theorem 3.5).

Our intuition tells us that α 6= 0 can be expanded as

c(u0)
1−ea0Π(1−e)v(α0) +

1

c(u1)
1−ea1Π(1−e)v(α1) +

1

c(u2)
1−ea2Π(1−e)v(α2) +

1

. . .

and proving this and other basic properties will be our goal in the main section of this paper.

3. The results

We start with a lemma on the valuation of αn.

Lemma 3.1. With the notations of the previous section, let

tn := v
(
un
′ −NK/k(un

′)
)
.

We assume that NK/k(un
′) 6= un

′, hence tn <∞. Then

v(αnαn+1) = −tn < 0, for all n ∈ N. (3.1)

Furthermore,

v(αn+1) = −tn + tn−1 + · · ·+ (−1)nt0 + (−1)nv(α0), for all n ∈ N.

Proof. We first observe that αn+1 exists since NK/k(un
′) 6= un

′. The first claim is immediate
from Lemma 2.1 and equation (2.2). The last claim follows by induction. �

We will define now the approximation of elements of K with elements of <. Take

p−1 := 1, q−1 := 0, p0 := a0c(u0)
1−eΠ(1−e)v(α0), q0 := 1, (3.2)

and

pn+1 :=an+1c(un+1)
1−eΠ(1−e)v(αn+1)pn + pn−1,

qn+1 :=an+1c(un+1)
1−eΠ(1−e)v(αn+1)qn + qn−1,

(3.3)

assuming that αn+1 defined by (2.1) exists. We will call
{
pn
qn

}
n∈N∪{−1}

the convergents of α

and we observe that they belong to the set <.
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Lemma 3.2. We have
qn+1pn − pn+1qn = (−1)n.

Proof. Follows from the definitions (3.2) and (3.3) of pn and qn. �
Theorem 3.3. Let α0 ∈ K∗. We have v(q0) = 0 and

v(pn) = v(α0α1 · · ·αn)

v(qn) = v(α1α2 . . . αn) ≤ −
[
n+ 1

2

]
− ε v(α0), for all n > 0,

(3.4)

where ε = 0, 1, if n is even, respectively, odd.

Proof. The first assertion follows from (3.2) and the second claim will be proved by induction.
Obviously, from (3.2) and (3.3) we get v(p0) = v(α0) and v(p1) = v(α0α1). Now we show that

v(pn+1) = v(α0α1 · · ·αn+1),

using the induction assumption. So,

v(pn+1) = v(an+1c(un+1)
(1−e)Π(1−e)v(αn+1)pn + pn−1)

= min{v(α0 · · ·αn+1), v(α0 · · ·αn−1)}
= v(α0α1 · · ·αn+1),

since v(αnαn+1) = −tn < 0, according to the Lemma 3.1.
The second claim of (3.3) will also be proved by induction. From (3.3), for n = 1 we have

v(q1) = (1− e)v(α1) + v(a1) + v(q0) = v(α1) + v(q0) = v(α1).

Suppose that the assertion is true for q1, . . . , qn, for n ≥ 2. Then,

v(qn+1) = v
(
c(un+1)

1−ean+1Π
(1−e)v(αn+1)qn + qn−1

)

= v(αn+1) + v(qn) = v(α1α2 · · ·αn+1),

since

v(an+1c(un+1)
1−eΠ(1−e)v(αn+1)qn) = (1− e)v(αn+1) + v(an+1) + v(qn)

= v(αn+1) + v(qn) = v(α1α2 · · ·αn+1)

< v(α1α2 · · ·αn−1) = v(qn−1),

using (3.1).
We now show the inequality (3.3) satisfied by v(qn). From Lemma 3.1 and the previous

result of this theorem we have

v(q2m) = v(α1α2) + · · ·+ v(α2m−1α2m)

= −t1 − t2 − · · · t2m−1 ≤ −m
and

v(q2m+1) = v(α0α1) + · · ·+ v(α2mα2m+1)− v(α0)

= −t0 − t1 − · · · − t2m − v(α0) ≤ −(m+ 1)− v(α0).

The theorem is shown. �

Now we will study the behavior of the sequence
{
pn
qn

}
n∈N∪{−1}

. We shall prove now that

our sequence is Cauchy and, consequently, it has a limit.
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Theorem 3.4. The sequence
{
pn
qn

}
n∈N∪{−1}

is convergent and its limit is α.

Proof. First observe that

v

(
pn+1

qn+1
− pn
qn

)
= v

(
(−1)n+1

qnqn+1

)
= −v(qnqn+1)

= v(α0) + t0 + t1 + · · ·+ tn ≥ n+ 1 + v(α0)

and

v

(
ps
qs
− pr
qr

)
≥ min

(
v

(
ps
qs
− ps−1
qs−1

)
, . . . , v

(
pr+1

qr+1
− pr
qr

))

= v(α0) + t0 + t1 + · · ·+ tr →∞ as s, r →∞
assuming, without loss of generality, that s ≥ r.

Next, take

v

(
α− pn

qn

)
= v

(
(−1)n

qn(αn+1qn + qn−1)

)

= −v(qn)− v(αn+1qn + qn−1)

since

α =
αn+1pn + pn−1
αn+1qn + qn−1

,

which follows from our definition (2.1) of αn. Now set wn+1 := αn+1qn + qn−1 and estimate

wn+1 = αn+1(qn + α−1n+1qn−1)

= αn+1

(
qn +

(
αn − anc(un)1−eΠ(1−e)v(αn)

)
qn−1

)

= αn+1

(
qn + αnqn−1 − anc(un)1−eΠ(1−e)v(αn)qn−1

)

= αn+1(αnqn−1 + qn−2) = αn+1wn = α1 · · ·αn+1. (3.5)

Hence

v

(
α− pn

qn

)
= −v(qn)− v(α1 · · ·αn+1) = −v(qnqn+1)→∞,

as n→∞, so α is the limit of our sequence. �

It is known that in the classical case, finite continued fractions with integer terms represent
rational numbers. We investigate the same problem next for our continued fraction expansion.

Theorem 3.5. The sequence {αn}n is finite if and only if there exists n such that

αn = aξe−1Πv(αn), (3.6)

where a ∈ A and ξe−1 is an (e− 1)–root of unity in k.

Proof. Our sequence terminates if and only if there exists n such that

un − c(un)1−eNK/k(un) = 0.

This is the same as saying that

1 + Πxn = NK/k (1 + Πxn) ∈ k
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where un = c(un) (1 + Πxn), for an element xn ∈ K with v(xn) ≥ 0. So there exists an element
x′n ∈ k such that

xn = x′nΠe−1 and v(x′n) ≥ 0.

We also must have the condition

NK/k(1 + πx′n) = 1 + πx′n

fulfilled, which is equivalent to (knowing that (1 + πx′n) ∈ k)

NK/k(1 + πx′n) = (1 + πx′n)e = 1 + πx′n. (3.7)

Obviously, 1 + πx′n can never be zero, so the only case we could have (3.7) is when

(1 + πx′n)e−1 = 1,

hence un must be of the form

un = c(un)ξe−1 and αn = c(un)ξe−1Πv(αn) (3.8)

where ξe−1 = 1 + Πxn ∈ k is an (e− 1)-root of unity. �
Remark 3.6. In the p-adic field Qp, the condition (3.6) could be re-written as Logp(αn) = 0,
in terms of the analytic continuation of the usual logarithm, called the Iwasawa logarithm

Logp, (for example, if x ∈ Z∗p, then Logp(x) = 1
p−1Logp(xp−1) = 1

1−p
∑

k≥1
(1−xp−1)k

k ), but this

gives no other indication on the set of elements of the form (3.6).

4. An application

We will use our continued fraction process to solve an equation, namely

ax+ by + d = 0 (4.1)

where

gcd(a, b) = 1 and a, b, d ∈ AK

are such that
a

b
− c

(a
b

Πv( b
a
)
)(1−e)

Π(1−e)v(a
b
) NK/k

(a
b

)
= ξe−1

is an (e− 1)-root of unity in a Galois, totally and tamely ramified extension k ↪→ K of degree
e and

v(d) ≥ v
(
b

a

)
.

We are looking for solutions in AK. Suppose that we found a solution of (4.1), say (x0, y0).
Thus

ax0 + by0 + d = 0. (4.2)

Subtracting (4.2) from (4.1) we get

a(x− x0) + b(y − y0) = 0

or

y − y0 =
a

b
(x0 − x).

Since gcd(a, b) = 1 we must have b
∣∣(x− x0) in AK, so

x =x0 − bt
y =y0 + at

(4.3)
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for some t ∈ AK. So we have showed that if (x, y) is solution of (4.1), then it must satisfies
(4.3) for some t ∈ AK. Conversely, we take (x1, y1) of the form (4.3) and we show that it is a
solution of (4.1). We have

ax1 + by1 + d = ax0 + by0 + d+ abt1 − abt1 = ax0 + by0 + d = 0.

We must find now a particular solution of (4.1). This can be done using our continued fraction
expansion for α0 = a/b. We will use the notations of Section 2. Since

α1 =

(
a

b
− c

(a
b

Πv( b
a
)
)(1−e)

Π(1−e)v(a
b
)NK/k

(a
b

))−1

is an (e− 1)-root of unity this implies that α2 does not exist. Hence

p1
q1

=
a

b

and
p1
q1
− p0
q0

=
1

q1q0
or

a

b
− p0
q0

=
1

bq0
.

Furthermore, aq0 − bp0 = 1 or aq0 − bp0 − 1 = 0. Multiplying the previous relation by −d we
get

−adq0 + bdp0 + d = 0

and taking

x0 =− dq0 = −d

y0 = dp0 = d a0 c
(a
b

Πv(a
b
)
)1−e

Π(1−e)v(a
b
)

(4.4)

we have produced a particular solution of (4.1) and consequently, we have found all the solution
of our equation in algebraic integers of the extension k ↪→ K. However we must make sure that
our particular solution is in AK, so we have to check that both v(x0) and v(y0) are positive.
We have no trouble with x0 since q0 = 1 and d ∈ AK. For y0 we get

v(y0) = v(d) + v(p0) = v(d) + v
(
a0c(u0)

1−eΠ(1−e)v(a
b
)
)

= v(d) + v
(a
b

)
≥ 0

and we have solved the problem.
Acknowledgement. We thank the referee for a careful reading of the paper and for comments
which improved its quality.
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COMPOSITIONS AND RECURRENCES

WILLIAM WEBB AND NATHAN HAMLIN

Abstract. If an denotes the number of compositions of n into parts in a set S, we show
that an satisfies a recurrence equation if and only if S = S1 ∪ S2 where S1 is a finite set and
S2 = {k ≥ k0 : k ≡ r1, r2, ..., rh (mod m)}.

1. Introduction

Let an denote the number of compositions of n subject to some system of constraints C.
If the constraint is using only odd parts, then an = Fn (the nth Fibonacci number). Thus,
5 = 3 + 1 + 1 = 1 + 3 + 1 = 1 + 1 + 3 = 1 + 1 + 1 + 1 + 1 has 5 = F5 compositions. If the
constraint is using only parts ≥ 2, then an = Fn−1, and if only parts 1 and 2 are allowed an
= Fn+1. All of these are mentioned in the OEIS for the Fibonacci sequence A000045 [10]. In
[6] problem 5.4.13 asks to show that an is the nth Padovan number, satisfying the recurrence
an+3 = an+1 + an, if only odd parts ≥ 3 are allowed. The Padovan numbers also count the
number of compositions into parts congruent to 2 (mod 3). These results are also mentioned
in the OEIS for the Padovan sequence A000931.

In some recent papers other constraints on the allowed compositions include: no part of a
specified size t [3] [4] [7], at least one part of size t [1], parts of size 1 and t [2], and no parts
divisible by 3 [9]. Some of these papers deal with the recurrence satisfied by an, others with
expressions of an as sums of other quantities.

In all the examples described above, except for “at least one part of size t”, the type of
constraint C is of the form requiring all parts to be chosen from a specified set S. This leads
naturally to the question: for which such sets S does an satisfy a linear, homogeneous, constant
coefficient recurrence equation? Our goal is to answer this question.

2. Generating Functions

We will approach this problem using ordinary generating functions (OGF). One of the key
properties of a recurrence sequence an is that its OGF is a rational function P (x)/Q(x) where
deg P (x) < deg Q(x) [6]. If deg P (x) ≥ deg Q(x), then an satisfies a recurrence equation
except for a finite number of initial terms.

Theorem 2.1. The number of compositions of n into parts from a set S of positive integers
satisfies a linear, homogeneous, constant coefficient recurrence equation, except possibly for
finitely many terms, if and only if S = S1 ∪ S2 where S1 is a finite set, and there are residues
r1, r2, ..., rh modulo m such that S2 = {k ≥ k0 : k ≡ r1, r2, ..., rh (mod m)}.
Proof. The number of compositions of n into exactly p parts from a set S, is the number of
solutions of: y1 + y2 + ... + yp = n, n ≥ 1, where yi ∈ S.
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The corresponding OGF is:

fp(x) = (
∑

s∈S
xs)p = f(x)p (2.1)

If an counts the number of such compositions into any number of parts, then its OGF is:

∑

n>0
anx

n =
∞∑

p=1

fp(x) =
∞∑

p=1

f(x)p =
f(x)

1− f(x)
(2.2)

Thus, an satisfies a recurrence equation if and only if: f(x)
1−f(x) = P (x)

Q(x) is a rational function,

which is true if and only if f(x) = P (x)
P (x)+Q(x) is a rational function, which is true if and only if

f(x) is the OGF of a sequence which satisfies a recurrence equation except possibly for finitely
many terms. Suppose this recurrence equation is of order t. Since all of the coefficients of
f(x) are 0 or 1, there are only finitely many different blocks of length t. Hence the coefficients
of f(x) must be periodic, but not necessarily purely periodic. That is, S must be of the form
described in the theorem. �

3. Some Implications

Theorem 2.1 shows that all of the examples in the introduction satisfy a recurrence equation.
Note that the number of compositions with at least one part of size t is the same as all
compositions minus those with no parts of size t. The OGF for no parts of size t uses f(x) =∑

i>1 x
i − xt = x

1−x − xt = x−xt+xt+1

1−x , which is a rational function.
Example 1. If an counts the number of compositions with no parts of sizes t1, t2, ... , tk,

then from the proof of Theorem 2.1, the OGF for an is f(x)
1−f(x) where

f(x) =
∑

j>1
xj − xt1 − xt2 − ...− xtk =

x− xt1 + xt1+1 − xt2 + xt2+1 − ...+ xtk+1

1− x . (3.1)

Hence, the OGF for an is

x− xt1 + xt1+1 − ...+ xtk+1

1− 2x+ xt1 − xt1+1 + ...− xtk+1
. (3.2)

Thus, an satisfies the recurrence equation

an+tk+1 − 2an+tk + an+tk−t1+1 − ...− an = 0. (3.3)

Theorem 2.1 also proves that many types of compositions do no satisfy a recurrence equation.
For example, the number of compositions into prime numbers, squares, or Fibonacci numbers
do not satisfy a recurrence, since these sets are not of the type described in Theorem 2.1.
However, compositions into numbers which are either primes or Fibonacci numbers less than
100 are counted by a recurrence since this is a finite set.

Example 2. If bn counts the number of compositions of n into parts which are congruent
to r1, r2, ..., rh modulo m, 0 ≤ ri ≤ m− 1, then S = {s: s ≡ r1, r2, ..., rh (mod m)} and

f(x) =
∑

s∈S
xs =

h∑

i=1

∞∑

j=0

xri+jm =
h∑

i=1

xri

1− xm =
xr1 + xr2 + ...+ xrh

1− xm . (3.4)

By Theorem 2.1, the OGF of the sequence bn is

f(x)

1− f(x)
=

xr1 + ...+ xrh

1− xr1 − ...− xrh − xm . (3.5)
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Hence, bn satisfies the recurrence equation

bn+m − bn+m−r1 − ...− bn+m−rh − bn = 0. (3.6)

Example 3. If cn counts the number of compositions of n into parts of size 2 or 3 or numbers
congruent to 2 or 4 modulo 7 and greater than 14, the function f(x) in Theorem 2.1 is

f(x) = x2 + x3 +
x16 + x18

1− x7 . (3.7)

Then the OGF for cn is

f(x)

1− f(x)
=

x2+x3−x9−x10+x16+x18

1−x7

1−x7−x2−x3+x9+x10−x16−x18

1−x7

=
x2 + x3 − x9 − x10 + x16 + x18

1− x2 − x3 − x7 + x9 + x10 − x16 − x18 . (3.8)

Thus, cn satisfies the recurrence

cn+18 − cn+16 − cn+15 − cn+11 + cn+9 + cn+8 − cn+2 − cn = 0. (3.9)

Suppose we are given a recurrence sequence an and ask if there is a type of composition which

is counted by an. As in Theorem 2.1 if
∑

n>0 anx
n = P (x)

Q(x) then
∑

s∈S x
s = f(x) = P (x)

P (x)+Q(x) .

Example 4. Is there a composition counted by the Fibonacci sequence so that an = Fn for

n ≥ 1? Since
∑

n>1 Fnx
n = x

1−x−x2 = P (x)
Q(x) , f(x) = x

1−x2 =
∑

i>0 x
2i+1. Hence, an counts com-

positions into odd parts. Similarly, if we want an = Fn+1, since
∑

n>1 Fn+1x
n = x+x2

1−x−x2 = P (x)
Q(x) ,

f(x) = x + x2 so an counts compositions into parts of size 1 or 2. If an = Fn−1, since∑
n>1 Fn−1xn = x2

1−x−x2 = P (x)
Q(x) , f(x) = x2

1−x =
∑

n>2 x
n so an counts compositions into

parts greater than or equal to 2. However, for an = Fn+2, a similar calculation leads to

f(x) = 2x+x2

1+x = 2x− x2 + x3 − x4 + · · · , which is not of the form
∑

s∈S x
s.

Example 5. Is there a composition counted by the tribonacci sequence? In this case the
sequence satisfies the recurrence equation an+3 − an+2 − an+1 − an = 0 with the usual initial

values a1 = 0, a2 = 1, a3 = 1. The OGF is x2

1−x−x2−x3 so f(x) = x2

1−x−x3 = x2 +x3 +x4 +2x5 +

3x6 + · · · . Since this series has coefficients other that 0 or 1 it cannot equal
∑

s∈S x
s. Thus,

there is no composition of the desired kind. However, if we change the initial values but keep

the tribonacci recurrence, so that the OGF is x+x2

1−x−x2−x3 , i.e., a1 = 1, a2 = 2, a3 = 3, then

f(x) = x+x2

1−x3 = (x + x2)
∑

i>0 x
3i =

∑
i>0(x

3i+1 + x3i+2) so S is the set of positive integers

congruent to 1 or 2 (mod 3).
There are other types of constraints that are not of the kind described in Theorem 2.1,

such as restricting the number of times specific parts can be used, or if the choice for one part
restricts the choice for another part. We hope to address compositions of such types in the
future.
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SYMMETRIES OF STIRLING NUMBER SERIES

PAUL THOMAS YOUNG

Abstract. We consider Dirichlet series generated by weighted Stirling numbers, focusing
on a symmetry of such series which is reminiscent of a duality relation of negative-order
poly-Bernoulli numbers. These series are connected to several types of zeta functions and
this symmetry plays a prominent role. We do not know whether there are combinatorial
explanations for this symmetry, as there are for the related poly-Bernoulli identity.

1. Introduction

This paper is concerned with the Dirichlet series

Sj,r(s, a) =
∞∑

m=j

(−1)m+js(m, j|r)
m!(m+ a)s

(1.1)

where s(m, j|r) denotes the weighted Stirling number of the first kind [4, 5] defined for non-
negative integers m, j and r ∈ C by the vertical generating function

(1 + t)−r(log(1 + t))j = j!
∞∑

m=j

s(m, j|r) t
m

m!
(1.2)

or by the horizontal generating function

(x)m =
m∑

j=0

s(m, j|r)(x+ r)j (1.3)

where (x)m = x(x−1) · · · (x−m+1) denotes the falling factorial. If j is a nonnegative integer,
Sj,r(s, a) converges for r, s, a ∈ C such that <(s) > <(r) and <(a) > −j; when r ∈ Z+ it has
poles of order j + 1 at s = 1, 2, .., r and of order at most j at nonpositive integers s. When
j = 0 we recover the Barnes multiple zeta functions, and when j = 1 we obtain special values
of non-strict multiple zeta functions, also known as zeta-star values (see section 3). We will
focus on the symmetric identity

Sj,r(k + 1, 1− t) = Sk,t(j + 1, 1− r), (1.4)

valid for integers r ≤ k and t ≤ j, which bears a striking resemblance to a symmetric identity
of poly-Bernoulli polynomials (Theorem 6.1 below). Since this poly-Bernoulli identity has
known combinatorial interpretations in the case where r = t = 0, we find it interesting to ask
whether the symmetry (1.4) may be proved or interpreted in terms of counting arguments.

2. Stirling and r-Stirling numbers

The weighted Stirling numbers of the first kind s(n, k|r) may be defined by either (1.2) or
(1.3), or by the recursion

s(n+ 1, k|r) = s(n, k − 1|r)− (n+ r)s(n, k|r) (2.1)
205
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with initial conditions s(n, n|r) = 1, s(n, 0|r) = (−r)n. Their dual companions [8] are the
weighted Stirling numbers of the second kind S(n, k|r) [4, 5] which may be defined by the
vertical generating function

ert(et − 1)m = m!

∞∑

n=m

S(n,m|r) t
n

n!
, (2.2)

the horizontal generating function

xn =

n∑

k=0

S(n, k|r)(x− r)k, (2.3)

or by the recursion

S(n+ 1, k|r) = S(n, k − 1|r) + (k + r)S(n, k|r) (2.4)

with initial conditions S(n, n|r) = 1, S(n, 0|r) = rn. It is clear that both s(n, k|r) and S(n, k|r)
are polynomials in r with integer coefficients of degree n− k whose derivatives are given by

s′(n, k|r) = (k + 1)s(n, k + 1|r) and S′(n, k|r) = nS(n− 1, k|r). (2.5)

For combinatorial interpretations, when the “weight” r is a nonnegative integer we may
write

(−1)m+js(m, j|r) =

[
m+ r

j + r

]

r

(2.6)

in terms of r-Stirling numbers
[
n
k

]
r
, which count the number of permutations of {1, 2, ..., n}

having k cycles, with the elements 1, 2, ..., r restricted to appear in different cycles [3, 1].
When r = 0 these definitions reduce to those of the usual Stirling numbers, and in that case
the parameter r is often suppressed in the notation. Furthermore if j = 1 and r ≥ 0 the

coefficients (−1)m+1s(m, 1|r)/m! are called hyperharmonic numbers H
[r]
m defined by H

[0]
m = 1

m

for m > 0, H
[r]
0 = 0, and

H [r]
m =

m∑

i=1

H
[r−1]
i (2.7)

(cf. [1, 14, 9]). Thus Hn = H
[1]
n denotes the usual harmonic number.

3. Dirichlet series Identities

Our interest in the series (1.1) is derived from the fact that they specialize to known multiple
zeta functions when j = 0, 1. First, the series S0,1(s, 1) is the Riemann zeta function ζ(s);
more generally for r ∈ Z+ the series S0,r(s, a) is a Barnes multiple zeta function ζr(s, a) [15, 16]
defined for <(s) > r and <(a) > 0 by

ζr(s, a) =

∞∑

t1=0

· · ·
∞∑

tr=0

(a+ t1 + · · ·+ tr)
−s. (3.1)

If we view ζr(s, a) as an analytic function of its order r as in [15, 16], then we can view

Sj,r(s, a) = j!Dj
rζr(s, a) by means of (2.5), where Dr denotes the derivative d/dr. From this

identification we deduce from ([16], Corollary 2) that the series Sj,r(s, a) is convergent when
<(s) > <(r) and <(a) > −j.
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For r ∈ Z+ the series S1,r(s, 0) is also a specialization of a non-strict multiple zeta function,
namely S1,r(s, 0) = ζ?(s, 0, ..., 0︸ ︷︷ ︸

r−1

, 1), where

ζ?(s1, ..., sm) :=
∑

n1≥n2≥···≥nm≥1

1

ns11 n
s2
2 · · ·nsmm

(3.2)

([9], Prop. 2.1). The zeta-star values are related to Arakawa-Kaneko zeta functions, whose

values at negative integers are given by the poly-Bernoulli numbers B(k)
n ([9, 6]).

The series (1.1) satisfies several identities.

Theorem 3.1. The following identities hold where defined.

i. We have Sj,r(s, a) = Sj,r(s, a+ 1) + Sj,r−1(s, a).
ii. For r ∈ Z+ we have Sj,r(s, a) = Sj,0(s, a) +

∑r
t=1 Sj,t(s, a+ 1).

iii. For 0 ≤ m ≤ r we have Sj,r(s, a) =
∑m

t=0

(
m
t

)
Sj,r−t(s, a+m− t).

iv. We have

Sj,r(s, a)− aSj,r(s+ 1, a) = Sj−1,r+1(s+ 1, a+ 1) + rSj,r+1(s+ 1, a+ 1).

v. (Symmetry relation.) For integers r ≤ k and t ≤ j we have

Sj,r(k + 1, 1− t) = Sk,t(j + 1, 1− r).
Thus when it converges, the series Sj,r(k + 1, 1 − t) is invariant under (j, k, r, t) 7→
(k, j, t, r).

Proof. Identity (i) follows from the Stirling number recurrence (2.1), or equivalently from the
difference equation

ζr(s, a)− ζr(s, a+ 1) = ζr−1(s, a) (3.3)

([15], eq. (2.1)) of the Barnes multiple zeta functions. Identities (ii) and (iii) may be obtained
by induction from (i), or from Identity 5 and Identity 7 in [1]. To obtain (iv), we differentiate
the generating function (1.2) with respect to r and equate coefficients of tn/n! to obtain

s(n+ 1, j|r) = s(n, j − 1|r + 1)− r s(n, j|r + 1). (3.4)

Dividing by (n+ 1)!(n+ a)s and summing over n then yields (iv). By means of (2.5) we have

Sj,r(s, a) = j!Dj
rζr(s, a), and therefore the symmetry relation (v) follows from the identity

(k − 1)!Dj−1
t ζt(k, 1− r) = (j − 1)!Dk−1

r ζr(j, 1− t) (3.5)

([16], Corollary 2). �

4. Combinatorial interpretation

Restricting our attention to the case where r is a nonnegative integer, the symmetry relation
Theorem 3.1(v) may be written as

∞∑

m=j

[
m+ r

j + r

]

r

m!(m+ 1− t)k+1
=

∞∑

m=k

[
m+ t

k + t

]

t

m!(m+ 1− r)j+1
(4.1)

for integers 0 ≤ r ≤ k and 0 ≤ t ≤ j, where the r-Stirling number
[
n
k

]
r

= the number of
permutations of {1, 2, ..., n} having k cycles, with the elements 1, 2, ..., r restricted to appear
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in different cycles. When r, t ∈ {0, 1} this gives series identities for the usual Stirling numbers
of the first kind; for example, in

∞∑

m=j

[
m

j

]

m!(m+ 1)k+1
=

∞∑

m=k

[
m

k

]

m!(m+ 1)j+1
(4.2)

we have
[
m
k

]
/m! equal to the proportion of permutations of {1, ...,m} which have k cycles.

Thus the left side of (4.2) may be viewed as a sum over permutations which have j cycles and
the right side as a sum over permutations which have k cycles.

Question 1: Can the identities (4.2) or (4.1) be proved by combinatorial means?

5. Values at positive integers

The identities of section 3 may be used to demonstrate a large class of values of Sj,r(s, a)
which may be expressed as polynomials in values of the Riemann zeta function.

Theorem 5.1. When j ∈ {0, 1} or s ∈ {1, 2} we have Sj,r(s, a) ∈ Q[ζ(2), ζ(3), ζ(5), ...] for
integers r < s and a > −j.
Proof. Write R = Q[ζ(2), ζ(3), ζ(5), ...]. When j = 0 and r ≤ 0 the sum for Sj,r(s, a) is finite,
and therefore rational, so the theorem is therefore true in that case. For j = 0 and r > 0 we
have S0,r(s, a) = ζr(s, a) and we use the identity

ζr(s, a) =
1

(r − 1)!

r−1∑

k=0

s(r − 1, k|a+ 1− r) ζ1(s− k, a) (5.1)

([16], eq. (3.3)) to prove the theorem in that case, since ζ1(s, a) ∈ R for integers s > 1 and
a > 0. The theorem is therefore established for j = 0.

In the case j = 1 the theorem generalizes Euler’s classical identity

S1,1(s, 0) =

∞∑

n=1

Hn

ns
=
s+ 2

2
ζ(s+ 1)− 1

2

s−2∑

j=1

ζ(s− j)ζ(j + 1) ∈ R. (5.2)

Kamano [9] proved that

(r − 1)!S1,r(s, 0) =
r∑

k=1

[ r
k

]
S1,1(s, 0) +

(
k

[
r

k + 1

]
−
[ r
k

]
Hr−1

)
ζ(s+ 1− k) (5.3)

which, together with (5.2), implies that S1,r(s, 0) ∈ R when r > 0. (Alternatively one can use
the recursion

S1,r(s, 0) = S1,1(s, 0) +
r−1∑

k=1

1

k
(S1,k(s− 1, 0) +B(k, s)) (5.4)

([14], Theorem 6), where B(k, s) is a linear polynomial in {ζ(j)}m≥2, to show this). When
j = 1 and r = 0 we observe that S1,0(1, a) = Ha/a ∈ Q for a ∈ Z+; induction using Theorem
3.1(iv) then shows S1,0(s, a) ∈ R for all s > r and a ≥ 0. So S1,r(s, a) ∈ R when either a = 0
or r = 0; an induction argument using Theorem 3.1(i) shows that S1,r(s, a) ∈ R when r ≥ 0
and a ≥ 0.

A similar induction argument, using Theorem 3.1(i) and (iv), shows that S1,r(s, a) ∈ R for
a ≥ 0 when r is a negative integer and s > r. This completes the proof of the theorem for
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j ∈ {0, 1}. The statement concerning s ∈ {1, 2} then is obtained by the symmetry relation
Theorem 3.1(v). �

6. Poly-Bernoulli polynomials

In this final section we prove a finite sum symmetric identity which bears a striking re-
semblance to the infinite sum symmetric identity of Theorem 3.1(v). The weighted shifted

poly-Bernoulli numbers B(k)
n (a, r) of order k are defined by

Φ(1− e−t, k, a)e−rt =

∞∑

n=0

B(k)
n (a, r)

tn

n!
(6.1)

where Φ(z, s, a) =

∞∑

m=0

zm

(m+ a)s
(|z| < 1) (6.2)

is the Lerch transcendent. (The generalization (6.1) was communicated to me by Mehmet
Cenkci, to whom I am grateful). When a = 1 and r = 0 we obtain the usual poly-Bernoulli

numbers B(k)
n = B(k)

n (1, 0) defined and studied by Kaneko [10], since in that case the Lerch
transcendent reduces to the usual order k polylogarithm function

Lik(z) =

∞∑

m=1

zm

mk
. (6.3)

The B(k)
n (a, r) are polynomials of degree n in r and they are polynomials of degree −k in a

when −k ∈ Z+. When k = 1 and a = 0 we have

B(1)
n (0, r) = (−1)nBn(r) (6.4)

in terms of the usual Bernoulli polynomials Bn(x). The weighted Lerch poly-Bernoulli numbers
may also be expressed in terms of weighted Stirling numbers of the second kind as

B(k)
n (a, r) = (−1)n

n∑

m=0

(−1)mm!S(n,m|r)
(m+ a)k

. (6.5)

Therefore in the case r = 0 these polynomials agree with the shifted poly-Bernoulli numbers
of ([12], §6). The weighted shifted poly-Bernoulli polynomials satisfy the following symmetric
identity.

Theorem 6.1. For all nonnegative integers n and k we have

B(−k)
n (1− t, r) = B(−n)

k (1− r, t).
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Proof. This result was proved by Kaneko [10] in the case r = 0, t = 0, and the proof is adapted
from Kaneko’s proof. Straightforward calculation shows that

∞∑

k=0

∞∑

n=0

B(−k)
n (1− a, x)

tn

n!

uk

k!
=

∞∑

k=0

Φ(1− e−t,−k, 1− a)e−xt
uk

k!

=
∞∑

k=0

∞∑

m=0

(1− e−t)me−xtuk
(m+ 1− a)−kk!

= e−xt
∞∑

m=0

(1− e−t)me(m+1−a)u

= e−xte(1−a)u
∞∑

m=0

((1− e−t)eu)m

=
e−xte(1−a)u

1− (1− e−t)eu

=
e(1−x)te(1−a)u

et + eu − et+u
(6.6)

is invariant under (t, u, a, x) 7→ (u, t, x, a).
�

This theorem says that the expression B(−k)
n (1 − t, r) is a polynomial in r and t which is

invariant under (n, k, r, t) 7→ (k, n, t, r). In terms of weighted Stirling numbers it reads

n∑

m=0

(−1)m+nm!S(n,m|r)(m+ 1− t)k =
k∑

m=0

(−1)m+km!S(k,m|t)(m+ 1− r)n. (6.7)

We find this identity to be strikingly similar to the symmetric identity, for r ≤ k and t ≤ j,
∞∑

m=j

(−1)m+js(m, j|r)
m!(m+ 1− t)k+1

=
∞∑

m=k

(−1)m+ks(m, k|t)
m!(m+ 1− r)j+1

, (6.8)

given by Theorem 3.1(v). The two identities appear to share a kind of duality, but it is curious
that one identity is for finite sums and the other is for infinite series.

In the case r = t = 0, the poly-Bernoulli numbers B(−k)
n have found at least two important

combinatorial interpretations. In [2] it is shown that B(−k)
n equals the number of distinct n×k

lonesum matrices, where a lonesum matrix is a matrix with entries in {0, 1} which is uniquely
determined by its row and column sums. In [13] it is shown that the number of permutations
σ of the set {1, 2, ..., n + k} which satisfy −k ≤ σ(i) − i ≤ n for all i is the poly-Bernoulli

number B(−k)
n . Either of these two combinatorial interpretations make the r = t = 0 case of

the symmetry relation of Theorem 6.1 obvious.

Question 2. Can the symmetric identity of Theorem 6.1 be proved by a counting argument
in cases where r and t are nonzero integers?
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DIOPHANTINE TRIPLES AND EXTENDIBILITY OF {1, 2, 5} AND {1, 5, 10}

YIFAN ZHANG AND GEORGE GROSSMAN

Abstract. In this paper we consider Diophantine triples, (denotedD(n)-3-tuples,) {1, 2, 5}, {1, 5, 10}
for the case n = −1. We show using properties of Lucas and Fibonacci numbers that neither
of 3-tuples {1, 2, 5}, {1, 5, 10} can be extended to a D(−1)-4-tuple.

1. INTRODUCTION

Definition 1.1. A set of m positive integers is called a Diophantine m-tuple with the property
D(n) or simply D(n)-m-tuple, if the product of any two elements of this set increased by n is
a perfect square.

As a special case, a Diophantine m-tuple is a set of m positive integers with the property:
the product of any two of them increased by one unit is a perfect square, for example, {1, 3,
8, 120} is a Diophantine quadruple, since we have

1× 3 + 1 = 22, 1× 8 + 1 = 32, 1× 120 + 1 = 112,

3× 8 + 1 = 52, 3× 120 + 1 = 192, 8× 120 + 1 = 312.

The study of Diophantine m-tuple can be traced back to the third century AD, when the
Greek mathematician Diophantus discovered that

{
1
16 ,

33
16 ,

17
4 ,

105
16

}
is a set of four rationals

which has the above property. Then Fermat obtained the first Diophantine quadruple {1, 3, 8,
120}. Astoundingly, 777480

8288641 was found to extend the Fermat’s set to
{

1, 3, 8, 120, 777480
8288641

}
and

then the product of any two elements of this set increased by one unit is a perfect square of
a rational number, which was Euler’s contribution. Moreover, he acquired the infinite family
of Diophantine quadruple {a, b, a+ b+ 2r, 4r (r + a) (r + b)}, if ab+ 1 = r2. In January 1999,
Gibbs [8] found the first set of six positive rationals with the above property. In the integer
case, there is a famous conjecture: there does not exist a Diophantine quintuple.

The case n 6= 1 also have been studied by several mathematicians, for example, {1, 2, 5}
is a D(−1)-triple. It is interesting to note that if n is an integer of form n = 4k + 2, then
there does not exist a Diophantine quadruple with the property D(n). This theorem has been
independently proved by Brown [2], Gupta & Singh [9] and Mohanty & Ramasamy [13] all
in 1985. In 1993, Dujella [3] proved that if an integer n does not have the form n = 4k + 2
and n /∈ S = {−4,−3,−1, 3, 5, 8, 12, 20}, then there exists at least one Diophantine quadruple
with the property D(n). In the case n = −1, the conjecture—there does not exist a D(−1)-
quadruple is known as D(−1)-quadruple conjecture.

In 1985, Brown [2] proved the nonextendability of the Diophantine D(−1) triple {1, 2, 5}.
Walsh [15] and Kihel [10] also independently proved that in 1999 and 2000 respectively. In
1984, Mohanty & Ramasamy [12] proved that the Diophantine D(−1) triple {1, 5, 10} can not
be extended to a D (−1) quadruple. Furthermore, Brown [2] proved that the following triple

{
n2 + 1, (n+ 1)2 + 1, (2n+ 1)2 + 4

}
,

212



can not be extended to a Diophantine quadruple with the property D (−1) if n ≡ 0 (mod4).
{17, 26, 85} is an example when n = 4. Dujella [4] was the first mathematician who proved
the nonextendability for all triples of the form {1, 2, c} in 1998. The endeavor in proving that
{1, 5, c} can not be extended was mostly attributed to Muriefah & Al-Rashed [14]. In 2005,
Filipin [7] proved the nonextendability of {1, 10, c}.

In [2, 4, 7, 10, 12, 14, 15] solution techniques involved the intersection of solutions of
systems of certain Pellian equations, including also employing methods such as linear forms
in logarithms from the results of Baker and Davenport, [1], and other deep theoretical results
from Diophantine analysis. Our paper uses only elementary number theory including use of
results related to Legendre symbols, basic properties of Fibonacci and Lucas numbers with
congruences, and thus, represents a distinctly original approach, i.e., without use of Pellian
equations.

There does not exist a Diophantine quintuple with the property D(−1). This was proved
by Dujella & Fuchs [6] in 2005. Moreover, in 2007, Dujella, Filipin & Fuchs [5] proved that
there are only exist finitely many quadruples with the property D(−1).

2. NONEXTENDABILITY OF {1, 2, 5}
We will use the property of Fibonacci and Lucas sequences to prove the nonextendability

of Diophantine triple {1, 2, 5} with the property D (−1).

Definition 2.1. Fn is Fibonacci sequence beginning with F0 = 0, F1 = 1 and satisfying the
property Fn+2 = Fn+1+Fn. Ln is Lucas sequence beginning with L0 = 2, L1 = 1 and satisfying
the property Ln+2 = Ln+1 + Ln.

It is well-known that if (X,Y ) are positive integers such that X2−5Y 2 = ±4, then (X,Y ) =
(Lm, Fm) for some positive integer m and the sign on the right is given by (−1)m, also this
result can be found in Koshy’s [11] book, Theorem 5.4 in page 75 and Theorem 5.10 in page
83. If 1, 5, d are in the same D (−1) set, then exists integers A,B such that d − 1 = A2 and
5d− 1 = B2, thus we have B2 − 5A2 = 4 and then A = F2n for some positive integer n.

In order to prove that {1, 2, 5, d} and {1, 5, 10, d} are not Diophantine quadruple, we need
prove 2d− 1 and 10d− 1 are not perfect squares, respectively. Since d = A2 + 1 and A = F2n

for some positive integer n, we reduce these two questions to prove 2F 2
2n + 1 and 10F 2

2n + 9
are not perfect squares for any positive integer n, respectively.

Lemma 2.2. For any nonnegative integer q,
5
(
F 2
3q + 2F 2

2·3q + 1
)

= (L2·3q + 1) (2L2·3q − 1) .

Proof. This lemma can be derived by the following calculation:
5
(
F 2
3q + 2F 2

2·3q + 1
)
− (L2·3q + 1) (2L2·3q − 1)

= 5F 2
3q + 10F 2

2·3q + 5− 2L2
2·3q − L2·3q + 1

=
(
5F 2

3q − 4
)

+ 2
(
5F 2

2·3q + 4
)

+ 2− 2L2
2·3q − L2·3q

= L2
3q + 2− L2·3q

= L2·3q − L2·3q
= 0. �
We will use this formula for Lemma 2.3 and Lemma 3.1, F 2

nm − F 2
m = F(n+1)mF(n−1)m

with m (n− 1) even, this formula can be found in Koshy’s [11] book, the 55th Fibonacci and

Lucas identity in page 90 with n replaced by m and 2k replaced by m (n− 1). Let α =
√
5+1
2 ,

β = 1−
√
5

2 , then Fm = 1√
5

(αm − βm), Lm = αm + βm and αβ = −1.
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Lemma 2.3. If n is a positive integer not divisible by 3, then F 2
2·3q ·n ≡ F 2

2·3q (mod (L2·3q + 1)).

Proof. If 3 - n, then 3 | (n+ 1) or 3 | (n− 1), thus F3m | F(n+1)m or F3m | F(n−1)m. For even

integer m, F3m = 1√
5

(
α3m − β3m

)
= 1√

5
(αm − βm)

(
α2m + αmβm + β2m

)

= 1√
5

(αm − βm)
(

(αm + βm)2 − (αβ)m
)

= Fm

(
L2
m − 1

)
= Fm (Lm + 1) (Lm − 1), then

(Lm + 1) | F3m |
(
F 2
nm − F 2

m

)
. By letting m = 2 · 3q, we get F 2

2·3q ·n ≡ F 2
2·3q (mod (L2·3q + 1)).

�
{Lm}m≥1 is periodic modulo 4 with period 6, then L2·3q ≡ L0 = 2 (mod4) for q ≥ 1.

Theorem 2.4. The Diophantine triple {1, 2, 5} cannot be extended to a Diophantine quadruple
{1, 2, 5, d} with the property D (−1), for all integers d > 5.

Proof. We only need to prove 2F 2
2n + 1 is not a perfect square for any positive integer n.

Suppose there exists a positive integer l such that l2 = 2F 2
2n + 1. Write 2n in the form

2n = 2 · 3q · k with q ≥ 0 and 3 - k.
If q = 0, then F 2

2n = F 2
2·30·k ≡ F 2

2·30 = F 2
2 = 1 (mod (L2·30 + 1)), then F 2

2n ≡ 1 (mod4)

and l2 = 2F 2
2n + 1 ≡ 3 (mod4), a contradiction to the fact that the square of any integer is

congruent to 0 or 1 modulo 4.
If q ≥ 1, then L2·3q ≡ 2 (mod4), then L2·3q + 1 ≡ 3 (mod4). Therefore, there is a prime

number p such that p| (L2·3q + 1) and p ≡ 3 (mod4).
According to Lemma 2.2, p |

(
5
(
F 2
3q + 2F 2

2·3q + 1
))

, since p - 5, then 2F 2
2·3q+1 ≡ −F 2

3q (modp).

Then we have 1 =
(
l2

p

)
=
(
2F 2

2n+1
p

)
=
(
2F 2

2·3q ·k+1

p

)
=
(
2F 2

2·3q+1

p

)
=
(−F 2

3q

p

)
=
(
−1
p

)(
F 2
3q

p

)
=

(
−1
p

)
= −1 since p ≡ 3 (mod4), a contradiction.

In conclusion, the Diophantine triple {1, 2, 5} cannot be extended to a Diophantine quadru-
ple {1, 2, 5, d}, for all integers d > 5. �

3. NONEXTENDABILITY OF {1, 5, 10}
Lemma 3.1. If q and n are positive integers and n is odd, then F 2

2q ·n ≡ F 2
2q (modL2q+1).

Proof. In formula F 2
nm − F 2

m = F(n+1)mF(n−1)m, if n is odd, then 4 | (n+ 1) or 4 | (n− 1),

thus F4m | F(n+1)m or F4m | F(n−1)m. And F4m = F2mL2m, then L2m | F4m |
(
F 2
nm − F 2

m

)
. By

letting m = 2q, we get F 2
2q ·n ≡ F 2

2q (modL2q+1). �
Lemma 3.2. For any positive integer q, L2q+1 ≡ 7 (mod10).

Proof. We will proof this lemma by using induction. When q = 1, then L2q+1 = L4 =
7 (mod10). Suppose that L2q+1 ≡ 7 (mod10) is true, then L2q+2 = L2

2q+1 − 2 ≡ 72 − 2 ≡
7 (mod10). Therefore, L2q+1 ≡ 7 (mod10) is true for any positive integer q. �
Theorem 3.3. The Diophantine triple {1, 5, 10} cannot be extended to a D (−1) quadruple
{1, 5, 10, d}, for all integers d > 10.

Proof. We only need to prove 10F 2
2n0

+ 9 is not a perfect square for any positive integer n0.

Suppose there exists a positive integer l such that l2 = 10F 2
2n0

+ 9.

If n0 is odd, then F 2
2n0
≡ 1 (mod7) by Lemma 3.1 for q = 1, then l2 = 10F 2

2n0
+9 ≡ 5 (mod7).

Thus, 1 =
(
l2

7

)
=
(
5
7

)
= −1 gave us a contradiction, therefore n0 is even. Rewrite 2n0 in

the form 2n0 = 2q · n such that q ≥ 2 and 2 - n. By Lemma 3.2, L2q+1 ≡ 7 (mod10), then
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(
L2q+1

5

)
=
(
2
5

)
= −1, then there exists an odd prime p such that p | L2q+1 and

(p
5

)
= −1.

Since 10F 2
2q + 9 = 2

(
5F 2

2q + 4
)

+ 1 = 2L2
2q + 1 = 2 (L2q+1 + 2) + 1 = 2L2q+1 + 5, then 1 =

(
l2

p

)
=

(
10F 2

2n0
+9

p

)
=
(
10F 2

2q ·n+9

p

)
=
(
10F 2

2q
+9

p

)
=
(
2L2q+1+5

p

)
=
(
5
p

)
= −1, a contradiction.

In conclusion, then the Diophantine triple {1, 5, 10} cannot be extended to a Diophantine
quadruple {1, 5, 10, d}, for all integers d > 10. �
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