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Abstract. Perfect numbers are scarce, only 48 are known, and when the search is restricted
to a specified sequence, the possibility of their adequate presence still reduces. The objective
of this paper is to show that the only perfect number in the balancing sequence is 6.

1. Introduction

A perfect number is natural numbers which is equal to the sum of its proper positive divisors.
These numbers are very scarce and to date only 48 numbers have been found, the largest one
contains 34850340 digits. The infinitude of these numbers is yet to be established. Surprisingly,
all the known perfect numbers are even although many properties and conjectures about odd
perfect numbers are available in the literature. All the even perfect numbers are of the form
2n−1(2n − 1) where 2n − 1 is a prime (popularly known as Mersenne prime). It is well-known
that any odd perfect number, if exists, is very large. A recent result by Ochem and Rao [7]
ascertains that odd perfect numbers must be greater than 101500. Euler proved that every
odd perfect number is of the form p4α+1x2, where p is a prime of the form 4n+ 1. Neilson [8]
verified that every odd perfect number has at least 9 prime factors.

The search of perfect numbers in various number sequences has been a motivating job for
mathematicians. In 1994, McDaniel [5] proved that the only triangular number in the Pell
sequence is 1, which is a clear indication that there is no even perfect number in this sequence.
In [4], Luca established the absence of perfect numbers in the Fibonacci and Lucas sequences.
The absence of even perfect numbers in the associated Pell sequence follows from the paper
[12] by Prasad and Rao. The objective of this work is to explore all perfect numbers in the
balancing sequence.

As defined by Behera and Panda [1], a natural number n is a balancing number if 1 + 2 +
· · · + (n − 1) = (n + 1) + (n + 2) + · · · + (n + r) for some natural number r, which is the
balancer corresponding to n. As a consequence of the definition, a natural number n > 1 is a
balancing number if and only if n2 is a triangular number, or equivalently, 8n2 +1 is a perfect
square. The nth balancing number is denoted by Bn, and Cn =

√

8B2
n + 1 is called the nth

Lucas-balancing number [13, p. 25]. Customarily, 1 is accepted as the first balancing number,
that is, B1 = 1. Panda in [9] proved that the Lucas-balancing numbers are associated with
balancing numbers in the way Lucas numbers are associated with Fibonacci numbers. The
identities B2n = 2BnCn and C2n = C2

n + 8B2
n (see [9]) resembling respectively F2n = FnLn

and L2n =
1

2
(F 2

n + 5L2
n) will prove their usefulness in the next section.

2. Even Perfect Balancing Numbers

This section is devoted to the search of even perfect numbers in the balancing sequence.
Since the balancing numbers are alternately odd and even and all the known perfect numbers
are even, we first focus our attention on even balancing numbers. The second balancing
number B2 = 6 is perfect and using Microsoft Mathematics, we verified that there is no
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perfect number in the list of the first fifty even balancing numbers. Thus, a natural question:
“Is there any other even perfect number in the balancing sequence?” In this section, this
question is answered in the negative.

Throughout the paper p denotes a prime and (a, b) denotes the greatest common divisor of
a and b.

To prove that 6 is the only even perfect balancing number, we need the following lemma
which deals with an important divisibility property of balancing numbers.

Lemma 2.1. For any natural numbers r and n, 2r|Bn if and only if 2r|n.
Proof. We will show that if 2r|n then 2r|Bn. If 2

r|n then n = 2rk for some natural number k.
By virtue of the identity B2n = 2BnCn, it follows that

Bn = B2rk = 2B2r−1kC2r−1k = · · · = 2rBkCkC2kC4k · · ·C2r−1k.

Thus, 2r|Bn. Conversely, assume that 2r|Bn. To prove that 2r|n, we use mathematical
induction on r. Observe that if 2|Bn then certainly n is even, since a balancing number is even
or odd according as its index is even or odd. Thus, the assertion is true for r = 1. Assume that
the assertion is true for r = k and suppose that 2k+1|Bn. Then once again n is even say n = 2l
and Bn = 2BlCl. Further, 2

k+1|Bn implies 2k|BlCl. Since, by definition, the Lucas-balancing
numbers are odd, it follows that 2k|Bl. By the inductive assumption, this implies that 2k|l
and finally, 2k+1|2l = n. This ends the proof. �

We are now in a position to prove the main result of this section.

Theorem 2.2. B2n is perfect if and only if n = 1, that is, 6 is the only even perfect balancing

number.

Proof. It is well-known that every even perfect numberN is of the form N = 2p−1(2p−1) where
(2p−1) is prime. Indeed, then p is also a prime [2]. If p = 2 then N = 6 is a perfect number as
well as a balancing number. Now let p ≥ 3 and assume to the contrary that N = 2p−1(2p − 1)
is a balancing number say 2p−1(2p− 1) = B2n for some natural number n. Since p ≥ 3, 4|B2n.
By virtue of Lemma 2.1, 4|2n and hence 2|n, say n = 2k and then, B2n = B4k = 4BkCkC2k.
Thus, 4BkCkC2k = 2p−1(2p − 1). Since Ck and C2k are odd, (CkC2k, 2

p−1) = 1. Therefore,
CkC2k|(2p − 1). Since C2k = C2

k + 8B2
k , it follows that C2k > Ck ≥ C1 = 3. Thus, Ck and

C2k are distinct natural numbers and each of them is more than 1. This implies that 2p − 1
is not a prime, which is a contradiction. Thus, the only perfect number in the even balancing
numbers is 6. Since B2n = 6 only when n = 1, the proof is complete. �

3. Balancing Numbers of the Form px2

Identification of terms of the form kx2 in well-known sequences have been considered by
many authors. In Section 1, we have already discussed the importance of these type of numbers
in connection with odd perfect numbers. Robbins [14, 15] explored terms of the form px2

in Fibonacci and Pell sequences while McDaniel [6] studied terms of the form kx2 in these
sequences. We will prove that there is only one balancing number of the form px2 which is
not a perfect number.

The Pell sequence is defined as P1 = 1, P2 = 2 and Pn+1 = 2Pn + Pn−1 for n ≥ 2, while the
associated Pell sequence is defined as Q1 = 1, Q2 = 3, and Qn+1 = 2Qn + Qn−1 for n ≥ 2.
The importance of Pell and associated Pell sequences lies in the fact that the nth convergent

of
√
2 expressed as a continued fraction is

Qn

Pn

. Further, a crucial relationship of these two
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sequences with the balancing sequence needed to prove an important result of this section is
Bn = PnQn [10, p.46].

To prove that there is only one balancing number of the form px2, we need the following
two lemmas. The first lemma ascertains the presence of only one square term in the associated
Pell sequence.

Lemma 3.1. The only square term in the associated Pell sequence is Q1 = 1.

Proof. It is known that for any odd order associated Pell number k, 2(k2 + 1) is a perfect
square. Assume that k is a square say k = x2 and let 2(k2 + 1) = z2. We thus have the
Diophantine equation

2(x4 + 1) = z2. (3.1)

Since the left-hand side is even, z is also even, say z = 2y and (3.1) reduces to

x4 + 1 = 2y2. (3.2)

But (3.2) has no solution other than x = y = 1 [11, p. 133]. Thus, the only square term in
the associated Pell sequence is Q1 = 1 corresponding to k = 1. �

The following lemma due to Ljunggren [3] caters to all square terms in the Pell sequence.

Lemma 3.2. The only square terms in Pell sequence are P1 = 1 and P7 = 169.

Now, we are in a position to prove the main result of this section.

Theorem 3.3. The only balancing number of the form px2 is B7 = 40391.

Proof. Let N be a balancing number of the form px2. So it must have the prime factorization
N = p p2a1

1
p2a2
2

· · · p2amm for some natural number m. Since N is a balancing number, N = Bn

for some n. Further, Bn = PnQn and it is well-known that (Pn, Qn) = 1 for each n. Thus,
p is a factor of either Pn or Qn. If p|Pn, then Qn is a perfect square and by virtue of
Lemma 3.1, this happens if n = 1 and consequently N = 1 which is not of the form px2. On
the other hand, if p|Qn, then Pn is a perfect square and by Lemma 3.2, this is possible only
if n = 1 or 7. In the former case N = 1, which is not of the form px2 and in the latter case
N = 40391 = 239 · 132. �

As mentioned earlier, Ochem and Rao [7] proved that an odd perfect number, if exists,
must be greater than 101500. Many great number theorists believe that odd perfect numbers
do not exist. So how can one expect such a number in the balancing sequence? The following
theorem ascertains their absence.

Theorem 3.4. There is no odd perfect balancing number.

Proof. Let N is an odd perfect number. Hence, it has the canonical decomposition N =
p4s+1p2a1

1
p2a2
2

· · · p2amm where p ≡ 1 (mod 4) and m ≥ 9 [8]. By virtue of Theorem 3.3, B7 =
40391 = 239 · 132 is the only balancing numbers of the form px2. Since the prime 239 6≡ 1
(mod 4), 40391 is not a perfect number. Hence, no odd balancing number is perfect. �
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