
ON PRIMES IN LUCAS SEQUENCES
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Abstract. Consider the Lucas sequence u(a, b) = {un(a, b)} and the companion Lucas se-
quence v(a, b) = {vn(a, b)} which both satisfy the second order recursion relation

wn+2 = awn+1 − bwn

with initial terms u0 = 0, u1 = 1, and v0 = 2, v1 = a, respectively. We give both necessary
and sufficient tests and also necessary tests for the primality of |un| and |vn|. For those tests
which are only necessary, we show that these tests are not sufficient by means of a simple
criterion using the Legendre symbol. These results are specialized to the Fibonacci numbers
{Fn} and to the Lucas numbers {Ln}. In particular, we generalize a result of Drobot giving
criteria for Fp not to be prime, where p is a prime, to the Lucas numbers {Ln}.

1. Introduction

As usual, let {Ln} denote the sequence of Lucas numbers which satisfy the same recursion
relation as the sequence of Fibonacci numbers {Fn} and have initial terms L0 = 2 and L1 = 1.
Throughout this paper, p will always denote a prime and ε will be assumed to be a member
of the set {−1, 1}. It is well-known that Fn or Lm can be prime only if n = 4, n is prime,
m = 0, m is prime, or m is a power of 2. These observations are consequences of the fact that
F0 = 0, F1 = 1, L0 = 2, L1 = 1, {Fn} is increasing for n ≥ 2, {Lm} is increasing for m ≥ 1,
Fi | Fn for i 6∈ {0, 2} if and only if i | n, and Lj | Lm for j,m ≥ 1 if and only if j | m and m/j
is odd. There are 33 known values of n for which Fn is prime (see [22]) with the largest value
being n = 81839. The first 12 values of n for which Fn is prime are

n = 3, 4, 5, 7, 11, 13, 17, 23, 29, 43, 47, 83.

In addition, there exist 43 known values of m for which Lm is prime (see [23]) with the largest
value being m = 56003. The first 13 values of m for which Lm is prime are

m = 0, 2, 4, 5, 7, 8, 11, 13, 16, 17, 19, 31, 37.

It is conjectured that Fn and Lm are prime for infinitely many values of n and m (see [14, pp.
362–364]). However, Drobot [7] proved the following theorem giving simple conditions for Fp

to be composite.

Theorem 1.1. (Drobot) Suppose that p > 7, p ≡ 2 or 4 (mod 5), and 2p−1 is also a prime.
Then 2p− 1 | Fp and Fp > 2p− 1 and thus composite.

Example 1.2. Making use of Appendix A.3 of [9], we see that

37 | F19 = 4181 = 37 · 113,

73 | F37 = 24157817 = 73 · 149 · 2221,

157 | F79 = 14472334024676221 = 157 · 92180471494753,

and
193 | F97 = 83621143489848422977 = 193 · 389 · 3084989 · 361040209.
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In this paper, we will prove the following complementary result to Theorem 1.1 providing
values of n for which n is equal to a prime or a power of 2 and Ln is composite. We recall
that the number Mp = 2p − 1 is called a Mersenne number. If 2p − 1 itself is prime, then it is
called a Mersenne prime.

Theorem 1.3.
(i) Suppose that p ≡ 29 (mod 30) and 2p+1 is also prime. Then 2p+1 | Lp and 2p+1 < Lp.
(ii) Suppose that p ≡ 3 (mod 4) and 2p − 1 is a Mersenne prime. Then 2p − 1 | L2p−1 .

Moreover, 2p − 1 < L2p−1 when p > 3.

Example 1.4. By the use of Appendix A.4 in [9], we see that

59 | L29 = 1149851 = 59 · 19489,

179 | F89 = 3980154972736918051 = 179 · 22235502640988369,

and
27 − 1 = 127 | L26 = L64 = 23725150497407 = 127 · 186812208641.

The next assertion, Theorem 1.5, which concerns Mersenne primes, presents a similar result
to that of Theorem 1.1. This result was proved by Euler and independently by Lagrange. A
proof of Theorem 1.5 is given in [14, pp. 90–91].

Theorem 1.5. (Euler and Lagrange) Let p > 3 be a prime such that p ≡ 3 (mod 4) and
2p+ 1 is also prime. Then 2p+ 1 | Mp and Mp is composite.

The primality of Mersenne numbers is of interest because of their well-known relationship
to even perfect numbers.

2. Lucas Sequences and Companion Lucas Sequences

We will prove Theorems 1.1 and 1.3 by treating them as special cases of more general results,
Theorems 3.15, 3.18, and 3.20, involving Lucas sequences and companion Lucas sequences. Let
u(a, b) = {un(a, b)} called a Lucas sequence, and v(a, b) = {vn(a, b)} called a companion Lucas
sequence, denote the recurrences satisfying the second-order recursion relation

wn+2 = awn+1 − bwn (2.1)

with initial terms u0 = 0, u1 = 1 and v0 = 2, v1 = a, respectively, where a and b are integers.
Associated with u(a, b) and v(a, b) is the characteristic polynomial

f(x) = x2 − ax+ b (2.2)

with characteristic roots α, β and discriminant D = a2−4b = (α−β)2. By the Binet formulas,

un =
αn − βn

α− β
if D 6= 0, (2.3)

un = nαn−1 if D = 0, (2.4)

and
vn = αn + βn. (2.5)

Example 2.1. For later reference, we make use of the recursion relation given in (2.1) to
derive the first six terms of both u(a, b) and v(a, b) in terms of a and b:

u0 = 0, u1 = 1, u2 = a, u3 = a2 − b,

u4 = a3 − 2ab = a(a2 − 2b), u5 = a4 − 3a2b+ b2, (2.6)

FEBRUARY 2015 3



THE FIBONACCI QUARTERLY

v0 = 2, v1 = a, v2 = a2 − 2b, v3 = a3 − 3ab = a(a2 − 3b),

v4 = a4 − 4a2b+ 2b2, v5 = a5 − 5a3b+ 5ab2. (2.7)

The sequences u(a, b) and v(a, b) are called degenerate if αβ = 0 or α/β is a root of unity.
Note that un(a, b) = 0 or vn(a, b) = 0 for some n > 0 only if u(a, b) or v(a, b) is degenerate.
Since α and β are zeros of a monic polynomial of degree 2 over the rationals, α/β can be an
nth root of unity only if n = 1, 2, 3, 4, or 6.

In the next section, along with other results, we will determine all cases in which u(a, b) or
v(a, b) is degenerate and |un(a, b)| or |vn(a, b)| is prime for n ≥ 0. For reference, the following
proposition (proved in [21, p. 613]) lists all cases in which u(a, b) and v(a, b) are degenerate.

Proposition 2.2. Let N be a nonzero integer. Then both u(a, b) and v(a, b) are degenerate if
and only if ab = 0 or (a, b) is of the form (N,N2), (2N, 2N2), (3N, 3N2), or (2N,N2).

Lemma 2.3. Let u(a, b) and v(a, b) be degenerate sequences for which gcd(a, b) = 1. Let n ≥ 0
and k ≥ 0. Then

(i) (a, b) = (0, ε), (ε, 0), (ε, 1), or (2ε, 1).
(ii) If (a, b) = (0, ε), then u2k = 0 and u2k+1 = (−ε)k, while v2k = 2(−ε)k and v2k+1 = 0.
(iii) If (a, b) = (ε, 0), then u0 = 0 and un = εn+1 for n ≥ 1, while v0 = 2 and vn = εn for

n ≥ 1.
(iv) If (a, b) = (ε, 1), then u3k = 0, u3k+1 = (−ε)k, and u3k+2 = −(−ε)k+1, while v3k =

2(−ε)k, v3k+1 = −(−ε)k+1, and v3k+2 = −(−ε)k.
(v) If (a, b) = (2ε, 1), then un = nεn+1, while vn = 2εn.

Proof. Part (i) follows from Proposition 2.2. Parts (ii)–(v) can be established through induc-
tion. �

Definition 2.4. Let {wn}
∞

n=0 be a sequence of integers. Then p is a primitive prime divisor
of wn for n ≥ 1 if p | wn and either n = 1 or n ≥ 2 and p - w1w2 · · ·wn−1.

In this paper, we will be interested in finding indices n for which |un(a, b)| = p or |vn(a, b)| =
p. A key tool for accomplishing this is the following theorem, which is proved in Theorems C,
1.3, and 1.4 by Bilu, Hanrot, and Voutier in [1].

Theorem 2.5. Consider the nondegenerate Lucas sequence u(a, b) for which gcd(a, b) = 1.

(i) If n > 30, then un has a primitive prime divisor.

(ii) If n ≤ 30, then un has a primitive prime divisor if it is not the case that n ∈
{1, . . . , 8, 10, 12, 13, 18, 30}.

(iii) If n ∈ {5, 7, 8, 10, 12, 13, 18, 30}, then there exist exactly 38 terms such that un(a, b) has
no primitive prime divisor. These terms are given in Table 1 below, which is extracted
from Table 1 on page 78 of [1].
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Table 1. Values for which the sequence un(a, b) has no primitive prime divisor when
n ∈ {5, 7, 8, 10, 12, 13, 18, 30}.

n (a, b)

5 (±1, 2), (±1, 3), (±12, 55), (±12, 377)

7 (±1, 5)

8 (±1, 2), (±2, 7)

10 (±2, 3), (±5, 7), (±5, 18)

12 (±1,−1), (±1, 2), (±1, 3), (±1, 4), (±1, 5), (±2, 15)

13 (±1, 2)

18 (±1, 2)

30 (±1, 2)

Remark 2.6. For n ∈ {1, 2, 3, 4, 6} there exist infinitely many terms such that un(a, b) has no
primitive prime divisor. As contrasted to our Definition 2.4 of a primitive divisor, Bilu, Hanrot,
and Voutier in [1] define p to be a primitive divisor of un if p - un, but p - Du1u2 · · · un−1.

Propositions 3.1–3.4 and Theorems 3.5 and 3.9 will give both necessary and sufficient con-
ditions for |un(a, b)| or |vn(a, b)| to be prime, while Theorems 3.7 and 3.10 will provide only
necessary conditions for |un(a, b)| or |vn(a, b)| to be prime. Theorems 3.15, 3.18, and 3.20 will
give simple criteria involving the Legendre symbol to show that these necessary conditions
given in Theorems 3.7 and 3.10 for the primality of |un(a, b)| or |vn(a, b)| are not sufficient.
Examples 3.17, 3.19, 3.23, and 3.24 will provide specific instances to show that the criteria
given in Theorems 3.15, 3.18, and 3.20 for the compositeness of certain terms are indeed sat-
isfied in particular cases. Further criteria based on known results will be given to show that
for very particular Lucas sequences u(a, b), the necessary conditions given in Theorem 3.7 for
the primality of |un(a, b)| are not sufficient.

Lemmas 2.7 and 2.9 and Theorem 2.8 give known properties of the sequences u(a, b) and
v(a, b) that we will need for our later proofs.

Lemma 2.7. Consider the sequences u(a, b) and v(a, b).

(i) If m | n, then um | un.
(ii) If m | n and n/m is odd, then vm | vn.
(iii) un(−a, b) = (−1)n+1un(a, b).
(iv) vn(−a, b) = (−1)nvn(a, b).
(v) u2n = unvn.
(vi) v2n −Du2n = 4bn.
(vii) If p - 2b, then p - gcd(un, vn).
(viii) If p - 2bD, then p | up−(D/p), where (D/p) denotes the Legendre symbol and (D/p) = 0

if p | D.
(ix) If p - 2bD, then p | u(p−(D/p))/2 if and only if (b/p) = 1.
(x) If p - 2bD, then p | v(p−(D/p))/2 if and only if (b/p) = −1.
(xi) If p - 2bD and p is a primitive divisor of un, then p = kn± 1 for some k ≥ 1.
(xii) If p - 2b and p is a primitive divisor of vn, then p = 2kn± 1 for some k ≥ 1.
(xiii) If gcd(a, b) = 1, then gcd(un, b) = gcd(vn, b) = 1 for n ≥ 1.
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Proof. Parts (i)–(vi) follow from the Binet formulas (2.3), (2.4), and (2.5). Part (vii) follows
from part (vi). Part (viii) is proved in [6, pp. 44-45] and part (ix) is proved in [11, p. 441].
Parts (xi) and (xii) are proved in [11, p. 425]. Part (xiii) is proved in [6, p. 35]. We now prove
part (x). Suppose that (b/p) = −1. By (v),

up−(D/p) = u(p−(D/p))/2 · v(p−(D/p))/2. (2.8)

By (viii), p | up−(D/p). It now follows from (2.8) and part (ix) that p | v(p−(D/p))/2.
Conversely, suppose that p | v(p−(D/p))/2. Then p - u(p−(D/p))/2 by part (vii). Thus, (b/p) =

−1 by part (ix). �

Theorem 2.8. Consider the sequences u(a, b) and v(a, b), where gcd(a, b) = 1 and ab 6= 0.
Let m = 2rm′ and n = 2sn′, where m′ and n′ are odd, and r, s ≥ 0. Let d = gcd(m,n). Then

(i) gcd(um, un) = |ud|,

(ii) gcd(vm, vn) =

{

vd, if r = s;

1 or 2, if r 6= s,
(iii) The value of gcd(vm, vn) is even if and only if b is odd and either a is even or 3 | d.

The proof of Theorem 2.8 is given in [13].

Lemma 2.9. Let u(a, b) and v(a, b) be nondegenerate sequences for which gcd(a, b) = 1. Then
|un| = 1 for n > 1 or |vn| = 1 for n ≥ 1 only in the following instances:

(i) n = 1, a = ±1, v1 = ±1,
(ii) n = 2, a = ±1, u2 = ±1,
(iii) n = 2, a is odd, b = (a2 ± 1)/2, v2 = ±1,
(iv) n = 3, b = a2 ± 1, u3 = ±1,
(v) n = 4, a = ±1, b = 2, v4 = 1,
(vi) n = 5, (a, b) = (±1, 2), (±1, 3), (±12, 55), or (±12, 377), u5 = ±1,
(vii) n = 7, a = ±1, b = 5, u7 = 1,
(viii) n = 13, a = ±1, b = 2, u13 = −1.

This is proved in [12, pp. 253–254].

3. Main Results

Propositions 3.1 and 3.2 determine exactly when |un(a, b)| and |vm(a, b)| are primes for
0 ≤ n ≤ 4 and 0 ≤ m ≤ 3 based on simple constraints on the parameters a and b.

Proposition 3.1. Consider the Lucas sequence u(a, b). Let 1 ≤ n ≤ 4. Then |un(a, b)| = p
for some prime p if and only if one of the following three conditions holds:

(i) n = 2 and a = ±p,
(ii) n = 3 and b = a2 ± p,
(iii) n = 4, p is odd and one of the following conditions holds:

(a) a = ±1 and b = (1 + εp)/2,
(b) a = εp and b = (p2 ± 1)/2.

Proof. It is obvious that n cannot be equal to 0 or 1. Parts (i) and (ii) follow from (2.6) in
Example 2.1. Part (iii) is proved in Theorem 2.10 of [19]. �

Proposition 3.2. Consider the companion Lucas sequence v(a, b). Let 0 ≤ m ≤ 3. Then
|vm(a, b)| = p for some prime p if and only if one of the following four conditions holds:

(i) m = 0 and p = 2,
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(ii) m = 1 and a = ±p,
(iii) m = 2, a ≡ p (mod 2), and b = (a2 ± p)/2,
(iv) m = 3 and one of the following holds:

(a) εp ≡ 1 (mod 3), a = ±1, and b = (1− εp)/3,
(b) p 6≡ 0 (mod 3), a = εp, and b = (p2 − 1)/3.

Proof. Part (i) is obvious. Parts (ii) and (iii) follow from (2.7) in Example 2.1. It is evident
that in part (iii), we must have a ≡ p (mod 2) in order for b to be an integer.

By the expression for v3(a, b) in (2.7), we see that either |a| = 1 or |a| = p. If |a| = 1, then
a2 − 3b = εp, which implies that b = (1 − εp)/3. It is clear that b is an integer if and only
if εp ≡ 1 (mod 3). If |a| = p, then a2 − 3b = ±1, which implies that b = (p2 ± 1)/3. It is
evident that p 6≡ 0 (mod 3), since b is an integer. Thus, p2 ≡ 1 (mod 3), which implies that
b = (p2 − 1)/3 in order for b to be an integer. �

By virtue of Proposition 3.1 and 3.2, we will usually assume that n ≥ 5 and m ≥ 4 in
examining the primality of |un(a, b)| and |vm(a, b)|.

Proposition 3.3. Consider the sequences u(a, b) and v(a, b) and let gcd(a, b) = d > 1. Then

(i) |un(a, b)| is never prime for n ≥ 4,
(ii) |vm(a, b)| is never prime for m ≥ 3.

Proof. It follows by induction using the recursion relations defining u(a, b) and v(a, b) that
dk | un(a, b) for n ≥ 2k and dk | vm(a, b) for m ≥ 2k − 1. Thus, d2 | un(a, b) for n ≥ 4 and
d2 | vm(a, b) for m ≥ 3. �

In light of Proposition 3.3, we will assume from here on that gcd(a, b) = 1. The remaining
results not proved in this section will be proved in Section 5.

Proposition 3.4. Suppose that u(a, b) and v(a, b) are both degenerate and that gcd(a, b) = 1.
Then

(i) (a, b) = (0, ε), (ε, 0), (ε, 1), or (2ε, 1).
(ii) If (a, b) = (0, ε), then |un| is never prime, while |vn| is prime if and only if 2 | n. In

particular, |v2n| = 2 for n ≥ 0.
(iii) If (a, b) = (ε, 0), then |un| is never prime, whereas |vn| is prime if and only if n = 0.

In particular, v0 = 2.
(iv) If (a, b) = (ε, 1), then |un| is never prime, whereas |vn| is prime if and only if 3 | n.

In particular, |v3n| = 2 for n ≥ 0.
(v) Suppose that (a, b) = (2ε, 1). Then |un| is prime if and only if n is prime. In particular,

|up| = p for each prime p. Moreover, |vn| = 2 for n ≥ 0 and |vn| is prime for all n.

The proof of Proposition 3.4 follows immediately from Lemma 2.3.

By virtue of Proposition 3.4, from now on, we will only consider nondegenerate sequences
u(a, b) and v(a, b) for which gcd(a, b) = 1.

Theorem 3.5. Consider the nondegenerate Lucas sequence u(a, b), where gcd(a, b) = 1. Sup-
pose that n ≥ 6 is composite and that n 6= 9. Then |un(a, b)| is prime if and only if one of the
following cases holds:

(i) |u6(±1, 2)| = 5,
(ii) |u8(±1, 2)| = 3,
(iii) |u10(±1, 2)| = 11,
(iv) |u10(±1, 3)| = 31,
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(v) u15(±1, 2) = −89,
(vi) u25(±1, 2) = −4049,
(vii) u25(±1, 3) = 282001,
(viii) |u26(±1, 2)| = 181,
(ix) u65(±1, 2) = −335257649.

This is proved in the proof of Theorem 3.1 on pages 254–256 of [12].

Remark 3.6. We note that in Theorem 3.5, only in part (ii) is the prime value p of |un(a, b)|
not a primitive divisor of un(a, b). In this case, |u8(±1, 2)| = |u4(±1, 2)| = 3. Obviously,
|un(a, b)| or |vn(a, b)| can be equal to a prime only if either all prime divisors of un(a, b) or
vn(a, b) are primitive or all prime divisors of un(a, b) or vn(a, b) are not primitive. We will use
this observation in finding all instances in which |un(a, b)| or |vn(a, b)| can possibly be prime.

Theorem 3.7 complements Theorem 3.5 by finding a necessary condition for |un(a, b)| to be
prime in the remaining cases in which n ≥ 5 and either n is prime or n = 9.

Theorem 3.7. Consider the nondegenerate Lucas sequence u(a, b), where gcd(a, b) = 1. Sup-
pose that n ≥ 5 is prime or n = 9. Then |un(a, b)| > 1 and each prime divisor of un(a, b) is
primitive if and only if one of the two conditions below is satisfied. In particular, |un(a, b)|
can be prime in this case only if condition (i) or condition (ii) holds:

(i) n ≥ 5 is prime and un(a, b) 6= 1, which occurs if and only if (n, a, b) 6= (5,±1, 2),
(5,±1, 3), (5,±12, 55), (5,±12, 377), (7,±1, 5), or (13,±1, 2),

(ii) n = 9 and u3(a, b) = ±1, which occurs if and only if b = a2 ± 1.

Proof. By Theorem 2.8 (i) and the fact that u1 = 1, we see that each prime divisor of un is
primitive if n is prime.

Now suppose that n = 9. If p | u3, then by Lemma 2.7 (i), p | u9 and p is not a primitive
divisor of u9. It now follows from Theorem 2.8 (i) that each prime divisor of u9 is primitive if
u3 = ±1.

The assertions concerning when un(a, b) = ±1 for n a prime follow from Lemma 2.9. �

Remark 3.8. We conjecture that for each prime p ≥ 5, there exist infinitely many nondegen-
erate Lucas sequences u(a, b) for which |up(a, b)| is prime.

We also conjecture that there exist infinitely many nondegenerate Lucas sequences u(a, b)
for which |u9(a, b)| is prime. By Theorem 3.7 (ii), |u9(a, b)| can be prime only if (a, b) is of the
form (M,M2 + ε) for some nonzero integer M . By Theorem 2.14 on p. 200 of [19],

|u9(M,M2 + ε)| = 3(M2 + ε)((M2 + ε)2 − 1)− ε. (3.1)

In Example 5.3 on pages 212–213 of [19], we searched for prime values of |u9(M,M2 + ε)|
given in (3.1) for 1 ≤ |M | ≤ 386. We found 121 such prime values given by 242 ordered pairs
(M,M2 + ε). The largest prime value found was

|u(±380, 144401)| = 9032996815106399.

Theorem 3.9. Let us consider the nondegenerate companion Lucas sequence v(a, b), where
gcd(a, b) = 1. Suppose that n ≥ 4. Then vn(a, b) has no primitive prime divisor if and only if

(n, a, b) =(4,±1, 2), (4,±2, 7), (5,±2, 3), (5,±5, 7), (5,±5, 18), (6,±1,−1),

(6,±1, 2), (6,±1, 3), (6,±1, 4), (6,±1, 5), (6,±2, 15), (9,±1, 2), or (15,±1, 2).

In particular, |vn(a, b)| = p, where p is not a primitive divisor of vn(a, b) if and only if one
of the following four cases holds:
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(i) v4(±2, 7) = 2,
(ii) |v5(±2, 3)| = 2,
(iii) v6(±1, 4) = −7,
(iv) |v9(±1, 2)| = 5.

Theorem 3.10. Let us consider the nondegenerate companion Lucas sequence v(a, b), where
gcd(a, b) = 1. Suppose that n ≥ 4. Then |vn(a, b)| > 1 and each prime divisor of vn(a, b) is
primitive if and only if one of the four conditions below holds. In particular, |vn(a, b)| = p,
where p is a primitive divisor of vn(a, b) only if one of the conditions (i)–(iv) is satisfied.

(i) n is prime and v1 = ±1, which occurs if and only if a = ±1.
(ii) n = 2k for some k ≥ 2, 2 - a, and n 6= 4 if (a, b) = (±1, 2).
(iii) n = 2p for some prime p, v2 = ±1 which occurs if and only if a is odd and b =

(a2 ± 1)/2, and it is not the case that p = 3 and a and b are odd.
(iv) (a, b) = (±1, 2) and n = 4p. In this case, v4(±1, 2) = 1.

Proof. Throughout this proof, we assume that v(a, b) is nondegenerate and gcd(a, b) = 1.
Suppose that there exists an integer m such that 1 ≤ m < n, m | n, n/m is odd, and |vm| > 1.
Then vm | vn by Lemma 2.7 (ii). Let p | vm. Then p | vn and p is not a primitive divisor of vn.
We also observe by Lemma 2.8 (iii) that if v1 = a is even, then 2 | vn for all n ≥ 0. We further
notice by Lemma 2.8 (iii) that if p = 3 and a and b are odd, then 2 divides both v3(a, b) and
v6(a, b) and 2 is not a primitive divisor of v6(a, b). We also note by Lemma 2.9 that vn(a, b)
can equal ±1 if and only if (n, a, b) = (1,±1, r), (2, 2s + 1, ((2s + 1)2 ± 1)/2), or (4,±1, 2),
where r and s are arbitrary integers. It now follows that |vn(a, b)| > 1 and each prime divisor
of vn is primitive only if one of the conditions (i)–(iv) holds.

Conversely, we suppose that one of the conditions (i)–(iv) holds. By Theorem 2.8 (iii), vn
is odd. It then follows from Theorem 2.8 (ii) and our above arguments that |vn(a, b)| > 1 and
each prime divisor of vn is primitive if one of the conditions (i)–(iv) holds. �

Remark 3.11. We conjecture that for any fixed integer n ≥ 4, which satisfies one of conditions
(i)–(iii), there exist infinitely many nondegenerate companion Lucas sequences v(a, b) such
that |vn(a, b)| is prime. We also conjecture that there exist infinitely many primes p such that
|v4p(±1, 2)| is prime.

Example 3.12. To lend some support for the conjectures in Remark 3.11, we examine the
sequence v(1, 2) for which v1 = 1, 2 - a, and v4 = 1, and also look at the sequence v(3, 5) for
which v1 = 1, 2 - a, and v2 = −1.

By inspection, we see that |vn(1, 2)| is prime for the following 25 values of n such that
|vn(1, 2)| < 1016:

n =0, 2, 3, 5, 7, 8, 9, 11, 12, 13, 16, 17, 19, 20, 23, 32, 37,

41, 43, 47, 61, 67, 76, 83, 92.

Moreover, by examination, we observe that |vn(3, 5)| is prime for the following values of n
such that |vn(3, 5)| < 1014:

n = 0, 1, 8, 10, 14, 16, 34.

We also note by [4] that if α and β as usual denote the characteristic roots of v(a, b) is
prime, then v219(a, b) = v524288(a, b) is prime when

(α, β) = (475856, 1), (356926, 1), (341112, 1), or (75898, 1)
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and v218(a, b) = v262144(a, b) is prime when

(α, β) = (773620, 1), (676754, 1), (525094, 1), (361658, 1), (145310, 1) (40734, 1), or (24518, 1).

In Theorems 3.15, 3.18, and 3.20, we show by the use of the Legendre symbol that the
necessary conditions for the primality of |un(a, b)| or |vn(a, b)| given in Theorems 3.7 and 3.10
are not sufficient. Before presenting these theorems, we will need the following result.

Theorem 3.13. Let u(a, b) and v(a, b) be the nondegenerate sequences for which gcd(a, b) = 1
with discriminant D = a2 − 4b. There exist positive integer constants C1 and C2, which are
dependent on a and b if D < 0 and are independent of a and b if D > 0, such that if n ≥ C1

and m ≥ C2, then |un(a, b)| > 2n + 1 and |vm(a, b)| > 2m + 1. Moreover, if D > 0, then
the following hold, where C ′

1 and C ′

2 are the least such positive integer constants C1 and C2,
respectively.

(i) C ′

1 = 2 or 3 except for the following cases:
(a) (a, b) = (±1,−1), C ′

1 = 8;
(b) (a, b) = (±1,−2), C ′

1 = 6;
(c) (a, b) = (±1,−3) or (±1,−4), C ′

1 = 5;
(d) (a, b) = (±1,−5), (±1,−6), (±2,−1), (±2,−2), (±2,−3), or (±3, 2), C ′

1 = 4.

(ii) C ′

2 = 1 or 2 except for the following cases:
(a) (a, b) = (±1,−1), C ′

2 = 6;
(b) (a, b) = (±1,−2), C ′

2 = 4;
(c) (a, b) = (±3, 2), C ′

2 = 3.

Remark 3.14. Based on the examination of many sequences u(a, b) and v(a, b), we conjecture
that if u(a, b) and v(a, b) are nondegenerate sequences for which gcd(a, b) = 1, and D < 0,
then C1 and C2 are absolute constants independent of a and b, and that C ′

1 ≤ 14 and C ′

2 ≤ 10.
Moreover, we conjecture that C ′

1 = 14 if and only if (a, b) = (±1, 2), and C ′

2 = 10 if and only
if (a, b) = (±1, 2). In particular, we note that

u13(±1, 2) = −1, |u14(±1, 2)| = 91, u15(±1, 2) = −89, |u16(±1, 2)| = 93, andu17(±1, 2) = 271,

whereas

|v9(±1, 2)| = 5, v10(±1, 2) = 57, |v11(±1, 2)| = 67, v12(±1, 2) = −47, and |v13(±1, 2)| = 181.

Theorem 3.15. Let u(a, b) be a nondegenerate Lucas sequence and let p ≥ C ′

1, where C ′

1 is
as defined in Theorem 3.13.

(i) If 2p − 1 is also a prime, (b/(2p − 1)) = 1, and (D/(2p − 1)) = −1, then 2p − 1 | up
and |up| is composite.

(ii) If 2p+ 1 is a prime, (b/(2p+ 1)) = 1, and (D/(2p+ 1)) = 1, then 2p+ 1 | up and |up|
is composite.

Proof. The assertions that 2p − 1 | up if (i) holds and 2p + 1 | up if (ii) is satisfied are proved
in [18]. It then follows from Theorem 3.13 that |up| is composite if p ≥ C ′

1. �

Remark 3.16. In the original presentation of Theorem 3.15 in [18], there was the additional
condition that p - b. However, the proof of Theorem 3.15 given in [18] shows that this constraint
is not necessary. Theorem 1.1 was proved in [18] by the use of Theorem 3.15.

Example 3.17. Consider the nondegenerate Lucas sequence u(1,−5) with discriminant D =
21. Then we can find primes satisfying each of the conditions of Theorem 3.15.
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Primes satisfying the conditions of Theorem 3.15 (i): Let p be a prime such that
p ≡ 1 (mod 30), p ≡ 0, 2, or 3 (mod 7), and 2p−1 is also a prime. Then 2p−1 ≡ 1 (mod 60).
Hence, 2p−1 is congruent to 1 (mod 3), 1 (mod 4), 1 (mod 5), and 3, 5, or 6 (mod 7). Thus,
by the law of quadratic reciprocity,

( b

2p− 1

)

=
( −5

2p − 1

)

=
( −1

2p− 1

)( 5

2p− 1

)

= 1 ·
(2p− 1

5

)

=
(1

5

)

= 1,

as desired. Moreover,
( D

2p − 1

)

=
( 21

2p− 1

)

=
( 3

2p − 1

)( 7

2p− 1

)

=
(2p − 1

3

)(2p − 1

7

)

=
(1

3

)

(−1) = −1.

Therefore, the conditions of Theorem 3.15 (i) hold, and 2p−1 | up. The ordered pairs (p, 2p−1)
with p < 1000 satisfying the constraints of Theorem 3.15 (i) are

(31, 61), (331, 661), and (661, 1321).

We observe explicitly that

61 | u31(1,−5) = 14415648500221 = 61 · 1427 · 5021 · 32983.

Primes satisfying the conditions of Theorem 3.15 (ii): Let p be a prime such that
p ≡ 11 or 23 (mod 30), p ≡ 1, 2, or 6 (mod 7), and 2p+1 is a prime. Then 2p+1 ≡ 23 or 47
(mod 60). Therefore, 2p + 1 is congruent to 2 (mod 3), 3 (mod 4), 2 or 3 (mod 5), and 3, 5,
or 6 (mod 7). Hence, by the law of quadratic reciprocity,

( b

2p+ 1

)

=
( −5

2p + 1

)

=
( −1

2p+ 1

)( 5

2p+ 1

)

= (−1) ·
(2p+ 1

5

)

= (−1)(−1) = 1

as desired. Furthermore,
( D

2p + 1

)

=
( 21

2p+ 1

)

=
( 3

2p + 1

)( 7

2p + 1

)

= −
(2p+ 1

3

)[

−
(2p+ 1

7

)]

= 1 · 1 = 1,

as desired. Therefore, the conditions of Theorem 3.15 (ii) are satisfied, and 2p + 1 | up. The
ordered pairs (p, 2p + 1) with p < 1000 satisfying the constraints of Theorem 3.15 (ii) are:

(23, 47), (41, 83), (83, 167), (113, 227), (191, 383), (233, 467), (251, 503), (281, 563),
(293, 587), (443, 887), (491, 983), (653, 1307), (743, 1487), and (953, 1907).

In particular, we see that

47 | u23(1,−5) = 3912125981 = 47 · 827 · 100649.

Finally, we find by inspection that un(1,−5) is prime for 0 ≤ n ≤ 31 only in the following
cases:

u4 = 11, u5 = 41, u17 = 8275601.

Theorem 3.18 shows that the necessary conditions given in Theorem 3.7 (ii) for u9(a, b) to
be prime are not sufficient.

Theorem 3.18. Let u(a, b) = u(a, a2±1) be a nondegenerate Lucas sequence for which |a| ≥ 2.
Then u3(a, b) = ±1.

(i) Suppose that b = a2 − 1. If a ≡ ±3 or ±4 (mod 17), then 17 | |u9(a, a
2 − 1)| and

|u9(a, a
2−1)| is composite. If a ≡ ±5 (mod 19), then 19 | u9(a, a

2−1) and |u9(a, a
2−

1)| is again composite.
(ii) Suppose that b = a2 + 1. If a ≡ ±1 or ±5 (mod 17), then 17 | u9(a, a

2 + 1) and
|u9(a, a

2 + 1)| is composite. If a ≡ ±4 or ±5 (mod 19), then 19 | u9(a, a
2 + 1) and

|u9(a, a
2 + 1)| is composite.
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(iii) Suppose that b = a2 − 1. If

a ≡ 14, 71, 81, 157, 166, 242, 252, or 309 (mod 323),

then 17 · 19 = 323 | u9(a, a
2 − 1) and |u9(a, a

2 − 1)| is composite.
(iv) Suppose that b = a2 + 1. If

a ≡ 5, 33, 52, 80, 90, 118, 137, 148, 175, 186,

205, 233, 243, 271, 290, or 318 (mod 323),

then 323 | u9(a, a
2 + 1) and |u9(a, a

2 + 1)| is composite.

Proof. We see from (3.1) in Remark 3.8 that

|u9(a, a
2 ± 1)| ≥ 3(22 − 1)((22 − 1)2 − 1) + 1 = 73

for |a| ≥ 2. Thus, |u9(a, a
2 ± 1)| is composite if 17 or 19 divides u9(a, a

2 ± 1). We now prove
parts (i)–(iv) together.

First suppose that b = a2 − 1. Then by Lemma 2.7 (ix), if
( b

17

)

=
(a2 − 1

17

)

= 1 and
(D

17

)

=
(−3a2 + 4

17

)

= −1, (3.2)

then

17 | u(17−(D/17))/2 = u9(a, a
2 − 1).

By inspection, we find that (3.2) holds if a ≡ ±3 or ±4 (mod 17).
We also see by Lemma 2.7 (ix) that if

( b

19

)

=
(a2 − 1

19

)

= 1 and
(D

19

)

=
(−3a2 + 4

19

)

= 1, (3.3)

then

19 | u(19−(D/19))/2 = u9(a, a
2 − 1).

By examination, we observe that (3.3) is satisfied when a ≡ ±5 (mod 19). Thus, part (i) is
proved.

It now follows from part (i) and the Chinese Remainder Theorem that part (iii) holds. For
example, if

a ≡ 3 (mod 17) and a ≡ 5 (mod 19), (3.4)

then both (3.2) and (3.3) hold. It then follows that

17 · 19 = 323 | u9(a, a
2 − 1).

We see by the Chinese Remainder Theorem that (3.4) holds if a ≡ 309 (mod 323). The other
7 cases are handled similarly using the Chinese Remainder Theorem.

Now suppose that b = a2 + 1. It follows from Lemma 2.7 (ix) that if
( b

17

)

=
(a2 + 1

17

)

= 1 and
(D

17

)

=
(−3a2 − 4

17

)

= −1, (3.5)

then

17 | u(17−(D/17))/2 = u9(a, a
2 + 1).

By inspection, we see that (3.5) hold if a ≡ ±1 or ±5 (mod 17).
We further observe by Lemma 2.7 (ix) that if

( b

19

)

=
(a2 + 1

19

)

= 1 and
(D

19

)

=
(−3a2 − 4

19

)

= 1, (3.6)
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then

19 | u(19−(D/19))/2 = u9(a, a
2 + 1).

By inspection, we see that (3.6) is satisfied when a ≡ ±4 or ±5 (mod 19). Therefore, part (ii)
holds.

Finally, it follows from part (ii) and the Chinese Remainder Theorem that part (iv) holds.
�

Example 3.19. In (3.7) and (3.8), we find terms u9(a, a
2 ± 1) such that u9 is divisible by 17,

19, and a large prime having 12 digits. In (3.9) and (3.10), we present terms u9(a, a
2± 1) that

are divisible by 5 primes including 17 and 19;

u9(157, 24648) = 44922747483433 = 17 · 19 · 139079713571, (3.7)

u9(175, 30626) = 86177142371249 = 17 · 19 · 266802298363, (3.8)

u9(137, 18770) = 19838739342689 = 17 · 19 · 37 · 20123 · 82493, (3.9)

u9(186, 34597) = 124232887378727 = 17 · 19 · 541 · 2699 · 263411. (3.10)

Before presenting Theorem 3.20 we need to discuss primes of the form 2k + 1. It is easy
to see that 2k + 1 can be prime only if k = 2m for some m ≥ 0. Such primes are called
Fermat primes and will be denoted by Fm = 22

m

+ 1. Their properties are given in [10]. The
only known Fermat primes Fm are those for which m ∈ {0, 1, 2, 3, 4}. We have the following
consecutive Fermat numbers (which may or may not be prime):

Fm+1 = 22
m+1

+ 1 =
(

22
m)2

+ 1 = (Fm − 1)2 + 1. (3.11)

Theorem 3.20. Let v(a, b) be a nondegenerate companion Lucas sequence with gcd(a, b) = 1.
Let C ′

2 be defined as in Theorem 3.13.

(i) Suppose that a = ±1. If p ≥ C ′

2 and 2p − 1 is a prime such that

( b

2p − 1

)

=
( D

2p− 1

)

= −1,

then 2p − 1 | vp and |vp| is composite.
(ii) Suppose that a = ±1. If p ≥ C ′

2 and 2p + 1 is a prime such that

( b

2p + 1

)

= −1 and
( D

2p + 1

)

= 1,

then 2p + 1 | vp and |vp| is composite.
(iii) Suppose that 2 - a. Let p be a prime such that 2p−1 ≥ C ′

2. Let Mp = 2p − 1 be a
Mersenne prime such that

( b

Mp

)

=
( D

Mp

)

= −1.

Then Mp | v2p−1 and |v2p−1 | is composite.

(iv) Suppose that 2 - a. Let m be a nonnegative integer such that Fm is a Fermat prime
such that

( b

Fm

)

= −1 and
( D

Fm

)

= 1.

Then Fm | v2r , where r = 2m − 1, and v2r is composite.
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(v) Suppose that b = (a2 ± 1)/2 and thus v2 = ±1. Let p be a prime such that 2p ≥ C ′

2. If
4p − 1 is a prime such that

( b

4p − 1

)

=
( D

4p− 1

)

= −1,

then 4p − 1 | v2p and |v2p| is composite.
(vi) Suppose that b = (a2 ± 1)/2 and thus v2 ± 1. Let p be a prime such that 2p ≥ C ′

2. If
4p + 1 is a prime such that

( b

4p + 1

)

= −1 and
( D

4p + 1

)

= 1,

then 4p + 1 | v2p and |v2p| is composite.

Proof. The assertions about compositeness follow from Theorem 3.13. By Lemma 2.7 (x) we
have

(i) 2p − 1 | v(2p−1+1)/2 = vp,
(ii) 2p + 1 | v(2p+1−1)/2 = vp,
(iii) 2p − 1 | v(2p−1+1)/2 = v2p−1 ,

(iv) Fm | v(Fm−1)/2 = v2r , where r = 2m − 1,

(v) 4p − 1 | v(4p−1+1)/2 = v2p,
(vi) 4p + 1 | v(4p+1−1)/2 = v2p.

�

Remark 3.21. We note that in Theorem 3.20, we do not have a criterion involving the
Legendre symbol for determining primes of the form 8p ± 1 such that

8p± 1 | v4p(±1, 2).

The reason is that if we use Lemma 2.7 (x) as we did in the proofs of parts (i)–(vi) of Theorem
3.20, we must have that

( b

8p ± 1

)

=
( 2

8p± 1

)

= −1.

However, by the law of quadratic reciprocity,
( 2

8p ± 1

)

= 1.

Remark 3.22. Theorems 1.1, 1.3, 1.5, 3.15, and 3.20 discuss primes p such that 2p ± 1 is
also a prime. Primes p such that 2p+1 is prime are called Sophie Germain primes of the first
kind, while primes p for which 2p− 1 is prime are called Sophie Germain primes of the second
kind. By inspection, we see that the first few Sophie Germain primes of the first kind are

2, 3, 5, 11, 23, 29, 41, 53, 83, 89, 113, 131, . . . ,

whereas the first few Sophie Germain primes of the second kind are

2, 3, 7, 19, 31, 37, 79, 97, 139, 157, 199, 211, . . . .

According to [5], the largest known Sophie Germain prime of the first kind is

18543637900515 · 2666667 − 1

with 200701 digits, while we find from [3] that the largest known Sophie Germain prime of the
second kind is

648309 · 2148310 + 1
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with 44652 digits.

The following example shows that there exist nondegenerate companion Lucas sequence
v(a, b) for which each of the conditions (i)–(iv) of Theorem 3.20 can be satisfied for certain
primes.

Example 3.23. Consider the nondegenerate companion Lucas sequence v(1,−5) with dis-
criminant D = 21. Then we can find primes satisfying each of the conditions (i)–(iv) of
Theorem 3.20.

Primes satisfying the conditions of Theorem 3.20 (i): Let p be a prime such that
p ≡ 7 or 19 (mod 30), p ≡ 0, 2, or 3 (mod 7), and 2p− 1 is also a prime. Then 2p− 1 ≡ 13 or
37 (mod 60). Hence, 2p − 1 is congruent to 1 (mod 3), 1 (mod 4), 2 or 3 (mod 5), and 3, 5,
or 6 (mod 7). Thus, by the law of quadratic reciprocity,

( b

2p− 1

)

=
( −5

2p − 1

)

=
( −1

2p− 1

)( 5

2p − 1

)

= 1 ·
(2p− 1

5

)

= −1,

as desired. Moreover,
( D

2p− 1

)

=
( 21

2p − 1

)

=
( 3

2p− 1

)( 7

2p− 1

)

=
(2p − 1

3

)(2p− 1

7

)

=
(1

3

)(2p − 1

7

)

= −1.

Thus, the conditions of Theorem 3.20 (i) are fulfilled, and 2p − 1 | vp. The ordered pairs
(p, 2p− 1) with p < 1000 satisfying the constraints of Theorem 3.20 (i) are:

(7, 13), (37, 73), (79, 157), (157, 313), (199, 397), (367, 733), (499, 997),

(577, 1153), (619, 1237), (829, 1657), (877, 1753), and (997, 1993).

We observe explicitly that 13 | v7(1,−5) = 1261 = 13 · 97.

Primes satisfying the conditions of Theorem 3.20 (ii): Let p be a prime such that
p ≡ 29 (mod 30), p ≡ 1, 2, or 6 (mod 7), and 2p + 1 is also a prime. Then 2p + 1 ≡ 59
(mod 60). Therefore, 2p + 1 is congruent to 2 (mod 3), 3 (mod 4), 4 (mod 5), and 3, 5, or 6
(mod 7). By the law of quadratic reciprocity, we have

( b

2p + 1

)

=
( −5

2p+ 1

)

=
( −1

2p + 1

)( 5

2p+ 1

)

= (−1) ·
(2p+ 1

5

)

= −1,

as required. Furthermore,
( D

2p + 1

)

=
( 21

2p+ 1

)

=
( 3

2p + 1

)( 7

2p + 1

)

=
[

−
(2p+ 1

3

)][

−
(2p + 1

7

)]

=

[

−
(2

3

)][

−
(2p+ 1

7

)]

= 1 · 1 = 1,

as desired. Therefore, the conditions of Theorem 3.20 (ii) hold, and 2p + 1 | vp. The ordered
pairs (p, 2p+ 1) with p < 1000 satisfying the constraints of Theorem 3.20 (ii) are

(29, 59), (239, 479), (359, 719), (419, 839), and (659, 1319).

In particular, we see that

59 | v29(1,−5) = 8478772712071 = 59 · 347 · 8293 · 49939.
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Primes satisfying the conditions of Theorem 3.20 (iii): Suppose that p ≡ 5 (mod 12)
and Mp = 2p − 1 is a Mersenne prime. Then Mp ≡ 3 (mod 4). We claim that

( b

Mp

)

=
(−5

Mp

)

=
( D

Mp

)

=
( 21

Mp

)

= −1.

Let p = 12k + 5. By Fermat’s Little Theorem and the law of quadratic reciprocity,
(−5

Mp

)

=
( −1

2p − 1

)( 5

2p − 1

)

= (−1)
(2p − 1

5

)

= −
(212k · 25 − 1

5

)

= −
(1 · 32− 1

5

)

= −1.

Moreover,
( 21

Mp

)

=
( 3

2p − 1

)( 7

2p − 1

)

=
[

−
(2p − 1

3

)][

−
(2p − 1

7

)]

= (−1)
(1 · 32− 1

3

)

(−1)
(1 · 32− 1

7

)

= (−1)
(1

3

)

(−1)
(3

7

)

= −1,

as desired. Hence, 2p − 1 | v2p−1 in these cases.
There are 18 known Mersenne primes Mp with p ≡ 5 (mod 12) (see [2]), namely those

primes p for which

p = 5, 17, 89, 521, 4253, 9689, 9941, 11213, 19937, 21701, 859433,

1398269, 2976221, 3021377, 6972593, 32582657, 43112609, and 57885161.

In particular, we observe that

M5 = 25 − 1 = 31 | v24 = v16 = 13590431 = 31 · 438401.

Primes satisfying the conditions of Theorem 3.20 (iv): Let Fm = 22
m

+ 1 be a
Fermat prime with m ≥ 2. We will show that

( b

Fm

)

=
(−5

Fm

)

= −1.

and
( D

Fm

)

=
( 21

Fm

)

= 1.

By use of (3.11) and induction, we find that

Fm ≡ 2 (mod 3) for m ≥ 1,

Fm ≡ 1 (mod 4) for m ≥ 1,

Fm ≡ 2 (mod 5) for m ≥ 2,

Fm ≡ 3 (mod 7) for m ≥ 0 and m even,

and
Fm ≡ 5 (mod 7) for m ≥ 1 and m odd.

Thus, by the law of quadratic reciprocity,
( 3

Fm

)

=
(Fm

3

)

=
( 5

Fm

)

=
(Fm

5

)

=
( 7

Fm

)

=
(Fm

7

)

= −1

for m ≥ 2. Hence, for m ≥ 2,
(−5

Fm

)

=
(−1

Fm

)( 5

Fm

)

= 1 · (−1) = −1
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and
( 21

Fm

)

=
( 3

Fm

)( 7

Fm

)

= (−1)(−1) = 1,

as desired. Thus, 22
m

+ 1 | v2r , where r = 2m − 1, when Fm is a prime for m ≥ 2. Thus, by
examination, we see that

F 2 = 17 | v8(1,−5) = 3791 = 17 · 223,

F 3 = 257 | v128(1,−5), and

F 4 = 65537 | v215(1,−5) = v32768(1,−5).

Finally, we find by inspection that vn(1,−5) is prime for 0 ≤ n ≤ 30 only in the following
cases, for which we must have that n is equal to 0, a prime, or a power of 2:

v0 = 2, v2 = 11, v4 = 71, v5 = 151, v11 = 79531, v17 = 37883311, v23 = 17926283491.

Example 3.24. Consider the nondegenerate companion Lucas sequence v(3, 5) with discrim-
inant D = −11 and for which v2 = −1. We show that we can find primes satisfying each of
the conditions (v) and (vi) of Theorem 3.20.

Primes satisfying the conditions of Theorem 3.20 (v): Let p be a prime such that
p ≥ C ′

2, p ≡ 11 or 17 (mod 30), p ≡ 0, 2, 5, 9, or 10 (mod 11), and 4p − 1 is also a prime.
Then 4p− 1 ≡ 43 or 67 (mod 120). Hence, 4p− 1 is congruent to 3 (mod 4), 2 or 3 (mod 5),
and 2, 6, 7, 8, or 10 (mod 11). Thus, by the law of quadratic reciprocity,

( b

4p− 1

)

=
( 5

4p− 1

)

=
(4p− 1

5

)

= −1

=
( D

4p− 1

)

=
( −11

4p − 1

)

=
( −1

4p− 1

)( 11

4p− 1

)

= (−1)
[

−
(4p− 1

11

)]

= −1,

as desired. Therefore, the conditions of Theorem 3.20 (v) are satisfied and 4p − 1 | v2p. The
ordered pairs (p, 4p − 1) with p < 1000 satisfying the constraints of Theorem 3.20 (v) are:

(11, 43), (71, 283), (131, 523), (137, 547), (197, 787), (431, 1723), (467, 1867),

(797, 3187), (827, 3307), (911, 3643), and (977, 3907).

We observe explicitly that

43 | v22(3, 5) = 87113399 = 43 · 307 · 6599.

Primes satisfying the conditions of Theorem 3.20 (vi): Let p be a prime such that
p ≥ C ′

2, p ≡ 13 or 19 (mod 30), p ≡ 0, 1, 2, 6, or 9 (mod 11), and 4p + 1 is a prime. Then
4p + 1 ≡ 53 or 77 (mod 120). Thus, 4p + 1 is congruent to 1 (mod 4), 2 or 3 (mod 5), and
1, 3, 4, 5, or 9 (mod 11). By the law of quadratic reciprocity we then have that

( b

4p+ 1

)

=
( 5

4p+ 1

)

=
(4p+ 1

5

)

= −1

and
( D

4p + 1

)

=
( −11

4p+ 1

)

=
( −1

4p + 1

)( 11

4p+ 1

)

= 1 ·
(4p + 1

11

)

= 1,

as desired. Hence, the conditions are satisfied and 4p + 1 | v2p. The ordered pairs (p, 4p + 1)
with p < 1000 and satisfying the constraints of Theorem 3.20 (vi) are

(13, 53), (79, 317), (163, 653), (193, 773), (199, 797), (409, 1637),
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(673, 2693), (739, 2957), (853, 3413), and (919, 3677).

In particular,

53 | v26(3, 5) = −2353852801 = −53 · 157 · 282881.

The following proofs show that we can consider Theorems 1.3 and 1.5 to be corollaries of
Theorem 3.20.

Proof of Theorem 1.3. We note that for {Lm} = v(1,−1), we have that b = −1 and D = 5. It
follows from Theorem 3.13 (ii) that Ln > 2n+ 1 for n ≥ 6.

(i) Suppose that p ≡ 29 (mod 30) and 2p+1 is also a prime. Then 2p+1 ≡ 59 (mod 60).
Thus, 2p+ 1 ≡ 3 (mod 4) and 2p+ 1 ≡ 4 (mod 5). We then see that

( b

2p+ 1

)

=
( −1

2p + 1

)

= −1

and
( D

2p + 1

)

=
( 5

2p+ 1

)

=
(2p + 1

5

)

=
(4

5

)

= 1.

It now follows from Theorem 3.20 (ii) that 2p+1 | Lp which implies that Lp > 2p+1,
since p ≥ 29.

(ii) Suppose that p ≡ 3 (mod 4) and 2p − 1 is a Mersenne prime. Let p = 4k + 3. By
Fermat’s Little Theorem,

2p − 1 = 24k23 − 1 ≡ 1 · 23 − 1 ≡ 2 (mod 5).

Clearly, 2p − 1 ≡ 3 (mod 4). It now follows by the law of quadratic reciprocity that
( b

2p − 1

)

=
( −1

2p − 1

)

= −1,
( D

2p − 1

)

=
( 5

2p − 1

)

=
(2p − 1

5

)

=
(2

5

)

= −1.

We now see from Theorem 3.20 (iii) that 2p − 1 | L2p−1 , and it follows from Theorem
3.13 (ii) that L2p−1 > 2p−1, since 2p−1 > 6 when p > 3. �

Proof of Theorem 1.5. Let p > 3, p ≡ 3 (mod 4), and 2p + 1 equal to a prime. Consider the
companion Lucas sequence v(1,−2) with characteristic roots α = 2, β = −1, and discriminant
D = (α − β)2 = 32 = 9. By (2.5), vn = 2n + (−1)n. Hence, vn = 2n − 1 when n is odd. It
follows that

vp = Mp = 2p − 1.

Since p ≡ 3 (mod 4), we find that 2p+1 ≡ 7 (mod 8). We now observe by the law of quadratic
reciprocity that

( b

2p+ 1

)

=
( −2

2p + 1

)

=
( −1

2p+ 1

)( 2

2p+ 1

)

= −1 · 1 = −1

and
( D

2p+ 1

)

=
( 9

2p+ 1

)

= 1.

It now follows from Theorem 3.20 (ii), Theorem 3.13 (ii), and the fact that p > 6 that

2p+ 1 | vp = Mp

and Mp is composite. �

We now present some known results for which |up(a, b)| is known to be composite in some
special cases, where u(a, b) is nondegenerate and gcd(a, b) = 1.
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Theorem 3.25. Let u(a, b) be a nondegenerate Lucas sequence with discriminant D for which
gcd(a, b) = 1. Let p ≥ 5 be a prime such that p | D. Then p | up. Moreover, |up| is composite
except in the following cases for which |up(a, b)| = p :

(i) p = 5; (a, b,D) = (±1,−1, 5), (±1, 4,−15), (±2, 11,−40).

(ii) p = 7; (a, b,D) = (±1, 2,−7).

Proof. By Lemma 2.7 (viii), p | up. It now follows from Table 1 in [1] that |up| > p except if
condition (i) or condition (ii) is satisfied. �

Theorem 3.26. Let u(a, b) be a nondegenerate Lucas sequence for which gcd(a, b) = 1 and
b = M2 for some positive integer M . If D > 0, then |up(a, b)| is composite for p ≥ 5. If
D < 0, then there exists a positive integer C3, dependent on a and b, such that if p ≥ C3, then
|up(a, b)| is composite.

Proof. When D > 0, it was shown in [15] and [16] that un(a, b) has two primitive divisors for
n ≥ 5 an odd integer. When D < 0, it was proven in [16] that there exists a positive integer
C3 such that if n is odd and greater than or equal to C3, then |un(a, b)| has two primitive
prime divisors. The result now follows. �

Remark 3.27. Both the papers [15] and [16] showed that if D > 0 and b is a square, then
according to their definition of a primitive prime divisor, un(a, b) has two primitive prime
divisors for n ≥ 5 except for the terms u5(±3, 1) = 55. However, by our definition of a
primitive prime divisor, u5(±3, 1) has the two primitive prime divisors 5 and 11.

Before presenting our next result concerning sequences u(a, b) for which |up| is known to be
composite for all but at most five primes p, we need the following lemma.

Lemma 3.28. Let u(a1, b1) and v(a1, b1) be nondegenerate sequences with characteristic roots
α, β and discriminant D, where gcd(a1, b1) = 1. Let u(a, b) and v(a, b) be sequences with
characteristic roots αk and βk, where k ≥ 2 is an integer. Then a = vk(a1, b1) and b = bk.
Moreover, u(a, b) and v(a, b) are nondegenerate sequences for which gcd(a, b) = 1. Further,

un(a, b) =
ukn(a1, b1)

uk(a1, b1)
and vn(a, b) = vkn(a1, b1) (3.12)

for n ≥ 0.

Proof. Clearly, u(a, b) and v(a, b) are nondegenerate, since u(a1, b1) and v(a1, b1) are. We note
that

un(a, b) =
αkn − βkn

αk − βk
=

ukn(a1, b1)

uk(a1, b1)
and vn(a, b) = αkn + βkn = vkn(a1, b1).

Then

a = αk + βk = vk(a1, b1) and b = (αβ)k = bk.

It now follows from Lemma 2.7 (xiii) that gcd(a, b) = 1. �

Theorem 3.29. Suppose that v(a1, b1) is a nondegenerate companion Lucas sequence for
which gcd(a1, b1) = 1. Let k ≥ 2 and let a = ±vk(a1, b1) = 1 and b = bk1. Then u(a, b) is a
nondegenerate Lucas sequence for which gcd(a, b) = 1. Let p ≥ 5 denote an arbitrary prime.
Then |up(a, b)| has at least two distinct primitive prime divisors and thus is composite if and
only if one of the following three conditions is satisfied:

(i) k has at least two distinct prime divisors;
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(ii) k = qi, where i ≥ 2 and p 6= q;
(iii) k = q, p 6= q, and up(a1, b1) 6= ±1, which occurs if and only if

(p, a1, b1) 6= (5,±1, 2), (5,±1, 3), (5,±12, 55), (5,±12, 377), (7,±1, 5), or (13,±1, 2).

This follows from Lemmas 2.9 and 3.28 in this paper and from the proof of Theorem 3.5
in [12].

Theorem 3.30 shows that the necessary condition for |un(a, b)| to be prime given in Theorem
3.7 (i) fails spectacularly as a necessary and sufficient test for primality in the following sense.
Given any arbitrary large integer C, we can find a nondegenerate sequence u(a, b) for which
up(a, b) has at least C distinct primitive prime divisors for all but finitely many primes p.

Theorem 3.30. Let C be a positive integer. Let v(a1, b1) be a nondegenerate companion Lucas
sequence for which gcd(a1, b1) = 1. Let k ≥ 2 be an integer for which τ(k) ≥ C+3, where τ(k)
denotes the number of positive divisors of k. Let a = ±vk(a1, b1) and b = bk1. Then u(a, b) is
a nondegenerate Lucas sequence for which gcd(a, b) = 1. Moreover, if p ≥ 5 is any prime not
dividing k, then up(a, b) has at least C distinct primitive prime divisors.

Proof. By Lemma 3.28, u(a, b) is nondegenerate and gcd(a, b) = 1. By Theorem 2.5 (ii)
and Table 1 of Theorem 2.5, we see that there exist at least C positive divisors di of k,
i ≤ i ≤ C, such that updi(a1, b1) has a primitive prime divisor pi, where p ≥ 5 and p - k. Let
ei = gcd(pdi, k). Then ei < pdi, since pdi - k.

Suppose that pi | uk(a1, b1). Then by Theorem 2.8 (i), pi | uei(a1, b1), which contradicts
the fact that pi is a primitive divisor of updi(a1, b1). Thus, pi - uk(a1, b1) for i = 1, 2, . . . , C.
Noting that di | k, we see by Lemma 2.7 (i) that

pi | up(a, b) =
upk(a1, b1)

uk(a1, b1)
.

By the proof of Theorem 3.7, any prime divisor of up(a, b) is primitive. The result now
follows. �

Remark 3.31. As contrasted to the situation concerning the Lucas sequence

{un(vk(a, b), b
k)}∞n=0 =

{ukn(a, b)

uk(a, b)

}

∞

n=0
,

which was dealt with in Lemma 3.28 and Theorems 3.29 and 3.30, we can treat the com-
panion Lucas sequences {vn(vk(a, b), b

k)}∞n=0 by only considering results involving the general
companion Lucas sequence {vn(a, b)}

∞

n=0. The reason is that

{vn(vk(a, b), b
k)}∞n=0 = {vkn(a, b)}

∞

n=0.

4. Auxiliary Results

We will need the following results for the proofs of Theorems 3.9 and 3.13.

Lemma 4.1. Consider the nondegenerate sequences u(a, b) and v(a, b), where gcd(a, b) = 1.
Suppose that vn(a, b) has no primitive prime divisor. Then u2n(a, b) has no primitive prime
divisor.

Proof. Let p be a prime divisor of u2n(a, b). Since u2n(a, b) = un(a, b)vn(a, b) by Lemma 2.7
(v), we see that p | un or p | vn. If p | un, then p is not a primitive divisor of u2n by definition.
If p | vn, then p | vm for some m such that 1 ≤ m < n, since vn has no primitive prime divisor
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by hypothesis. Then p | u2m = umvm. Since 2m < 2n, we see that p is not a primitive divisor
of u2n in this case also. �

Lemma 4.2. Let u(a, b) and v(a, b) be nondegenerate sequences for which D > 0. Then |un| is
increasing for n ≥ 2 and |vn| is increasing for n ≥ 1. Further, if a > 0 then un > 0 for n ≥ 1
and vn > 0 for n ≥ 0. Moreover, if b ≥ 1, then |a| ≥ 3, |un+1| > |aun/2|, and |vn+1| > |avn/2|
for n ≥ 1.

This follows from the proof of Lemma 3 in [8].

Theorem 4.3. Let u(a, b) and v(a, b) be nondegenerate sequences with characteristic roots α
and β, where |α| ≥ |β|. Then |α| > 1 and there exist computable positive constants C3, C4,
C5, and C6, dependent on a and b, such that if n ≥ C3, then

|un(a, b)| ≥ |α|n−C4 logn, (4.1)

while if n ≥ C5, then

|vn(a, b)| ≥ |α|n−C6 logn. (4.2)

This follows from Lemma 5 of [17].

Theorem 4.4. Let u(a, b) and v(a, b) be nondegenerate sequences. Let w(a, b) = u(a, b) or
v(a, b). For an integer m, let P (m) denote the largest prime divisor of m, where by convention,
P (−1) = P (0) = P (1) = 1. Then there exists a computable positive constant C7, dependent
on a and b, such that if n ≥ C7, then

P (wn(a, b)) > n exp(log /(104 log log n)). (4.3)

In particular,

lim
n→∞

P (wn)

n
= ∞. (4.4)

This follows from Theorem 1.1 of [20].

5. Proofs of Theorems 3.9 and 3.13

Proof of Theorem 3.9. Suppose that n ≥ 4 and vn(a, b) has no primitive prime divisor. Then
by Lemma 4.1 and Theorem 2.5 (i) and (ii), u2n(a, b) has no primitive prime divisor, which can
occur only if 2n ∈ {8, 10, 12, 18, 30}. Table 1 of Theorem 2.5 lists all cases in which u2n(a, b)
has no primitive prime divisor for 2n ∈ {8, 10, 12, 18, 30}. By examination of these cases, we
see that vn(a, b) has no primitive prime divisor if (n, a, b) is one of the ordered triplets listed
in Theorem 3.9.

By inspection of the values of vn(a, b) in all these cases, we see that |vn(a, b)| = p, where
n ≥ 4 and p is not a primitive divisor of vn(a, b) if and only if one of the conditions (i)–(iv) is
satisfied. �

Proof of Theorem 3.13. We prove all the parts of the theorem together. Let w(a, b) = u(a, b)
or v(a, b), where w(a, b) is nondegenerate and gcd(a, b) = 1. First suppose that D < 0. It
follows from Theorem 4.3 or Theorem 4.4 that the constants C1 and C2 both exist.

Now suppose that D > 0. By Lemma 2.7 (ii) and (iii), we can assume that a > 0. Then by
Lemma 4.2, wn > 0 for n ≥ 1 and wn is increasing for n ≥ 2. Suppose further that b ≤ −1. It
is evident that

wn+2 ≥ wn+1 +wn (5.1)
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for n ≥ 0. We also observe from (5.1) that if n ≥ 1, wn > 2n+ 1, and wn+1 > 2(n+ 1) + 1 =
2n+ 3, then

wn+2 ≥ wn+1 + wn > 2(n+ 2) + 1 = 2n+ 5. (5.2)

Next suppose that b ≥ 1. We see that a ≥ 3, since D = a2 − 4b > 0. Then by Lemma 4.2,

wn+1 > awn/2 (5.3)

for n ≥ 1. It now follows from (5.3) that if n ≥ 1 and wn > 2n+ 1, then

wn+1 > 3wn/2 > 2(n + 1) + 1 = 2n+ 3. (5.4)

Now suppose that w(a, b) = u(a, b) and b ≤ −1. If a = 1, b ≤ −7, or a = 2, b ≤ −4, or
a ≥ 3, then by (2.6),

u3 = a2 − b ≥ 8 > 2 · 3 + 1 (5.5)

and

u4 = a(a2 − 2b) ≥ 15 > 2 · 4 + 1. (5.6)

Hence, by (5.2), we see that C ′

1 = 2 or 3 in these cases, since u1 = 1.
We next consider the case in which w(a, b) = u(a, b) and b ≥ 1. Then a ≥ 3. Since

D = a2 − 4b > 0, we find that if a = 3, then b = 1 or 2. Moreover, if n ≥ 1 and either a = 3,
b = 1 or a ≥ 4, then we get (5.5). Thus, by (5.4), we observe that C ′

1 = 2 or 3 in these cases.
By inspection of the remaining cases in which a = 1, −6 ≤ b ≤ −1, or a = 2, −3 ≤ b ≤ −1, or
a = 3, b = 2, and the use of (5.2) and (5.4), we see that each of parts (a), (b), (c), and (d) of
(i) holds.

We now suppose that w(a, b) = v(a, b) and b ≤ −1. If a = 1, b ≤ −3 or a ≥ 2, then by (2.7),

v2 = a2 − 2b ≥ 6 > 2 · 2 + 1

and

v3 = a(a2 − 3b) ≥ 10 > 2 · 3 + 1.

Thus, by (5.2), we find that C ′

2 = 1 or 2 in these cases.
We finally suppose that w(a, b) = v(a, b) and b ≥ 1. We see that a ≥ 3. If a = 3, b = 1 or

a ≥ 4, then by (2.7),

v2 = a2 − 2b ≥ 7 > 2 · 2 + 1.

It now follows from (5.4) that C ′

2 = 1 or 2 in these cases. The only remaining cases to consider
are a = 1, b = −1 or −2, or a = 3, b = −2. By examination of these cases, we see that parts
(a), (b), and (c) of (ii) all hold. �
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