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Abstract. In this article we construct, by way of the Fibonacci numbers, a geometrical
object resembling an infinite staircase. We go on to demonstrate an interesting property of
this Fibonacci staircase.

1. introduction

A well-known combinatorial situation in which Fibonacci numbers are associated with a
staircase is as follows:

Suppose that you are walking up a staircase comprising n steps, and climbing
either one or two steps at a time. In how many ways could you reach the top?

This is in fact a rather straightforward problem, the solution to which is Fn+1 [3]. Note
that it is not necessary to know the precise height and depth of each step in order to solve
this problem; we simply need to be able to assume that all the ways of getting to the top
by climbing either one or two steps at a time are actually possible. By way of a contrast,
we consider here a scenario involving the Fibonacci numbers and a staircase in which the
dimensions of the latter are indeed crucial. As will be shown below, the Fibonacci numbers
are used to construct an infinite staircase possessing an interesting geometrical, as opposed to
a combinatorial, property.

Let us demonstrate how the staircase is built. Assuming that the smallest two squares each
have side length 1 unit, the Fibonacci rectangle given in Figure 1 is composed of squares of
side lengths F1, F2, F3, . . . , F8. Readers may have seen pictures of nautilus shells drawn using
just such a rectangle. Now imagine unraveling this rectangle to give a staircase comprising
these Fibonacci squares, as is shown (with the largest square omitted) in Figure 2. Let S

denote the infinite Fibonacci staircase that results on allowing this construction to continue
ad infinitum, so that the nth step consists of a Fn×Fn square. In this article we consider what
happens when we choose two distinct corners of S, join them with a line, and then extend
this line as far as the 1 × 1 square on the left and indefinitely to the right, with the aim of
obtaining a result giving, for each corner in S, conditions on whether it is above, on, or below
the line.

2. Some Initial Definitions and Calculations

For the sake of notational convenience, we set the coordinates of the top left-hand corner of
the left-most square in S as (1, 1). The coordinates of successive corners of S are then given
by (1, 1), (2, 1), (3, 2), (5, 3), . . ., and so on, with the nth such corner being located at the point
(Fn+1, Fn).

In Figure 3 we see that the corners A (F6, F5) and B (F7, F6) have been connected with a
line which has subsequently been extended in both directions. In this example the corners are
consecutive, but we cover here the general case in which the corners are given by A (Fm+1, Fm)
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Figure 1. A Fibonacci rectangle.

 

 

 

 

Figure 2. A Fibonacci staircase.

and B (Fn+1, Fn) for any m,n ∈ N such that n > m ≥ 1. We denote the extended line by
L(m,n).

The gradient of L(m,n) is given by

Fn − Fm

Fn+1 − Fm+1
,

and its Cartesian equation is thus of the form

y =

(

Fn − Fm

Fn+1 − Fm+1

)

x+ c

for some constant c. Since L(m,n) passes through the point (Fn+1, Fn), we see that

c = Fn −
Fn+1 (Fn − Fm)

Fn+1 − Fm+1
.
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From this it follows that the difference in the y coordinate of the corner (Fj+1, Fj) and that
of L(m,n) when x = Fj+1 is given by

D(j,m, n) = Fj −

(

Fj+1 (Fn − Fm)

Fn+1 − Fm+1
+ Fn −

Fn+1 (Fn − Fm)

Fn+1 − Fm+1

)

= Fj − Fn −
(Fj+1 − Fn+1) (Fn − Fm)

Fn+1 − Fm+1

=
(Fj − Fn) (Fn+1 − Fm+1)− (Fn − Fm) (Fj+1 − Fn+1)

Fn+1 − Fm+1
,

noting that the corner (Fj+1, Fj) is above L(m,n) if, and only if, D(j,m, n) > 0.

 

 

 

 

A 

B 

Figure 3. A line constructed on a Fibonacci staircase.

We are interested here only in whether a given corner is above or below L(m,n), and
not in the actual numerical differences in their heights. Since n > m ≥ 1, it follows that
Fn+1 − Fm+1 > 0, and we thus need only to consider the sign of G(j,m, n) given by

G(j,m, n) = (Fj − Fn) (Fn+1 − Fm+1)− (Fn − Fm) (Fj+1 − Fn+1) . (2.1)

It is possible to give G(j,m, n) in a slightly more amenable form. Indeed, on expanding and
simplifying the right-hand side of (2.1) we obtain

G(j,m, n) = (FjFn+1 − Fj+1Fn) + (FnFm+1 − Fn+1Fm)− (FjFm+1 − Fj+1Fm)

= (−1)nFj−n + (−1)m (Fn−m − Fj−m) , (2.2)

where we have used d’Ocagne’s identity FaFb+1 − Fa+1Fb = (−1)bFa−b [4]. Note that for any
n ∈ N, we may extend the Fibonacci numbers to negative subscripts by way of the following
[2]:

F
−n = (−1)n+1Fn. (2.3)

3. Possible Patterns

For a particular line L(m,n), we may associate with each corner of S precisely one of the
symbols ‘+’, ‘0’ or ‘−’, depending on whether the corner lies above, lies on, or lies below
L(m,n), respectively. Thus each line L(m,n) corresponds to a particular infinite string com-
prising the symbols ‘+’, ‘0’, and ‘−’. To take two examples, L(6, 11) and L(9, 10) give rise to
the strings

+−+−+ 0 + +++ 0−−−−− . . .
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and
+−+−+− 0− 0 0 + + +++ . . . ,

respectively, as is easily checked. We will use Q(m,n) to denote the infinite string induced by
the staircase and the line L(m,n). The kth character, counting from the left, of this string
is given by Qk(m,n). For example, Q(6, 11) = + − + − + 0 + + + + 0 − − − − − . . . and
Q8(6, 11) = +.

In the following sections we will, by using (2.2) and (2.3), classify all possible such patterns.
Incidentally, as may be seen in Figure 3, it is not always easy to determine with the naked eye
which of the symbols is associated with a particular corner of S.

4. Some General Results

Note first that by construction we always have G(m,m,n) = G(n,m, n) = 0. However,
when n−m ≤ 3, Q(m,n) can contain up to three ‘0’s, as we shall see in Section 5. Thus, for
the sake of clarity, we will assume that n − m ≥ 4 through the current section. We obtain
here three lemmas, as follows.

Lemma 4.1. Let j > n. Then either G(j,m, n) > 0 or G(j,m, n) < 0, depending on whether

m is odd or even, respectively.

Proof. From [1, 2] we have
Fa+b = Fa−1Fb + FaFb+1. (4.1)

On setting a = j − n and b = n−m in (4.1), we obtain

G(j,m, n) = (−1)nFj−n + (−1)m (Fn−m − Fj−m)

= (−1)nFj−n + (−1)m
(

Fn−m − F(j−n)+(n−m)

)

= (−1)nFj−n + (−1)m (Fn−m − Fj−n−1Fn−m − Fj−nFn−m+1)

= Fj−n ((−1)n − (−1)mFn−m+1) + (−1)mFn−m (1− Fj−n−1) .

Thus, if m is odd we have

G(j,m, n) = Fj−n ((−1)n + Fn−m+1) + Fn−m (Fj−n−1 − 1) .

Then, since Fj−n ≥ F1 = 1 and Fj−n−1 ≥ F0 = 0, we obtain the result

G(j,m, n) ≥ (Fn−m+1 − 1)− Fn−m > 0,

on noting that Fn−m+1 − 1 > Fn−m when n −m ≥ 4. In a similar manner, it may be shown
that G(j,m, n) < 0 when m is even. �

Lemma 4.2. Let m < j < n. Then either G(j,m, n) < 0 or G(j,m, n) > 0, depending on

whether m is odd or even, respectively.

Proof. If m is odd then, on using (2.3), we obtain

G(j,m, n) = (−1)n(−1)n−j+1Fn−j + (−1)m (Fn−m − Fj−m)

= (−1)j−1Fn−j − Fn−m + Fj−m.

In order to prove what is required here, we need to show that

Fn−m > (−1)j−1Fn−j + Fj−m. (4.2)

On setting a = n− j and b = j −m in (4.1), (4.2) may be rewritten as

Fj−m (Fn−j−1 − 1) > Fn−j

(

(−1)j−1 − Fj−m+1

)

.
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The left-hand side of this inequality is positive when n − j ≥ 4, while the right-hand side is
always non-positive. It is therefore the case that, in order to show that (4.2) is true, we simply
need to check the cases n− j = 1, n− j = 2 and n− j = 3.

When n− j = 1 the right-hand side of (4.2) is given by

(−1)n + Fn−m−1.

Note that

Fn−m > (−1)n + Fn−m−1

when n −m ≥ 5, so we just need to check the case n −m = 4. Since m is odd then, in this
particular case, n must also be odd, giving

(−1)n + Fn−m−1 = −1 + F3 = 1 < 3 = F4 = Fn−m.

Next, if n− j = 2 then

(−1)j−1Fn−j + Fj−m = (−1)n−3F2 + Fn−m−2 ≤ 1 + Fn−m−2 < Fn−m.

Finally, with n− j = 3, we have

(−1)j−1Fn−j + Fj−m = (−1)n−4F3 + Fn−m−3 = 2(−1)n−4 + Fn−m−3.

If n−m ≥ 5 then

Fm−n > 2 + Fn−m−3 ≥ 2(−1)n−4 + Fn−m−3,

as required, so we just need once more to check the special case n −m = 4. When m is odd
in this case, n is also odd, so we have

(−1)j−1Fn−j + Fj−m = (−1)n−4F3 + Fn−m−3 = −2 + F1 = −1 < F4 = Fn−m,

thereby completing the proof of the lemma. �

Lemma 4.3. Let j < m. Then either G(j,m, n) > 0 or G(j,m, n) < 0, depending on whether

j is odd or even, respectively.

Proof. Using (2.3), we have

G(j,m, n) = (−1)n(−1)n−j+1Fn−j + (−1)m
(

Fn−m − (−1)m−j+1Fm−j

)

= (−1)j−1Fn−j + (−1)mFn−m − (−1)j−1Fm−j .

If j is odd, this gives

G(j,m, n) = Fn−j + (−1)mFn−m − Fm−j

≥ Fn−j − Fn−m − Fm−j

= F(n−m)+(m−j) − Fn−m − Fm−j

= Fn−m−1Fm−j + Fn−mFm−j+1 − Fn−m − Fm−j

= Fm−j (Fn−m−1 − 1) + Fn−m (Fm−j+1 − 1) ,

where we have used (4.1) once more. This implies, since Fn−m−1 − 1 ≥ F3 − 1 = 1 and
Fm−j+1 ≥ F2 = 1, that G(j,m, n) > 0. It may also be shown that G(j,m, n) < 0 when j is
even. �
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5. Locating the Zeros

Since G(m,m,n) = G(n,m, n) = 0, it follows from Lemmas 4.1, 4.2, and 4.3 that Q(m,n)
contains exactly two ‘0’s when n −m ≥ 4, namely Qm(m,n) = Qn(m,n) = 0. On lifting the
restriction n − m ≥ 4, however, we may obtain strings containing exactly three ‘0’s. When
n−m = 3 we have, in addition to G(n− 3, n − 3, n) = G(n, n− 3, n) = 0,

G(n − 1, n− 3, n) = (−1)nF
−1 + (−1)n−3F3 − (−1)n−3F2

= (−1)n + 2(−1)n−3 − (−1)n−3

= (−1)n − 2(−1)n + (−1)n

= 0. (5.1)

Similarly, when n−m = 2 and n−m = 1, we obtain

G(n + 1, n − 2, n) = (−1)nF1 + (−1)n−2F2 − (−1)n−2F3 = 0 (5.2)

and

G(n− 3, n − 1, n) = (−1)nF
−3 + (−1)n−1F1 − (−1)n−1F

−2 = 0, (5.3)

respectively.
In fact, as will be explained in Section 6, when n −m ≤ 3, the only pairs (m,n) for which

Q(m,n) contains exactly two ‘0’s are given by (1, 2) and (2, 3). We are now in a position to
be able to give all possible patterns of the infinite string Q(m,n).

6. A Classification of the Patterns

Let, for k ≥ 0, Alt(k) denote the string of length k comprising alternating ‘+’ and ‘−’
signs, where the left-most sign is always a ‘+’ and Alt(0) is the empty string. So, for example,
Alt(6) = + −+ −+ − and Alt(7) = + − +− +− +. Next, let Plus(k) and Minus(k) be the
strings of length k consisting only of ‘+’ signs and ‘−’ signs, respectively. Note that, for the
strings of the latter two types, Plus(∞) and Minus(∞) have obvious interpretations.

Dealing first with the situation in which n − m ≥ 4, we obtain, with X � Y denoting the
concatenation of the strings X and Y , the result

Q(m,n) =

{

Alt(m− 1) � 0 � Plus(n−m− 1) � 0 �Minus(∞) if m is even;

Alt(m− 1) � 0 �Minus(n−m− 1) � 0 � Plus(∞) if m is odd.

This follows directly from Lemmas 4.1, 4.2, and 4.3.
We now consider the remaining cases, starting with n − m = 1. It is straightforward to

check that G(j, 1, 2) > 0 when j ≥ 3, G(j, 2, 3) < 0 when j ≥ 4, and G(1, 2, 3) > 0, giving rise
to

Q(1, 2) = 00 � Plus(∞)

and

Q(2, 3) = Alt(1) � 00 �Minus(∞).

When n ≥ 4 an extra ‘0’ is introduced into Q(m,n) by way of (5.3). Simple calculations then
reveal that for n even we have G(n − 2, n − 1, n) < 0 and G(j, n − 1, n) > 0 when j > n,
while if n is odd it is the case that G(n − 2, n − 1, n) > 0 and G(j, n − 1, n) < 0 when j > n.
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Furthermore, when n > 4 and 1 ≤ j ≤ n− 4 we have G(j, n− 1, n) > 0 and G(j, n− 1, n) < 0
when j is odd and even, respectively. This leads to the following result for n ≥ 4:

Q(n− 1, n) =

{

Alt(n− 4) � 0 �Minus(1) � 00 � Plus(∞) if n is even;

Alt(n− 4) � 0 � Plus(1) � 00 �Minus(∞) if n is odd.

Similarly, when n−m = 2, we have, on using (5.2),

Q(n− 2, n) =

{

Alt(n− 3) � 0 �Minus(1) � 00 � Plus(∞) if n is odd;

Alt(n− 3) � 0 � Plus(1) � 00 �Minus(∞) if n is even.

Finally, when n−m = 3, we obtain, using (5.1),

Q(n− 3, n) =

{

Alt(n− 4) � 0 �Minus(1) � 00 � Plus(∞) if n is even;

Alt(n− 4) � 0 � Plus(1) � 00 �Minus(∞) if n is odd.
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