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Abstract. A Lehmer superpseudoprime is a Lehmer pseudoprime, all of whose divisors
greater than 1 are either pseudoprimes with the same parameters or primes. Lehmer su-
perpseudoprimes with exactly two distinct prime divisors are not very interesting, since their
only proper divisors are primes. Phong and Joó have generated infinitely many Lehmer su-
perpseudoprimes with exactly three distinct prime divisors for various parameters. In this
paper, we generate infinitely many Lehmer superpseudoprimes with exactly four distinct
prime divisors for Lehmer sequences having various parameters.

1. Introduction

We first present results on ordinary superpseudoprimes and then extend these results to
Lehmer superpseudoprimes. Let a > 1 be an integer. The positive odd composite integer N
is called a pseudoprime to the base a if

aN−1 ≡ 1 (mod N). (1.1)

A composite odd integer N satisfying (1.1) is called a superpseudoprime to the base a if
each divisor of N greater than 1 is either a pseudoprime to the base a or a prime.

Superpseudoprimes with exactly two distinct prime divisors are not very interesting, since
their only proper divisors are primes. Several authors have generated infinitely many su-
perpseudoprimes with exactly three distinct prime divisors. Szymiczek [14] and Rotkiewicz [9]
have shown this is possible when a = 2. Fehér and Kiss [2] demonstrated that infinitely many
such superpseudoprimes exist when 4 - a. Phong [7] proved that there exist infinitely many
pseudoprimes to the base a which are products of exactly three distinct primes for any a > 1.

Somer [12] generalized these results in the following theorem. We let k(m) denote the
square-free kernel of any nonzero integer m, that is, m divided by its largest square factor.

Theorem 1.1. Let a > 1 be an integer such that k(a) is odd. Then there exist infinitely many
superpseudoprimes to the base a which are products of exactly four distinct primes. Moreover,

∞
∑

i=1

1

log P
(4)
i

diverges, where P
(4)
i denotes the ith superpseudoprime to the base a which is a product of

exactly four distinct primes.

To continue, we will need some definitions and results concerning Lehmer sequences. Lehmer
numbers are rational integers which are terms of the sequence

Rn(L,M) =

{

αn−βn

α−β , n odd,
αn−βn

α2−β2 , n even,
(1.2)

where the characteristic roots α and β are roots of the characteristic polynomial

x2 −
√
Lx+M,
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where L = (α + β)2 and M = αβ are nonzero rational integers and the discriminant K =
L − 4M = (α − β)2 6= 0. We may assume without any essential loss of generality that
(L,M) = 1 (see [15, p. 231]). We note also that |Rn(L,M)| = |Rn(−L,−M)| (see [15, p. 231]).
Accordingly, we will frequently assume without essential loss of generality that L > 0. Then

Rn(L,M) =

{

LRn−1 −MRn−2, n odd,
Rn−1 −MRn−2, n even.

D. H. Lehmer [5, p. 423] proved that if N is an odd prime such that (KLM,N) = 1, then

RN−(KL/N) ≡ 0 (mod N), (1.3)

where (KL/N) is the Legendre symbol. Rotkiewicz [10] defined a Lehmer pseudoprime with
respect toR(L,M) to be an odd composite integer N such that (1.3) holds, where (KLM,N) =
1 and (KL/N) is the Jacobi symbol. A Lehmer superpseudoprime N with respect to the
Lehmer sequence R(L,M) is a Lehmer pseudoprime with respect to R(L,M) such that if d|N
and d > 1, then d is either a prime or d is a Lehmer pseudoprime with respect to R(L,M),
i.e.,

Rd−(KL/d) ≡ 0 (mod d)

for all d > 1 dividing N .
The Lehmer sequence R(L,M) with characteristic roots α and β is degenerate if α/β is a

root of unity. In particular, if the discriminant K of R(L,M) is equal to zero, then R(L,M)
is degenerate. It follows from (1.2) that Rn(L,M) = 0 for some n > 0 only if R(L,M) is
degenerate.

Phong [8] proved that there exist infinitely many Lehmer superpseudoprimes with respect
to an arbitrary nondegenerate Lehmer sequence R(L,M) having exactly three distinct prime
divisors. Phong [8] also showed that with respect to these same Lehmer sequences R(L,M),

∞
∑

i=1

1

logQ
(3)
i

diverges, whereQ
(3)
i denotes the ith Lehmer superpseudoprime with respect to R(L,M) having

exactly three distinct prime divisors.
We will extend Phong’s results in our main theorem given below.

Theorem 1.2. Let R(L,M) be a nondegenerate Lehmer sequence for which (L,M) = 1,
L > 0, and M 6= 0. Suppose that k(KL) ≡ 1 (mod 4) and k(M · max(K,L)) ≡ 1 (mod 2).
Then there exist infinitely many Lehmer superpseudoprimes with respect to R(L,M) having
exactly four distinct prime divisors. Moreover,

∞
∑

i=1

1

logQ
(4)
i

diverges, where Q
(4)
i denotes the ith Lehmer superpseudoprime with respect to R(L,M) having

exactly four distinct prime divisors.

The proof of Theorem 1.2 will be given in Section 3. Before presenting our next theorem,
we will need the following definition.

Definition 1.3. The prime p is a primitive prime divisor of Rn(L,M) if p|Rn, but p -
KLR1R2 · · ·Rn−1.
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The following theorem shows that for special values of the parameters L and M , there
exist infinitely many Lehmer superpseudoprimes with respect to R(L,M), each having any
prescribed number of distinct prime divisors. We let τ(n) denote the number of distinct
positive divisors of the positive integer n. Note that if A is any positive integer greater than 1,
then τ(pA−1) = A when p is a prime. Since τ is a multiplicative function, it follows that if m
is any positive integer, then there exists a positive integer n such that τ(n) = m.

Theorem 1.4. Let M∗ > 1 be a fixed integer. Let k be an odd positive integer such that
τ(k) = M∗. Let R(L′,M ′) be a nondegenerate Lehmer sequence with characteristic roots α
and β for which (L′,M ′) = 1 and L′M ′ 6= 0. Let L = (αk + βk)2 and M = αkβk. Then L and
M are nonzero coprime rational integers and R(L,M) is a nondegenerate Lehmer sequence.
Let p > 13 be a prime such that p - k. Let di, i = 1, 2, . . . ,M∗, be the distinct positive divisors
of k. Then Rpdi(L

′,M ′) has an odd primitive prime divisor pi which is also a primitive prime
divisor of Rp(L,M). Moreover, p1p2 · · · pM∗ is a Lehmer superpseudoprime with respect to
R(L,M).

2. Preliminaries

Before proceeding further, we will need the following definitions and results.

Definition 2.1. Let m be a positive integer. The rank of appearance of m in R(L,M), denoted
by ρ(m), is the least positive integer n such that m|Rn.

Proposition 2.2. Let R(l,M) be a nondegenerate Lehmer sequence for which (L,M) = 1 and
LM 6= 0. Then the following hold:

(i) (Rn,M) = 1 for all n > 0,
(ii) (Rm, Rn) = |R(m,n)|,
(iii) If d|n, then Rd|Rn,
(iv) m|Rn if and only if ρ(m)|n,
(v) ρ(mn) = [ρ(m), ρ(n)].

Proof. Parts (i) and (ii) are proved in Lemmas 1 and 3 of [13]. Part (iii) follows from part
(ii). The necessity of part (iv) follows from part (iii). The sufficiency of part (iv) follows from
part (ii) upon noting that Rn is not divisible by m if n < ρ(m). Part (v) follows from part
(iv). �

Remark 2.3. It follows from Proposition 2.2 (i) that congruence (1.3) is satisfied by the odd
composite integer N only if (N,M) = 1.

Theorem 2.4. (Bilu, Hanrot, Voutier) Let R(L,M) be a nondegenerate Lehmer sequence
for which (L,M) = 1 and LM 6= 0. Then Rn has no primitive divisor only if 1 ≤ n ≤ 10, or
12 ≤ n ≤ 15, or n = 18, 24, 26 or 30.

Proof. This is proved in [1]. �

Theorem 2.5. (Schinzel) Let R(L,M) be a nondegenerate Lehmer sequence for which (L,M) =
1, L > 0, and LM 6= 0. Let A1 = k(M ·max(K,L)) and

e =

{

1 if A1 ≡ 1 (mod 4),
2 if A1 ≡ 2, 3 (mod 4).

If n
eA1

is an odd integer, then Rn has at least two primitive prime divisors provided that

(i) n > max(3eA1, 20) if K > 0;
(ii) for K < 0, n > C(L,M), where C(L,M) is an effectively computable constant.
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Proof. This is proved in [11]. �

Theorem 2.6. (Phong) Let R(L,M) be a Lehmer sequence for which (L,M) = 1 and LM 6=
0. Let p1, p2, . . . , pm be distinct odd primes such that (p1p2 · · · pm,KLM) = 1, where m ≥ 2.
Then p1p2 · · · pm is a Lehmer superpseudoprime with respect to R(L,M) if and only if

ρ(p1p2 · · · pm) = [ρ(p1), ρ(p2), . . . , ρ(pm)] | (p1 − (LK/p1), p2 − (LK/p2), · · · , pm − (LK/pm)).

Proof. This follows from the proof of Lemma 2 of [8]. �

3. Proofs of the Main Results

Proof of Theorem 1.2. We first prove that there exist infinitely many such Lehmer su-
perpseudoprimes with respect to R(L,M). Let A1 = k(M · max(K,L)) and A2 = k(KL).
Let e be defined as in Theorem 2.5. Let p be an odd prime such that p > C1(L,M), where
C1(L,M) = max(61, 3eA1) if K > 0 and C1(L,M) = max(61, C(L,M)) if K < 0, where
C(L,M) is defined as in part (ii) of Theorem 2.5. Let B = [A1, A2]. Suppose further that

p ≡ 1 + 2B (mod 4B).

Then p ≡ 1 + 2|A2| (mod 4|A2|). Suppose also that ρ(p) < p−1
2 . Since p ≡ 1 (mod |A2|) and

A2 ≡ 1 (mod 4), we see by the law of quadratic reciprocity for the Jacobi symbol that

(LK/p) = (A2/p) = (p/|A2|) = (1/|A2|) = 1.

Thus, p|Rp−1 by Proposition 2.2 (iv).

Suppose first that A1 ≡ 1 (mod 4). Then e = 1 and p−1
2 is an odd multiple of eA1.

Thus, there exist two primitive prime divisors q and r of R p−1

2

by Theorem 2.5. Hence,

ρ(q) = ρ(r) = p−1
2 , and p−1

2 divides each of (q − (LK/q)) and (r − (LK/r)) by (1.3) and

Proposition 2.2 (iv). Since p−1
2 is congruent to |A1| (mod 2|A1|), we see that p−1

2 is odd, and
thus

p− 1|q − (LK/q) and p− 1|r − (LK/r).

By Theorem 2.4, Rp−1 has a primitive prime divisor s. Then ρ(s) = p−1, and p−1|s−(LK/s)
by (1.3) and Proposition 2.2 (iv). Thus,

ρ(pqrs) = [ρ(p), ρ(q), ρ(r), ρ(s)] = p− 1,

and hence,
ρ(pqrs)|(p− (LK/p), q − (LK/q), r − (LK/r), s − (LK/s)).

Consequently, pqrs is a Lehmer superpseudoprime with respect to R(L,M) by Theorem 2.6.
Now suppose that A1 ≡ 3 (mod 4). Then e = 2. By Theorem 2.4, R p−1

2

has a primitive

prime divisor q. Since p−1
2 is odd, p − 1 | q − (LK/q), as before. Moreover, p − 1 is an odd

multiple of eA1 = 2A1. Thus, Rp−1 has two primitive prime divisors r and s by Theorem 2.5.
Then ρ(r) = ρ(s) = p− 1, and p− 1 divides each of (r− (L/K)) and (s− (L/K)) by (1.3) and
Proposition 2.2 (iv). Consequently, ρ(pqrs) = p− 1 and

ρ(pqrs)|(p− (LK/p), q − (LK/q), r − (LK/r), s − (LK/s)).

Therefore, pqrs is a Lehmer superpseudoprime with respect to R(L,M) in this case also.
We now show that there indeed exist infinitely many primes p such that p ≡ 1+2B (mod 4B)

and ρ(p) < p−1
2 . We find infinitely many such primes p for which p|R p−1

3

, which implies that

ρ(p)|p−1
3 < p−1

2 .
Let ζn denote a primitive nth root of unity. Let S denote the set of primes p such that

p > C1(L,M) and p splits completely in Q(ζ2B), but p does not split in Q(ζ4B). By the
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Tchebotarev Density Theorem (see [3, Theorem 10.4, pp. 182–183]) and Kummer’s Theorem
relating the decomposition of a prime p into prime ideals in an algebraic number field and
the factorization of a particular polynomial modulo p, (see [3, Theorem 7.6, pp. 32–33] or [6,
Theorem 27, pp. 79–82]), S consists of those p such that p ≡ 1 + 2B (mod 4B), and S has
positive Dirichlet density in the set of primes. As shown earlier, if p ∈ S, then p|Rp−1. Note
that we can assume that p > M = αβ. Since

Rp−1 =
αp−1 − βp−1

α2 − β2
≡ 0 (mod p),

we see that
Rp−1

βp−1
=

(αβ )
p−1 − 1

βp−1(α2 − β2)
≡ 0 (mod pR′),

which implies that
(

α

β

)p−1

≡ 1 (mod pR′),

where R′ is the ring of integers of the algebraic number field Q(
√
K). Thus, we can assume

that α
β ∈ Z/p, the finite field with p elements.

Let T be the set of primes p ∈ S such that p also splits completely in Q(ζ3, (
α
β )

1

3 ). Then

p ≡ 1 (mod 3) and α
β is a cube in Z/p. Hence, α

β

p−1

3 ≡ 1 (mod p) and p|R p−1

3

. Thus,

ρ(p)|p−1
3 and ρ(p) < p−1

2 . By the Tchebotarev Density Theorem and Kummer’s Theorem, T
has positive Dirichlet density in the set of primes. Thus, there exist infinitely many Lehmer
superpseudoprimes with respect to R(L,M) having exactly four distinct prime divisors.

We now show that
∞
∑

i=1

1

log Q
(4)
i

diverges. Since R(L,M) is nondegenerate, the larger characteristic root in absolute value
satisfies |α| > 1 (see [4, p. 123]). Furthermore,

|Rn| ≤ 2|α|n ≤ (2|α|)n.
Since

ρ(pqrs) = [ρ(p), ρ(q), ρ(r), ρ(s)] = p− 1

for the Lehmer superpseudoprimes we constructed, we see that

pqrs| |Rp−1| ≤ (2|α|)p−1.

Thus,
∞
∑

i=1

1

logQ
(4)
i

≥
∑

p∈T

1

log(2|α|)p−1

>
∑

p∈T

1

log(2|α|)p (3.1)

=
1

log 2|α|
∑

p∈T

1

p
.

Since the sum of reciprocals of primes diverges and the set T has positive Dirichlet density
in the set of primes, it follows that the first sum in (3.1) diverges. 2
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Example 3.1. Consider the Fibonacci sequence R(1,−1). Let p = 151. Then,

ρ(151) = 50 =
p− 1

3
<

p− 1

2
.

Since

k(M ·max(K,L)) = k(−1 ·max(5, 1)) = −5

and −5 ≡ 3 (mod 4), we have e = 2. Then e · |A1| = 2 · 5 = 10, and R150 = Rp−1 has two
distinct primitive prime divisors by Theorem 2.5, namely, r = 12301 and s = 18451. Also
R75 = R p−1

2

has a primitive prime divisor q = 230686501 by Theorem 2.4. Thus,

pqrs = 151 · 230686501 · 12301 · 18451
is a Lehmer superpseudoprime with respect to R(1,−1) by Theorem 2.6.

Example 3.2. Consider the Lehmer sequence R(9, 1) with discriminant K = 5. Then

k(M ·max(K,L)) = k(1 · 9) = 1,

which implies that e = 1. Then e · |A1| = 1. Let p = 139. Then

ρ(139) = 23 =
p− 1

6

∣

∣

∣

p− 1

3
<

p− 1

2
.

By Theorem 2.5, R69 = R p−1

2

has two distinct primitive prime divisors, namely, q = 137 and

r = 829. Moreover, by Theorem 2.4, R138 = Rp−1 has a primitive prime divisor s = 16561.
Therefore,

pqrs = 139 · 137 · 829 · 16561
is a Lehmer superpseudoprime with respect to R(9, 1) by Theorem 2.6.

Proof of Theorem 1.4. Since L′ = (α+β)2 and M ′ = αβ are rational integers, it is easily seen
that L = (αk + βk)2, M = αkβk, and K = (αk − βk)2 are rational integers. It follows from
Lemma 1 of [13] that L and M are relatively prime. Since α/β is not a root of unity, αk/βk

is not a root of unity, which implies that R(L,M) is a nondegenerate Lehmer sequence and
that both L = (αk + βk)2 and K = (αk − βk)2 are nonzero. Noting that αβ 6= 0, we see that
αkβk 6= 0.

By Theorem 2.4, Rpdi(L
′,M ′) has a primitive prime divisor pi for i = 1, 2, . . . ,M∗. By

Proposition 2.2 (i), (pi,M) = 1 for 1 ≤ i ≤ M∗. From Proposition 2.2 (iii) we get

Rpdi(L
′,M ′) |Rpk(L

′,M ′).

Thus, p1p2 · · · pM∗ | Rpk(L
′,M ′). Notice that

Rp(L,M) =
(αk)p − (βk)p

αk − βk
=

Rpk(L
′,M ′)

Rk(L′,M ′)
. (3.2)

Since R1(L,M) = 1 and pdi - k for 1 ≤ i ≤ M∗, it follows from (3.2) and Proposition 2.2
(iv) that pi is a primitive prime divisor of Rp(L,M) for i = 1, 2, . . . ,M∗. By Theorem 2.6,
p1p2 · · · pM∗ is a Lehmer superpseudoprime with respect to R(L,M). 2
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