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Abstract. Some well-known results of Prodinger and Tichy are that the number of inde-
pendent sets in the n-vertex path graph is Fn+2, and that the number of independent sets
in the n-vertex cycle graph is Ln. We generalize these results by introducing new classes of
graphs whose independent set structures encode the Lucas sequences of both the first and
second kind. We then use this class of graphs to provide new combinatorial interpretations
of the terms of Dickson polynomials of the first and second kind.

1. Introduction and Main Results

For any graph G, we call a set S of vertices of G an independent set if no two vertices of S
are adjacent. We let i(G) denote the total number of independent sets of G and, for each t ∈ N,
we let it(G) denote the number of independent sets of G of size t; thus, i(G) =

∑

t≥0
it(G).

The quantity i(G) was first explicitly considered by Prodinger and Tichy in [5], who referred to
it as the Fibonacci number of a graph. We present two of their main results as the following
theorem. Here, Pn denotes the n-vertex path graph, Cn denotes the n-vertex cycle graph
(where the 1-vertex cycle is taken to be a vertex with a loop, and the 2-vertex cycle is taken to
be a single edge), and we adopt the common conventions F0 = 0, F1 = 1, L0 = 2, and L1 = 1.

Theorem 1.1. For any n ∈ N,

i(Pn) = Fn+2, (1.1)

and

i(Cn) = Ln. (1.2)

Our main result will be a generalization of Theorem 1.1. For this, we will define two new
classes of graphs. Fix any n, a, b ∈ N with a ≥ b. Create an n-vertex cycle with vertex set
Zn; for each vertex of the cycle, create an a-vertex complete graph sharing with the cycle only
this vertex. Then, for each v ∈ Zn, make vertex v adjacent to a − b additional vertices of
the complete graph containing vertex v + 1 (mod n), and denote this graph C(n, a, b). For
example, C(6, 5, 3) is the graph:

We refer to this class of graphs, over all valid n, a, b ∈ N, as chainsaw graphs. When referring
to a particular chainsaw graph C(n, a, b), we call the n vertices lying on the inner cycle its
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chain vertices, and we call the set of remaining vertices its blade vertices. This will serve as
our generalization of Cn, as we will soon see. We generalize the path graph to a graph which
we denote P (n, a, b) by considering C(n+1, a, b) and removing one of the chain vertices (e.g.,
vertex 0) and all edges adjacent to it. We call these graphs broken chainsaws, and refer to the
vertices similarly as chain and blade vertices.

With these definitions in place, we now state our generalization of Theorem 1.1. As is
common, we let Un(a, b) and Vn(a, b) denote the Lucas sequences of the first and second kind,
respectively. That is, we let U0(a, b) = 0, U1(a, b) = 1, and Un(a, b) = aUn−1(a, b)−bUn−2(a, b)
for n > 1 (so that Un(1,−1) are the Fibonacci numbers); we let V0(a, b) = 2, V1(a, b) = a, and
Vn(a, b) = aVn−1(a, b)− bVn−2(a, b) for n > 1 (so that Vn(1,−1) are the Lucas numbers).

Theorem 1.2. For any n, a, b ∈ N satisfying a ≥ b, we have that

i(P (n, a, b)) = Un+2(a,−b), (1.3)

and that

i(C(n, a, b)) = Vn(a,−b). (1.4)

We prove this Theorem in Section 2 while discussing some relationships between Dickson
polynomials and Lucas sequences and providing some graph-theoretic interpretations of these
well-studied objects. We note that Theorem 1.1 is the special case of Theorem 1.2 when
a = b = 1.

2. Relationships to Dickson Polynomials and a Proof of Theorem 1.2

In this section we examine the relationship between Dickson Polynomials and Lucas se-
quences and discuss some results which will be crucial to proving Theorem 1.2. In the process,
we provide new graph-theoretic interpretations of Lucas sequences and Dickson polynomials.
As is common, we use Dn(X,Y ) and En(X,Y ) to denote Dickson polynomials of the first and
second kind, respectively. That is, we let

Dn(X,Y ) :=

bn/2c
∑

t=0

n

n− t

(

n− t

t

)

(−Y )tXn−2t, (2.1)

and

En(X,Y ) :=

bn/2c
∑

t=0

(

n− t

t

)

(−Y )tXn−2t. (2.2)

We start with the following result which is known in finite field theory. See, for example, [2, 3],
or [4] for more on this result. For more information on Dickson polynomials in general, see [4].

Theorem 2.1. For any n ∈ N and a, b ∈ Z,

Dn(a, b) = Vn(a,−b), (2.3)

and

En(a, b) = Un+1(a,−b). (2.4)

We will prove Theorem 1.2 by showing that the tth term of (2.1) and the tth term of (2.2)
can be graph-theoretically interpreted as the number of independent sets in the chainsaw graph
C(n, a, b) and the broken chainsaw graph P (n, a, b), respectively, which contain exactly t chain
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vertices. For this, we will need the following result, which is well-known in graph theory, and
is not difficult to prove. See, for example, [1].

Lemma 2.2. For any n ∈ N and t ∈ N0, we have

it(Pn) =

(

n− t+ 1

t

)

, (2.5)

and we also have

it(Cn) =
n

n− t

(

n− t

t

)

. (2.6)

With this in place, we are now ready to proceed to the proof of Theorem 1.2.

Proof of Theorem 1.2. Fix n, a, b ∈ N so that a ≥ b. As previously discussed, it follows from
(2.2) and (2.5) that (1.3) holds if the number of independent sets in P (n, a, b) which contain
exactly t chain vertices for t ∈ N0 is given by

it(Pn)b
tan−2t+1. (2.7)

First, note that the number of ways to choose t independent chain vertices in P (n, a, b), by
definition, is it(Pn). Then, once t independent chain vertices are chosen, there are t sets of b−1
blade vertices and n− 2t+1 sets of a− 1 blade vertices with which they share no adjacencies,
so (2.7) holds. A similar argument shows that the number of independent sets in C(n, a, b)
which contain exactly t chain vertices for t ∈ N0 is given by

it(Cn)b
tan−2t, (2.8)

and thus, by (2.1) and (2.6), we have (1.4). �

A graph-theoretic interpretation of the Lucas Sequence is now established by Theorem 1.2,
and from its proof emerges a graph-theoretic interpretation of the terms of the Dickson poly-
nomial.
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