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Abstract. We examine a specific class of bargaining problems where the golden and silver
ratios appear in a natural way.

1. Introduction

There are five coins on a table to be divided among players 1 to 4. The players act in turns
cyclically starting from player 1. When it is a player’s turn, he has two options: to quit or to
pass. If he quits he earns a coin, the next two players get two coins each and the remaining
player gets nothing. For example, if player 3 quits then he gets one coin, players 4 and 1 get
two coins each and player 2 gets no coins. This way the game is repeated until someone quits.
If nobody ever quits then they all get nothing. Each player can randomize between the two
alternatives and maximizes his expected payoff. The game is presented in the figure below,
where the players’ payoffs are shown as the components of the vectors.

player 1

(1, 2, 2, 0)

player 2

(0, 1, 2, 2)

player 3

(2, 0, 1, 2)

player 4

(2, 2, 0, 1)

quit

pass

quit

pass

quit

pass

quit

pass

Bargaining problems have been studied extensively in game theory literature [4, 6, 7]. Our
game can be seen as a bargaining problem where the players cannot make their own offers
but can only accept or decline the given division. Furthermore, the game is a special case
of a so-called sequential quitting game which has been studied, for example, in [5, 9]. The
prominent solution concept in such games is a Nash equilibrium, which defines the players’
moves such that no player can gain by any unilateral deviation. Moreover, we assume credible
behavior throughout the play. Such “subgame-perfect” solutions exist by [5].

While studying structural properties of the subgame-perfect equilibria of the above game,
we noticed that the golden ratio plays an important role in the strategies as well as in the

distribution of payoffs. In particular, player 3 will get a corresponding payoff of ϕ = 1+
√

5

2
≈

1.618, player 2 will get 3 − ϕ and players 1 and 4 will get 1, i.e. the golden ratio is used to
split the additional fifth coin in probability amongst players 2 and 3. In further explorations,
we observed that for several other games of this type, not only the golden but also the silver
ratio appears in the solutions. A common feature of these games is that n players have to
split n+ 1 coins according to some specific rules. In this respect, we also relate to the earlier
literature for dividing the dollar [1, 2].
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The games examined here are closely related to quitting games in which the players all move
simultaneously. For that class of games, the existence of (approximate) equilibria is one of the
most challenging open problems in the field of dynamic games (cf. [3, 8, 10, 11]).

2. The Role of the Golden Ratio in the Solutions

In this section, we derive the equilibria for the above game and find that the golden ratio
appears in the solution. Moreover, we extend the four-player game with cyclically symmetric
payoff structure1 (1, 2, 2, 0) to an n-player game with payoff structure (1, 1, . . . , 1, 2, 2, 0).

In these games, a player’s strategy defines the probability of quitting for each turn he has.
In general, a player could assign different probabilities for the first turn, the second turn and
so on. However, we restrict our analysis to stationary strategies, where for each player the
probability that he uses is the same in all turns. A Nash equilibrium specifies a strategy for
each player such that it is a best response to the other players’ strategies. For example, if
the player quits with probability one, then it must be that the quitting payoff is at least as
high as the expected continuation payoff when passing, given the other players’ strategies.
Subgame-perfection requires that the same strategies must also form a Nash equilibrium when
any of the other players start the game.

Theorem 2.1. In the game with cyclically symmetric payoff structure (1, 2, 2, 0), there are

only two stationary subgame-perfect equilibria and both of them are symmetric in the players’

strategies:

(1) The strategy profile in which every player quits with probability 1. The corresponding

payoffs are (1, 2, 2, 0).

(2) The strategy profile in which every player quits with probability p = 3−
√

5

2
= 2− ϕ.

According to this strategy profile, the overall probability that a certain player will even-

tually quit is given by the four-vector

1

3ϕ−4
· (2− ϕ,−3 + 2ϕ, 5 − 3ϕ,−8 + 5ϕ) .

The corresponding payoffs are (1, 3 − ϕ,ϕ, 1).

Remark. Notice how the Fibonacci numbers appear in the total quitting probabilities men-
tioned in (2): 2, 3, 5, 8, and 1, 2, 3, 5 as the multipliers of ϕ. In fact, the probability that
the game will end at stage 1, 2, 3, 4, . . . is given respectively by: 2 − ϕ,−3 + 2ϕ, 5 − 3ϕ,−8 +
5ϕ, 13 − 8ϕ,−21 + 13ϕ, 34 − 21ϕ, . . ..

Proof. Consider an arbitrary stationary subgame-perfect equilibrium and denote by pi the
probability that player i ∈ {1, 2, 3, 4} puts on quitting in each of his turns. We will only
determine these quitting probabilities pi, then the expressions for the corresponding payoffs
follow easily. We distinguish three cases.

Case 1. A player quits with probability 1, i.e., pi = 1 for some player i ∈ {1, 2, 3, 4}.
Due to the cyclic symmetry, we may assume without loss of generality that p1 = 1. Conse-
quently, it is the best response for player 4 to quit, thus p4 = 1. Similarly, we obtain p3 = 1
and p2 = 1. Since it is also player 1’s best response to quit, this results in a stationary
subgame-perfect equilibrium, in which every player quits with probability 1.

1A cyclically symmetric payoff structure (a, b, c, d) is to be interpreted as given by the payoffs that players
get upon quitting by player 1; players get (d, a, b, c) if player 2 quits, etc. This means that the quitting player
always gets a, the next one b, etc.
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Case 2. A player quits with probability 0, i.e., pi = 0 for some player i ∈ {1, 2, 3, 4}.
We distinguish two subcases: (i) pi = 0 for all i ∈ {1, 2, 3, 4}, (ii) pi = 0 and pi+1 > 0 for
some i. Subcase (i) is not an equilibrium since any player should quit if nobody is quitting.
In subcase (ii), the assumptions imply that player i− 1 should pass, i.e., pi−1 = 0, as he then
gets payoff 2. Now, this implies that pi−2 = 0, which means that only player i+ 1 is quitting
and this contradicts that pi = 0.

Case 3. The players randomize between the alternatives, i.e., pi ∈ (0, 1) for every player
i ∈ {1, 2, 3, 4}.
In this case, every player i ∈ {1, 2, 3, 4} is indifferent between quitting and continuing. Quitting
yields payoff 1 for player i. However, if player i continues, then with probability pi+1 + (1 −
pi+1)pi+2 + (1 − pi+1)(1 − pi+2)pi+3, one of the other players quits before it is player i’s turn
again. Given that this happens, player i receives an expected payoff of

Ci :=
pi+1 · 0 + (1− pi+1)pi+2 · 2 + (1− pi+1)(1− pi+2)pi+3 · 2

pi+1 + (1− pi+1)pi+2 + (1− pi+1)(1− pi+2)pi+3

.

In the expression above, players 5, 6, and 7 are identified with players 1, 2, and 3, respectively.
Since player i is indifferent between quitting and continuing, we have Ci = 1 for every player
i ∈ {1, 2, 3, 4}.
Since C1 = 1, we obtain

p4 =
p2 − p3 + p2p3
(1− p2)(1 − p3)

. (2.1)

Substituting (2.1) into C2 = 1 yields

p1 =
−p2 + 2p3 − 2p2p3

1− 2p2
. (2.2)

Further substituting (2.1) and (2.2) into C3 = 1, we derive

p3 =
p2 + (p2)

2

3− 5p2 + 2(p2)2
, (2.3)

and then finally C4 = 1 gives p2 =
3−

√

5

2
. After substitution, we find that p1 = p2 = p3 = p4 =

3−
√

5

2
, which yields a symmetric stationary subgame-perfect equilibrium. �

We now extend the above four-player game with payoffs (1, 2, 2, 0) to an n-player game
with payoffs (1, 1, . . . , 1, 2, 2, 0). This n-player game has a similar symmetric solution with
corresponding payoffs (1, 1, . . . , 3−ϕ,ϕ, 1). The common quitting probability p for each player
in the n-player game satisfies the equation

1− (1− p)n−1 = 0 · p+ 2 · p(1− p) + 2 · p(1− p)2 + p(1− p)3
n−5∑

i=0

(1− p)i.

Using that p(1− p)3
∑n−5

i=0
(1− p)i = (1− p)3(1− (1− p)n−4), this simplifies to

1− (1− p)3 = 0 · p+ 2 · p(1− p) + 2 · p(1− p)2,

which is exactly the same equation that determines the solution to the four-player game.
In the next section, we will see more games which have the golden ratio in the solution.
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3. Different Payoffs and the Silver Ratio

In this section, we examine all possibilities of dividing the five coins among the four players.
The symmetric stationary subgame-perfect equilibria can be computed in the same way as in
the previous section and are presented in Table 1. In the first two lines, the stars ∗ mean that
the payoffs can be anything as long as they are non-negative integers and sum up to five. The
payoff structure (0, ∗, ∗, ∗) applies to (0, 1, 2, 2) and (0, 3, 2, 0) for example.

Table 1. The quitting probabilities and the corresponding payoffs for sym-
metric stationary subgame-perfect equilibria in different games.

game quitting probability corresponding payoffs
(0, ∗, ∗, ∗) p = 0 (0, 0, 0, 0)
(y ≥ x, ∗, ∗, x) p = 1 (y, ∗, ∗, x)
(1, 0, 4, 0) p = ϕ− 1 ≈ 0.62 (1, 2 − ϕ, 1 + ϕ, 1) ≈ (1, 0.38, 2.62, 1)
(1, 1, 3, 0) p = 1/2 (1, 1, 2, 1)
(1, 2, 2, 0) p = 1− 1/ϕ ≈ 0.38 (1, 3 − ϕ,ϕ, 1) ≈ (1, 1.38, 1.62, 1)

(1, 3, 1, 0) p = 1− 1/
√
2 ≈ 0.29 (1, 3 −

√
2,
√
2, 1) ≈ (1, 1.59, 1.41, 1)

(1, 4, 0, 0)a p = 1− 1/α ≈ 0.23 (1, 3 − α,α, 1) ≈ (1, 1.70, 1.30, 1)

(2, 0, 0, 3) p = (3−
√
3)/2 ≈ 0.63 (2,

√
3− 1, 2 −

√
3, 2) ≈ (2, 0.73, 0.27, 2)

(1, 0, 2, 2) has no symmetric stationary subgame-perfect equilibrium
(1, y ≤ 3, x ≤ 1, ∗) has no symmetric stationary subgame-perfect equilibrium
a Here α = (

√
13 − 1)/2.

We observe that the two games with the golden ratio, (1, 2, 2, 0) and (1, 0, 4, 0), are not the
only ones that give a special way to divide the extra coin. All the expected payoffs of player
3, i.e., 1 + ϕ, 2, ϕ,

√
2 and (

√
13− 1)/2, are related to the silver ratio or the silver means. In

fact, the golden ratio ϕ is also the first silver mean. The number
√
2 is the second silver mean

minus one and the number (
√
13− 1)/2 is the third silver mean minus two. The number 2 is

related to the zeroth silver mean. Thus, player 3 receives some special fraction in each case.
The game with payoffs (1, 0, 2, 2) has no stationary subgame-perfect equilibrium, but it does

have a cyclic subgame-perfect equilibrium where the players quit in the order 1, 4, 3, 2, . . . with
common probability 1− 1/ϕ. The corresponding payoffs are (1, 3 − ϕ,ϕ, 1).

Note that the games (1, y ≤ 3, x ≤ 1, ∗) have non-symmetric stationary equilibria, where
either p1 = p3 = 1 and p2 = p4 = 0, or p1 = p3 = 0 and p2 = p4 = 1.

We remark that all the four-player games with payoffs (1, x, 4 − x, 0) can be extended to
n-player games with payoffs (1, 1, . . . , 1, x, 4 − x, 0), while the equilibrium probabilities and
corresponding payoffs preserve the golden and silver ratios like in the example at the end of
Section 2.

4. Concluding Remarks

In the previous sections we have demonstrated how some of the golden ratio solutions can
be extended to games with more than four players. Conversely, there is no straightforward
way to find which n-player games of this type have solutions based on the golden ratio. The
reason is that any such analysis involves solving higher order polynomial equations.
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