
LABELED FIBONACCI TREES

STÉPHANE LEGENDRE

Abstract. The study describes a class of integer labelings of the Fibonacci tree, the tree
of descent introduced by Fibonacci. In these labelings, Fibonacci sequences appear along
ascending branches of the tree, and it is shown that the labels at any level are consecutive
integers. The set of labeled trees is a commutative group isomorphic to Z

2, and is endowed
with an order relation. Properties of the Wythoff array are recovered as a special instance,
and further properties of the labeled Fibonacci trees are described. These trees can be viewed
as generalizations of the Wythoff array.

1. Introduction

The book of Hofstadter [2, Figure 30, p. 136] contains an outstanding mathematical object,
a subtree of the Fibonacci tree labeled by the set of integers (highlighted on the right of Figure
4). In the book, the tree is used to represent the values taken by the recursive function g(n) =
n − gg(n − 1). From the root of the tree, level after level, consecutive integers miraculously
match Fibonacci sequences appearing along ascending branches of the tree: the Fibonacci
sequence on the main branch, the Lucas sequence on the second branch, and other Fibonacci-
type sequences. This correspondence was proved by Tognetti, Winley and van Ravenstein [8]
in 1990.

In fact, all positive Fibonacci sequences eventually appear as ascending branches of the
tree. For example, the Lucas sequence

. . .− 4, 3, −1, 2, 1, 3, 4, 7, 11, 18, 29, . . .

is represented in the tree from the underlined terms. This is what I could show when I
discovered the tree in 1986. To some disappointment, I realized that a similar result had
already been found by Morrison [4] in the context of the Wythoff array. Like the Hofstadter
tree, the Wythoff array [7] contains every integer exactly once, and represents every Fibonacci
sequence exactly once.

In this study, a set of labeled Fibonacci trees is described, generalizing the Hofstadter tree.
First, the (unlabeled) Fibonacci tree is introduced (Section 2), and properties of the Fibonacci
words and Wythoff pairs are recalled (Section 3). Then labeling rules for the Fibonacci tree
are given (Section 4). According to these rules, Fibonacci sequences appear as successive
labels along ascending branches of the tree. It is shown that the labels at any level of the
tree form consecutive integers. In Section 5, the Hofstadter tree and the Wythoff array are
recovered as a special instance of these labeled trees. In Section 6, it is shown that the set Φ
of labeled Fibonacci trees has the structure of a commutative group isomorphic to Z

2. The
representation of integer intervals and Fibonacci sequences by elements of Φ are explored in
Section 7. Finally, an order relation on the set Φ is described in Section 8. According to this
relation, only two trees contain nested copies of themselves. They correspond to the Wythoff
arrays representing the positive and negative Fibonacci sequences.
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Figure 1. The Fibonacci tree.

2. The Fibonacci Tree

The Fibonacci tree is the tree of descent of the rabbit family introduced by Leonardo da
Pisa in his book Liber Abaci (1202). In the original problem (slightly reformulated), at each
time step:

• An adult female u survives to the next generation, and gives birth to a female juvenile
v.

• A juvenile v survives to the next generation, and becomes an adult u.

These rules translate
{

u → uv

v → u

}

. (2.1)

Starting from a single adult u at time n = 0, the tree is built according to scheme (2.1).
It is drawn using the golden ratio in Figure 1 with u-nodes representing adults (circles) and
v-nodes representing juveniles (triangles). The tree is assumed infinite, and because of the
recursive nature of scheme (2.1), it contains an infinity of nested copies of itself.

The root has level n = 0. The population size at time n is the number Gn of nodes at level
n. The sequence G satisfies the Fibonacci recursion

Gn = Gn−1 +Gn−2

with G0 = 1, G1 = 2. A visual proof is given in Figure 2. By the definition of the Fibonacci
sequence,

F : 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

we have Gn = Fn+2.
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n-1

n

n-2

Figure 2. The Fibonacci recursion.

Any sequence G satisfying the Fibonacci recursion can be extended to Z by setting Gn =
Gn+2 −Gn+1 for n < 0. Two such Fibonacci sequences G and G′ are equivalent, G ∼ G′, if
they are identical up to a shift of index.

For (a, b) ∈ Z
2, Fa,b denotes the Fibonacci sequence whose terms of index 0 and 1 are a and

b, respectively. Then,

F a,b
n = aFn−1 + bFn, n ∈ Z. (2.2)

3. Fibonacci Words and Wythoff Pairs

In this section classical and less classical results about Fibonacci words and Wythoff pairs
are recalled to be used in the sequel.

Fibonacci words Wn over the alphabet {u, v} are generated from the word W0 = u by the
substitutions of scheme (2.1):

lllW0 = u

W1 = uv

W2 = uvu

W3 = uvuuv

W4 = uvuuvuvu

W5 = uvuuvuvuuvuuv

. . . .

Fibonacci words satisfy the Fibonacci recursion

Wn = Wn−1Wn−2.
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The length of Wn is
|Wn| = Fn+2,

with Fn+1 letters u and Fn letters v.

Proposition 3.1. At level n of the Fibonacci tree, the pattern of u-nodes and v-nodes is given
by the Fibonacci word Wn.

Proof. The Fibonacci word is generated by the same scheme as the Fibonacci tree with the
same initial condition. �

The Wythoff pairs (u(n), v(n)), are given by two complementary sequences u and v over
the set N

∗ of positive integers (sequences A000201 and A001950 in the Online Encyclopedia
of Integer Sequences [5]), with u(1) = 1 and

v(n) = u(n) + n. (3.1)

The Wythoff pairs can be extended to Z, by setting u(0) = v(0) = −1, and u(−n) = −u(n)−1,
v(−n) = −v(n)− 1 for n ∈ N

∗ (Table 3). Then (3.1) still holds. The following formula, valid
for n ∈ N

∗, also holds for n ∈ Z:
v(n) = uu(n) + 1. (3.2)

Moreover, for any nonzero integer n ∈ Z
∗,

u(n) = bnϕc, ϕ =
1 +

√
5

2
the golden ratio. (3.3)

Table 1. The Wythoff pairs.

n -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8
u -10 -9 -7 -5 -4 -2 -1 1 3 4 6 8 9 11 12
v -16 -14 -11 -8 -6 -3 -1 2 5 7 10 13 15 18 20

Positive Wythoff pairs form pairs of consecutive terms of positive Fibonacci sequences. A
Wythoff pair is primitive if its rank is a term of u [6]. It is written (uu(j), vu(j)), j ∈ N

∗. A
primitive pair starts a novel Fibonacci sequence, one that has not yet appeared in the Wythoff
pairs.

This property extends to negative Wythoff pairs and negative Fibonacci sequences, when
heading to the left from n = 0 in Table 3, with an exception: the pair (−2,−3) at rank
−1 = u(0) is not primitive despite its rank being a term of u. Indeed, this pair corresponds
to the sequence −1,−1,−2,−3, . . . whose first terms (−1,−1) appear at rank 0.

To summarize, the primitive Wythoff pairs are (uu(j), vu(j)) for j ∈ Z
∗.

Proposition 3.2. Consider the word Wn generated from Wn−1 by the substitutions (2.1). In
Wn, the position i > 1 of a letter is given by the corresponding Wythoff sequence: i = u(k) if
the letter is u, where k is the number of letters u up to position i, and i = v(l) if the letter is
v, where l is the number of letters u up to the letter u in Wn−1 that generates this letter v in
Wn.

Proof. Letters v in Wn come uniquely from letters u in Wn−1 by the substitution u → uv, so
that the lth occurrence of u in Wn−1, in position il, produces the lth occurrence of v in Wn,
in position jl. Up to position il, there are il − l occurrences of v, each producing u by the
substitution v → u. The number of letters produced by the two substitutions up to the lth
occurrence of v is thus 2l+ il− l = il+ l = jl. The position of the first u is 1 = u(1), and since
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(il, jl) form complementary sequences, we obtain: il = u(l), and by (3.1), jl = u(l) + l = v(l).
The position of u in Wn−1 is il = u(l). Similarly, the position of u in Wn is ik = u(k) where k
is the number of letters u up to the given letter u (included). �

Proposition 3.3. Consider the word Wn generated from Wn−1 by the substitutions (2.1), and
a letter y of Wn that has k letters u on its left. In Wn−1, the position of the parent letter x

that generates y is k.

Proof. The number k of letters u to the left of y is equal to the number of letters u to the left
of x in Wn−1 (by u → uv) plus the number of letters v to the left of x in Wn−1 (by v → u):
this is exactly the position of x in Wn−1. �

The following two technical lemmas will be used in Section 7.

Lemma 3.4. Let G be a Fibonacci sequence. For any i ∈ Z
∗ there exists n1 ∈ N such that

n > n1 implies u(i+Gn) = u(i) +Gn+1.

Proof. Let ∆n = Gnϕ−Gn+1. By (3.3),

u(i+Gn)−Gn+1 = biϕ +Gnϕc −Gn+1 = biϕ+Gnϕ−Gn+1c = biϕ+∆nc.
We know that ∆n = − 1

ϕ
∆n−1, so that ∆n → 0 with alternating sign: ε > 0 being given,

there exists n1 such that n > n1 implies −ε < ∆n < ε. Then iϕ − ε < iϕ + ∆n < iϕ + ε.
Choosing ε = inf(iϕ − biϕc, biϕc + 1 − iϕ), gives biϕc < iϕ + ∆n < biϕc + 1. We obtain
u(i+Gn)−Gn+1 = biϕc = u(i). �

Before proceeding to the next lemma, let us recall the analysis of Brother U. Alfred [1]. Any
nonzero Fibonacci sequence G has two parts: the monotonic part going to the right, where the
terms are of constant sign, and the alternating part on the left where the signs alternate. For
a positive sequence, the separation between the parts occurs at the place where consecutive
terms are d − c, c, d with d − c > c and c < d: c is the smallest nonnegative term of the
sequence, and the term previous to d− c is negative. For a negative sequence, c is the largest
nonpositive term of the sequence, d− c < c, c > d, and the term previous to d− c is positive.
Let us call the rank ν of c the reference index of the sequence.

To summarize, the reference index ν = ν(G) is such that whenG is positive, Gν−1 > Gν > 0,
and when G is negative, Gν−1 < Gν 6 0.

Lemma 3.5. Let G be a nonzero Fibonacci sequence with reference index ν. Then there exists
a unique n > ν such that u(i) +Gn+1 = 0 for i = 1−Gn.

Proof. Let ∆n = Gn+1 −Gnϕ. For i = 1−Gn, we write

u(i) +Gn+1 = biϕ+Gn+1c = bϕ−Gnϕ+Gn+1c = bϕ+∆nc.
As ∆n → 0 and is bracketed by bounds of disjoint intervals, there exists a unique n such that
−ϕ < ∆n < − 1

ϕ
. Then 0 < ϕ + ∆n < 1, and we obtain u(i) + Gn+1 = 0. The conditions

−ϕ < ∆n < − 1

ϕ
and u(i) +Gn+1 = 0 are equivalent. To prove that n > ν, we have to check

that for m < ν, ∆m is outside the appropriate bounds. As |∆m| increases with decreasing
m, we need only consider the case m = ν − 1. For G positive, by the property of ν, we have
Gν−1 > Gν + 1, and

∆ν−1 = Gν −Gν−1ϕ 6 Gν −Gνϕ− ϕ = −Gν

ϕ
− ϕ 6 −ϕ.

For G negative, a similar analysis shows that ∆ν−1 > ϕ. �
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4. Integer Labeling of the Fibonacci Tree

For (a, b) ∈ Z
2, the labeled Fibonacci tree Fa,b is the Fibonacci tree (Figure 1) with u-nodes

and v-nodes labeled according to the following rules:

• The root is a u-node labeled a. Its child nodes are a u-node labeled b− 1 and a v-node
labeled b.

• The child nodes of a u-node labeled y, whose parent node is labeled x, are a u-node
labeled x+ y − 1 and a v-node labeled x+ y.

• The child node of a v-node labeled t, whose parent node is labeled z, is a u-node
labeled z + t.

The labeled Fibonacci tree F0,1 is displayed in Figure 3. The labels are read from the root
and from left to right. By construction,

• The labels of child nodes of u-nodes are consecutive integers.
• Ascending branches of the tree, where u-nodes and v-nodes alternate, are labeled
according to the Fibonacci recursion.
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-17 -16

-10

-4 -3

-15 -14

-9 -8
-13
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Figure 3. The labeled Fibonacci tree F0,1.

At level n, a labeled Fibonacci tree has Fn+2 nodes. Let An and Bn be the leftmost and
rightmost labels at level n. From the labeling rules, we have the sequence B : a, b, a + b, . . .,
so that

Bn = F a,b
n .

The leftmost node is a u-node, and its label An is given by the sequenceA : a, b−1, a+b−2, . . .,
with

An = An−1 +An−2 − 1, for n ≥ 2.

Using this expression, it is checked by induction that

An = F a,b
n − Fn+2 + 1.

MAY 2015 157



THE FIBONACCI QUARTERLY

For x, y ∈ Z, x 6 y, Jx · · · yK denotes the interval of consecutive integers from x to y, and
we use the notation

Jx+ z · · · y + zK = Jx · · · yK + z.

It is possible to add or substract two intervals of the same length:

Jx · · · yK + Jx′ · · · y′K = Jx+ x′ · · · y + y′K,

Jx · · · yK − Jx′ · · · y′K = Jx− x′ · · · y − y′K.

We denote

La,b
n = JAn · · ·BnK = JF a,b

n − Fn+2 + 1 · · ·F a,b
n K = J−Fn+2 + 1 · · · 0K + F a,b

n .

As F 0,0
n = 0 for all n, we have

L0,0
n = J−Fn+2 + 1 · · · 0K,

so that
La,b
n = L0,0

n + F a,b
n .

Theorem 4.1. At level n of the tree Fa,b, the labeling is made of consecutive integers in the

interval JF a,b
n − Fn+2 + 1 · · ·F a,b

n K.

Proof. We use induction on n. The result is true for n ≤ 2, and for n > 2, let us consider a
node Q labeled y at level n − 1, and that is not a rightmost node. By induction hypothesis,
the labelings at levels n − 1 and n − 2 are made of consecutive integers. Hence, the node Q′

next to Q at level n− 1 has label y + 1. Let us assume that the parent node of Q, P at level
n − 2, has label x, and that the parent node of Q′ is P ′. We consider all the different cases
implied by the topology of the tree:

(1) Q is a u-node and Q′ is a u-node. The only configuration is that the parent node P is
a v-node and P ′ is a u-node next to P , that has label x+1. By the labeling rules, the
two child nodes of Q, at level n, have labels (x+ y − 1, x+ y), and two child nodes of
Q′ have labels ((x+ 1) + (y + 1)− 1, (x+ 1) + (y + 1)) = (x+ y + 1, x+ y + 2).

(2) Q is a u-node and Q′ is a v-node. Then Q and Q′ have the same parent node P , a
u-node labeled x. At level n, the two child nodes of Q have labels (x + y − 1, x + y)
and the single child node of Q′ has label x+ y + 1.

(3) Q is a v-node and Q′ is a u-node. Then P and P ′ are consecutive nodes with labels
x and x+ 1 (P is a u-node and P ′ is a v-node). The single child node of Q has label
x + y and the two child nodes of Q′ have labels ((x + 1) + y, (x + 1) + (y + 1)) =
(x+ y + 1, x+ y + 2).

In all cases, the labels at level n are consecutive integers. �

Corollary 4.2. The label y of a node at level n of the tree is given by the Wythoff sequences:
y = An − 1+ u(k) if the node is a u-node, where k is the number of u-nodes to the left of that
node, and y = An − 1 + v(l) if the node is a v-node, where l is the number of u-nodes to the
left of the parent u-node of that node.

Proof. The pattern of u-nodes and v-nodes at level n is described by the Fibonacci word Wn

(Proposition 3.1). According to Theorem 4.1, the label of a node at this level is equal to its
position plus the offset An − 1. Proposition 3.2 now gives the result. �

Corollary 4.3. Let Q be a node at level n. The label of the parent node of Q is x = An−1−1+k

where k is the number of u-nodes to the left of Q.
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Proof. The label of the parent node at level n−1 is equal to its position plus the offset An−1−1,
and we use Proposition 3.3. �

Example 4.4. In the tree F0,1 (Figure 3), consider the u-node Q with label y = −2 at level
5. The leftmost label is −7 and there are k = 4 u-nodes to the left of Q. We check that
y = −7 − 1 + u(4) = −8 + 6 = −2. The parent node P of Q has label x = −4− 1 + 4 = −1.
The child v-node R of Q has label z = −12− 1 + v(4) = −13 + 10 = −3.

5. The Hofstadter Tree

In this section, the labeled tree F1,2 is considered (Figure 4). For this tree, the sequences
of leftmost and rightmost labels are

A : 1, 1, 1, 1, . . . ,
B : 1, 2, 3, 5, 8, . . . , Bn = Fn+2.

Proposition 5.1. At level n of the tree F1,2, the labeling is J1 · · ·Fn+2K.

Proof. This is immediate from Theorem 4.1. �

In the tree F1,2, the subtree at the right of the root (Figure 4) is the Hofstadter tree. The
main ascending branch of the Hofstadter tree is the Fibonacci sequence F1,2 ∼ F0,1, the second
ascending branch is the Lucas sequence 4, 7, 11, 18, . . . ∼ F2,1.
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Figure 4. The labeled Fibonacci tree F1,2 is made of infinitely many juxta-
posed copies of the Hofstadter tree, highlighted on the right.

Theorem 5.2. Reading the labels of the Hofstadter tree from the root produces the sequence
of positive integers.

Proof. Using Proposition 5.1, this is clear from Figure 5. �
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Tognetti et al. [8] prove the result of Theorem 5.2 the other way: they first label the
Hofstadter tree by consecutive integers from the root, then they show that the labeling is
consistent with the Fibonacci generation scheme.
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Figure 5. Illustration for the proof of Theorem 5.2.

Definition 5.3. In the tree Fa,b, a u-node is primitive if its parent node is a u-node. Let this
primitive node and its parent node have labels y and x, respectively. Then the child v-node
of the primitive node has label x + y, and (y, x + y) is called a primitive tree-pair. This pair
starts a Fibonacci sequence along the ascending branch rooted at the primitive node.

According to the definition, the root node of the tree is a u-node that is not primitive.

Proposition 5.4. The ascending branches of the Hofstadter tree read from the root form the
successive rows of the Wythoff array.

Proof. By definition, the first two columns of the Wythoff array contain the primitive Wythoff
pairs {(uu(i), vu(i)); i ∈ N

∗} [6], and these pairs are extended by the Fibonacci recursion to
form the rows [4] (sequence A035513 in the OEIS [5]). The first Wythoff pair (1, 2) corresponds
to the first two labels on the main ascending branch of the Hofstadter tree, leading to the
Fibonacci sequence. By Proposition 5.1, the label of a given node at level n of the whole
tree F1,2 corresponds to the position of the corresponding letter in the Fibonacci word Wn

(Wn describes the pattern of u-nodes and v-nodes by Proposition 3.1). Let us consider a
primitive node on the Hofstadter tree. Its parent node is by definition a u-node, whose label
is x = u(i) for some i > 1 by Proposition 3.2. By Proposition 3.2 again, the primitive node
has label y = u(k) where k is the number of u-nodes to the left of the node. By Proposition
3.3, x = k. Then y = uu(i) is the first term of a primitive Wythoff pair and, by (3.1),
x+ y = u(i) + uu(i) = vu(i) is the second term of the pair. �
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Structural properties of the Wythoff array [3] can be read from its representation as the
Hofstadter tree.

Theorem 5.2 recovers the fact that the Wythoff array contains every positive integer exactly
once. In section 7, we shall also recover the fact that the Wythoff array represents all positive
Fibonacci sequences, in the sense that any positive Fibonacci sequence is equivalent to a
sequence in the array [4].

6. The Set of Labeled Fibonacci Trees

On the set of labeled Fibonacci trees,

Φ = {Fa,b; (a, b) ∈ Z
2},

the sum F ⊕F ′ of two trees F and F ′ is defined as the labeled tree obtained by superimposing
the two trees and adding the labels of the corresponding nodes with a correction term: the
labeling of the sum at level n is defined by

Ln(F ⊕ F ′) = Ln(F) + Ln(F ′)− L0,0
n ,

where L0,0
n is the interval J−Fn+2 + 1 · · · 0K.

Lemma 6.1. If the Fibonacci tree is labeled at each level n by the interval La,b
n then the tree

is Fa,b.

Proof. We take a Fibonacci tree, label the root La,b
0

= {a} and the first level La,b
1

= {b− 1, b},
and then apply the labeling rules. The tree obtained is Fa,b, and it has labeling La,b

n at each

level n by Theorem 4.1. Hence, the two procedures – labeling by La,b
n at each level n or labeling

according to the rules – lead to the same labeled tree. �

Theorem 6.2. The set (Φ,⊕) of labeled Fibonacci trees is a commutative group isomorphic
to (Z2,+):

a, b, a′, b′ ∈ Z, Fa,b ⊕Fa′,b′ = Fa+a′,b+b′ .

The identity element is the tree F0,0.

Proof. We have to show that given F = Fa,b and F ′ = Fa′,b′ , the labeled Fibonacci tree F⊕F ′

is an element of Φ, which is Fa+a′,b+b′ . Using (2.2), we have F
a,b
n +F

a′,b′

n = F
a+a′,b+b′

n , so that
the labeling of F ⊕ F ′ at level n is

L0,0
n + F a,b

n + L0,0
n + F a′,b′

n − L0,0
n = L0,0

n + F a+a′,b+b′

n = La+a′,b+b′

n .

By Lemma 6.1, an element of Φ is entirely determined by the labelings La,b
n , concluding the

proof. �

For λ ∈ Z, define

λFa,b = Fλa,λb.

The notation λFa,b means the sum of λ copies of the tree Fa,b for λ ≥ 0, and the sum of −λ

copies of the tree F−a,−b for λ < 0. We obtain a generalization of (2.2):

Fa,b = aF1,0 ⊕ bF0,1.
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7. Representation Properties

The labeled Fibonacci tree Fa,b represents Z if every interval of Z is contained in the labeling
of Fa,b at some level (and therefore at all higher levels). Z− denotes the set of nonpositive
integers, Z+ denotes the set of positive integers.

Proposition 7.1. The tree Fa,b represents Z if and only if 0 < a+ bϕ < ϕ3.

Proof. The leftmost label at level n of Fa,b is F a,b
n − Fn+2 + 1. Using (2.2),

F a,b
n − Fn+2 = aFn−1 + bFn − Fn−1 − 2Fn = (a− 1)Fn−1 + (b− 2)Fn = F a−1,b−2

n .

Therefore, the integer interval represented by Fa,b at level n is

La,b
n = JF a−1,b−2

n + 1 · · ·F a,b
n K.

If Fa,b represents Z, we have

(a− 1)Fn−1 + (b− 2)Fn + 1 < 0, aFn−1 + bFn > 0,

for large n. The first inequality gives

(a− 1) + (b− 2)
Fn

Fn−1

+
1

Fn−1

< 0.

When n → +∞, as Fn

Fn−1
→ ϕ, we obtain a + bϕ − (1 + 2ϕ) 6 0. So, a + bϕ 6 1 + 2ϕ = ϕ3,

with equality only if (a, b) = (1, 2). But we know from Figure 4 that the tree F1,2 does not
represent Z. Thus, a+ bϕ < ϕ3. The second inequality gives

a+ b
Fn

Fn−1

> 0.

When n → +∞, we obtain a+ bϕ > 0 with equality only if (a, b) = (0, 0). But Figure 3 shows
that the tree F0,0 does not represent Z. Thus, a+ bϕ > 0.

Conversely, assume a+ bϕ < ϕ3. Then there exists ε > 0 such that

(a− 1) + (b− 2)ϕ+ ε 6 0.

The relation

ϕ =
Fn

Fn−1

− 1

Fn−1

(−1)n−1

ϕn−1

gives

(a− 1)Fn−1 + (b− 2)Fn + (b− 2)
(−1)n−1

ϕn−1
6 −εFn−1 < 0.

This shows that when n → +∞, (a − 1)Fn−1 + (b − 2)Fn → −∞. Similarly, the condition
a+ bϕ > 0 leads to aFn−1 + bFn → +∞ when n → +∞. �

The infinite set of pairs (a, b) satisfying the conditions of Proposition 7.1 is depicted in
Figure 6. The tree F0,0 is the only one representing Z− exactly, and the tree F1,2 is the only
one representing Z+ exactly (open circles on Figure 6).

The set of Fibonacci sequences is denoted

F = {Fa,b; (a, b) ∈ Z
2}.

The set of nonpositive Fibonacci sequences, whose terms eventually belong to Z−, is denoted
F−, and the set of positive Fibonacci sequences, whose terms eventually belong to Z+, is
denoted F+.
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(0,0)

(1,2)

Figure 6. Filled circles correspond to the pairs (a, b) for which the tree Fa,b

represents every interval of Z.

The labeled tree Fa,b represents an element of F if the sequence is equivalent (identical
up to a shift of index) to a sequence appearing along an ascending branch of the tree. Fa,b

represents F if it represents any element of F.
The set of trees representing Z (Proposition 7.1) is denoted

Ψ = {Fa,b; (a, b) ∈ Z
2, 0 < a+ bϕ < ϕ3}.

Theorem 7.2. A labeled Fibonacci tree represents the set of Fibonacci sequences if and only
if it is an element of Ψ.

Proof. We take a tree Fa,b ∈ Ψ and a given Fibonacci sequence, and show that that there
exists a pair of consecutive terms of the sequence that appears as consecutive labels along
an ascending branch of Fa,b. Like for the Wythoff array, the argument is based on the fact
that pairs of consecutive terms of any Fibonacci sequence eventually become Wythoff pairs
[4, 9]. In fact, we show that every primitive Wythoff pair (uu(j), vu(j)), j ∈ Z

∗, appears as a
primitive tree-pair (see Definition 5.3 in Section 5). The zero sequence F0,0 is represented by
a primitive tree-pair, but has no corresponding Wythoff pair, and is treated separately.

Let j ∈ Z
∗. We look for a primitive u-node Q labeled y = uu(j) and its parent u-node P

labeled x = u(j). Then x+ y = u(j)+uu(j) = vu(j), so that the primitive tree-pair (y, x+ y)

represents the given Fibonacci sequence. Let us denote Gn = F
a−1,b−2
n . The leftmost label

An at level n satisfies An − 1 = Gn. As the tree represents every interval of Z (Proposition

7.1), we can find n0 > 2 such that n > n0 implies j ∈ La,b
n−2

, i.e., 1 +Gn−2 6 j 6 Gn−2 + Fn.
Hence, if we set in = j − Gn−2, then 1 6 in 6 Fn. By Lemma 3.4, there exists n1 such that
for any n > n1 we have u(in + Gn−2) = u(in) + Gn−1. We take n larger than n0 and n1

and set i = in. The node P with label x = Gn−1 + u(i) is a u-node, by Corollary 4.2. (The
condition 1 6 i 6 Fn ensures that x is the label of a node at level n − 1. Indeed, according
to Corollary 4.2, i is the number of u-nodes to the left of P . This number must be at least 1,
and at most Fn, the total number of u-nodes at level n− 1.) By Corollary 4.3, x = Gn−1 + k,
where k is the number of u-nodes to the left of the u-node Q. Thus k = u(i). By Corollary
4.2 again, Q has label y = Gn + u(k) = Gn + uu(i). Q is a primitive node. We now have
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x = Gn−1 + u(i) = u(i+Gn−2) = u(j), and

v(j) = j + u(j) = i+Gn−2 +Gn−1 + u(i) = Gn + i+ u(i) = Gn + v(i).

Using (3.2), we obtain uu(j) = Gn + uu(i) = y.
For the sequence F0,0, we proceed similarly. By Lemma 3.5, there exists a unique n > ν+2

such that x = Gn−1 + u(i) = 0 with i = 1−Gn−2, and where the reference index ν of G has
the property that Gν is the largest nonpositive term of the sequence. As in the general case,
we consider the u-node P at level n − 1 whose label is x = 0, and its child u-node Q, whose
label is y = Gn + uu(i). We now have, using (3.2),

y = Gn + uu(i) = Gn + i+ u(i)− 1 = Gn + 1−Gn−2 −Gn−1 − 1 = 0.

Thus, the primitive tree-pair (y, x + y) = (0, 0) represents F0,0. To complete this part of the
proof, it must be checked that in = i satisfies 1 6 in 6 Fn. By assumption, there exists a
smallest n0 ∈ N such that for m > n0 + 2, the integer 1 is represented at level m − 2, i.e.,
1+Gm−2 6 1 6 Gm−2 +Fm. Hence, if im = 1−Gm−2, then 1 6 im 6 Fm for m > n0+2. We
prove that ν > n0. As n > ν + 2, this will imply n > n0 + 2, and 1 6 in 6 Fn as desired. By
definition of ν, Gν 6 0, i.e., 1+Gν 6 1, and it remains to show that Gν +Fν+2 > 1. If, on the
contrary, Gν +Fν+2 < 1, then Gν +Fν+2 6 0. But, by definition of ν, Gν > Gν−1. This gives

Gν−1 + Fν+1 < Gν−1 + Fν+2 < Gν + Fν+2 6 0.

By the Fibonacci recursion, Gν−1 + Fν+1 6 0 and Gν + Fν+2 6 0 lead to Gν+1 + Fν+3 6 0.
We can pursue the recursion to get Gν+p + Fν+2+p 6 0 for any p ∈ N. This contradicts the

fact that F a,b
m = Gm + Fm+2 → ∞.

The reasoning of the previous paragraph does not work for the tree F0,1 because the tree-
pair (0, 0) appears at level 1 (in fact, ν = −1). It is the only exceptional case. Nevertheless,
the formulas still hold, and it can also be seen directly that F0,0 is represented by F0,1 (Figure
3).

To show the converse in the theorem, we note that if a tree Fa,b is not an element of Ψ,
it does not represent Z, and there are Fibonacci sequences that are not represented by the
tree. �

When Fa,b ∈ Ψ, the pair (a, b) is not a Wythoff pair. Indeed, its terms are either of opposite
sign, or in the 8 cases where the terms are nonnegative (Figure 6), they do not form a Wythoff
pair. The primitive Wythoff pair (c, d) corresponding to the sequence Fa,b is positive, and

appears further up in the main branch of the tree : there exists n > 0 such that F a,b
n = c and

F
a,b
n+1

= d. The pair (c, d) also appears elsewhere in the tree, as any primitive Wythoff pair.

For example, in the tree F0,1 ∈ Ψ, the Wythoff pair (1, 2) representing the Fibonacci sequence
F = F0,1 appears at level 2 as a nonprimitive tree-pair, and appears at all levels n > 3 as a
primitive tree-pair (Figure 3).

Proposition 7.3. In a tree F ∈ Ψ, every Fibonacci sequence is represented by infinitely many
branches, except for the zero sequence F0,0 that is represented by a single branch.

Proof. The pair (0, 0) appears as a unique primitive tree-pair, as seen in the proof of Theorem
7.2. Therefore, the sequence F0,0 is represented by a single ascending branch of the tree. Also
from the proof of Theorem 7.2, a primitive Wythoff pair appears in the tree as a primitive
tree-pair at all levels above some level. Hence, it appears in infinitely many different ascending
branches, since each primitive tree-pair is rooted at a primitive node that starts a new branch.

�
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To summarize, the set Φ can be partionned into three subsets: (1) the trees Fa,b such that
0 < a + bϕ < ϕ3, constituting Ψ, and representing Z and F, (2) those such that a + bϕ 6 0
representing subsets of Z− and F−, and (3) those such that a+ bϕ > ϕ3, representing subsets
of Z+ and F+.

8. Order Relation

For two trees F ,F ′ ∈ Φ, the notation F C F ′ means that F is a subtree of F ′ such that
the root of F is a u-node of F ′, and corresponding labels are identical. When F C F ′, we say
that F ′ contains F . For example, the tree F0,1 contains F0,0 and F1,2 as subtrees (Figure 3).

We shall use two affine maps on the ring Z[ϕ]:

L(x+ yϕ) = (y − 1) + (x+ y − 1)ϕ, R(x+ yϕ) = (x+ y) + (x+ 2y)ϕ.

The map L sends the pair (x, y) at the root of the tree Fx,y to the pair (y − 1, x + y − 1) at
the root of the first left subtree (highlighted on the left of Figure 2). The map R sends the
pair (x, y) to the pair (x+ y, x+ 2y) at the root of the first right subtree (highlighted on the
right of Figure 2). The relations

(y − 1) + (x+ y − 1)ϕ = ϕ(x+ yϕ)− ϕ2, (x+ y) + (x+ 2y)ϕ = ϕ2(x+ yϕ),

show that for z = x+ yϕ ∈ Z[ϕ],

L(z) = ϕz − ϕ2 = ϕ(z − ϕ3) + ϕ3, R(z) = ϕ2z.

Underlying this formulation are the group isomorphisms:

Φ
∼−→ Z

2 ∼−→ Z[ϕ]
Fa,b 7−→ (a, b) 7−→ a+ bϕ.

Proposition 8.1. The trees F1,2 and F0,0 are the only elements of Φ containing nested copies
of themselves.

Proof. It is clear that the trees F1,2 and F0,0 contain themselves infinitely many times as
proper subtrees (see Figure 3). Conversely, assume that the tree Fa,b contains itself as a
proper subtree. Then it contains a u-node labeled a that is not the root node, and whose
child v-node is labeled b. This pair (a, b) up in the tree can be reached from the root pair
(a, b) by applying the maps R and L to a + bϕ in Z[ϕ]. In other words, z∗ = a + bϕ is a
fixed point of a composition of L and R, and we have to solve z = Lp1Rq1 · · ·LpkRqkz or
z = Rq1Lp1 · · ·RqkLpkz, with pi, qi > 0 not all zero. The iterates of the maps L and R are

Lp(z) = ϕp(z − ϕ3) + ϕ3, Rq(z) = ϕ2qz.

The unique fixed point of Lp is z∗ = ϕ3 = 1 + 2ϕ. The unique fixed point of Rq is z∗ = 0.
We show that either z = Lpz, in which case the fixed point is z∗ = 1 + 2ϕ leading to

(a, b) = (1, 2), or z = Rqz, in which case the fixed point is z∗ = 0 leading to (a, b) = (0, 0).
Using the formula

(LpRq −RqLp)z = ϕ3(ϕp − 1)(ϕ2q − 1) = ξp,q,

we obtain

Lp1Rq1 · · ·LpkRqkz = Rq1+···+qkLp1+···+pkz + ξp1,q1 + · · · + ξpk,qk .

With p = p1 + · · ·+ pk, q = q1 + · · ·+ qk, the equation for the fixed point becomes

z = RqLpz + ξp1,q1 + · · ·+ ξpk,qk .
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Setting z = ϕ3 leads to

1 = ϕ2q + (ϕp1 − 1)(ϕ2q1 − 1) + · · ·+ (ϕpk − 1)(ϕ2qk − 1).

The only solution is qi = 0 for all i, giving z = Lpz. Similarly,

Rq1Lp1 · · ·RqkLpkz = Lp1+···+pkRq1+···+qkz − (ξp1,q1 + · · ·+ ξpk,qk)

gives
z = LpRqz − (ξp1,q1 + · · ·+ ξpk,qk).

Setting z = 0 leads to

1 = ϕp + (ϕp1 − 1)(ϕ2q1 − 1) + · · · + (ϕpk − 1)(ϕ2qk − 1).

The only solution is pi = 0 for all i, giving z = Rqz. �

Theorem 8.2. The relation C is a partial order on Φ.

Proof. To prove that C defines an order relation, only antisymmetry needs to be checked.
Assume that for F ,F ′ ∈ Φ we have F C F ′ and F ′ C F , but F 6= F ′. Then F C F ′ C F ,
so that F contains itself as a proper subtree. By Proposition 8.1, F = F0,0 or F = F1,2. If
F = F0,0, the inclusions F0,0 C F ′ C F0,0 imply that F ′ represents Z− exactly, and must be
F0,0, which is a contradiction. Similarly, F = F1,2 leads to a contradiction. Thus, F = F ′. �

The order relation C is not compatible with the group structure. Otherwise, for any trees
F , G, F ′, G′ we would have

F C G, F ′
C G′ =⇒ (F ⊕F ′) C (G ⊕ G′).

A counterexample is given by F0,0 C F0,1, F0,0 C F1,1. The tree F0,0 ⊕ F0,0 = F0,0 is not a
subtree of F0,1 ⊕F1,1 = F1,2. Indeed, the labels of the tree F1,2 are all positive.

We conjecture that any two elements F , F ′ of Φ endowed with the order relation C have a
least upper bound F ∨ F ′. For example, Figure 3 shows that F0,1 = F0,0 ∨ F1,2.

This means that, given F = Fc,d and F ′ = Fc′,d′ , we can find G = Fa,b such that F C G
and F ′ C G. Then, as there are only finitely many subtrees between G and F , and between G
and F ′, a least upper bound can be found for F and F ′. This amounts at finding a+ bϕ that
is sent to both c+ dϕ and c′ + d′ϕ by some composition of the maps L and R. For example,

18− 10ϕ = L−1R−2(−1 + 2ϕ) = R−1L−1(−3 + 5ϕ).

This is the smallest solution: it sends −1 + 2ϕ and −3 + 5ϕ to 18− 10ϕ, entailing F18,−10 =
F−1,2∨F−3,5. However, this approach leads to complicated formulas, and we have not proven
the conjecture.

9. Concluding Remarks

We have described a set Φ of labeled Fibonacci trees representing Fibonacci sequences
which has the structure of a commutative group isomorphic to Z

2. The set Φ is moreover
endowed with a partial order for which we conjecture that any two elements have a least
upper bound. An infinite subset Ψ of Φ was determined to represent every integer interval
and every Fibonacci sequence. This corresponds to two key features of the Wythoff array
extended to Z (Vandervelde [9]). Accordingly, the labeled trees that belong to Ψ can be
considered as generalizations of the Wythoff array.

The extended Wythoff array contains every integer exactly once, except for −1 that appears
twice and 0 that does not appear, and represents every nonzero Fibonacci sequence uniquely.
For the elements of Ψ, every integer interval appears infinitely many times, and every Fibonacci
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sequence is represented infinitely many times, except for the zero sequence that is represented
only once.

Finally, labeled trees similar to the labeled Fibonacci trees studied here could be constructed
for other sets of sequences defined by parameterized recursions, e.g., triangular numbers,
sequences of powers of 2, Perrin and Perrin-like numbers, Tribonacci and k-bonacci numbers,
Pell numbers.
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