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ABSTRACT. The Fibonacci congruence Fy(m)+n = Frn (mod Z) has been extended to Pell
numbers, Lucas numbers, and Pell-Lucas numbers, where ¢ is the Euler phi-function, m =
a’*—a—1,d= (2a—1,m), a > 2 is an integer, and (z,y) denotes the greatest common divisor

of the integers z and y. We prove that the generalization holds for a larger class of integers

than the one containing the integers of the form m = a? —a — 1.

1. INTRODUCTION

Let a and \ be integers such that a > 2 and A > 0. Let m(a;\) = a®> — Aa — 1. Unless it
is needed for clarity, the dependence of m(a;\) on a will be suppressed and the notation my
will be used instead. Also, if IV is a positive integer, then a prime of the form Nk 4+ 1, where
k is a positive integer, will be called (Nk £ 1)-prime.

In [3] and [6], the authors show that if m; = a® —a — 1 and d = (m1,2a — 1), the greatest
common divisor of m; and 2a — 1, then

Fyonyyn = P (mod ZL). (1.1)

where F), is the nth Fibonacci number and ¢ is the Euler phi-function [1]. In [4], the author
extends this congruence to Pell numbers, Lucas numbers, and Pell-Lucas numbers, denoted by
P,, L,, and Q,, respectively. In this article we show that the results in [3] and [4] are special
cases of a more general form, say m, of my. Precisely, if ¢ = 0 or 1, we show that

Fymy)tn = Fa <m0d %) , (1.2)

where d = (A\? +4,m) and
m = 5¢Mj, (1.3)

where M; has only (10k £ 1)-primes in its factorization. Also,

Pyimy+n = P (mod %) and Qg(my)+n = Qn (HlOd %) )

and
m = 2°Mo, (1.4)

where Mj has only (8k £ 1)-primes in its factorization.

We show that m; = a®? —a — 1 is of the form (1.3), whereas m = 59 or m = 61, for instance,
is not of the form m; for any integer a. Similarly, ms = a®? — 2a — 1 is of the form (1.4), and
although m = 41 and m = 49 are of the form (1.4), neither are of the form msg. Thus, our
results hold for a larger class of the positive integers. Unless it is stated otherwise, throughout
this paper j, k, k;, p, pi, 7, and 7; will be nonnegative integers, h will denote an integer such
that 0 < h<9but h#3,and c=0 or 1.
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2. PERIODICITY OF FIBONACCI AND PELL NUMBERS
We note first that for nonnegative integers n, the recurrence relation defined by

gn+2 = )\gn—i-l + gn (2.1)

with initial conditions

go=A and g =B
can be used to study the Fibonacci, Lucas, Pell, and Pell-Lucas numbers in a unified way. In
particular, if A=0,B=A=1,theng, =F,. f A=2 B=A=1,theng, =L,. If A=0,
B=1,and A=2, then g, = P,. f A= B = \=2, then g, = Q.

Following the standard procedures for solving second-order homogeneous recurrence rela-
tions with constant coefficients [5], the Binet formula for the integer family {g,} defined by
(2.1) is given by

1
gn = 7,—>\2 4
where u = % </\ + VA2 + 4) ,U = % </\ — VA2 + 4), and A and B are nonnegative integers.

To show that the value m) need not be restricted to the form my = a?> — Aa — 1, we prove
the following lemmas.

([B — Avju™ — [B — Aujo™), (2.2)

Lemma 2.1. The prime factorization of m(a;1) has at most one factor of 5. The prime
factorization m(a;2) has at most one factor of 2.

Proof. Since a® =0, 1,4 (mod 5), m(a;1) = 0,1,4 (mod 5). We claim that 5 divides m(a;1) if
and only if a = 55 + 3. This is so because the cases a = 55, 55+ 1, 55 4+ 2, 5j + 4 are congruent
to 4,4,1,1 (mod 5), respectively. Furthermore, for a = 55 + 3, m(a;1) = 5(55% + 55 + 1).
Since the factor (552455 +1) = 55(j + 1) + 1 is not a multiple of 5, the desired result follows.
Similarly, m(a;2) = 2,6,7 (mod 8). In each case where m(a;2) is even, it can be written as
AM’' + 2, where M’ is a nonnegative integer. The second claim of the lemma follows. O

In the following lemma, 10k + 1 and 8k £ 1 are not necessarily primes.
Lemma 2.2. m(a;1) = 5°(10k £ 1) and m(a;2) = 2¢(8k £ 1).

Proof. In Lemma 2.1, we showed that 5 | m(a;1) if and only if @ = 5k 4+ 3 and in that
case, m(a;1) = 5(552 + 55 + 1) = 5(10k + 1). If 5 { m(a; 1), a®> = 0,1,4,5,6,9 (mod 10),
m(a;1) = £1 (mod 10), and so the desired follows. For m(a;2), we let a = 8k £ k; where
0 < k; <7 and argue similarly. O

Lemma 2.3. Let b be a positive integer. If b | m(a; \), then b | m(a — by \).
Proof.

m(a—b;\) = (a—b)%*—=Xa—b)—1

=a®—Xa—1+bb—2a+N\).

The lemma now follows. O
Lemma 2.4. If m(a; \) is not prime, then it has a factor smaller than a.
Proof. Since m(a;\) = a®> — Aa — 1 < a?, the lemma follows. O
Lemma 2.5. If 5t m(a;1), then m(a;1) = (10k £ 1), where 1 is odd. Also, if 2 1 m(a;2)
then m(a;2) = (8ke £ 1), where ro is odd.
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Proof. Since (a —2)? < m(a;2) < (a —1)? < m(a;1) < a?, m(a;\) cannot be the square of
an integer for A = 1 or A = 2. Thus r; and r9 must be odd. For A = 1, since m(a;1) =
a’—a—1=a(a—1)—1is odd, and 51m(a;1), we need only to consider the factor 10k = 3.
Now (10k £ 3)™ = (10k + 3)%*! = ((10k & 3)%)7(10k & 3) = (10K’ & 1)(10k £ 3) = 10k” £ 3.
This contradicts Lemma 2.2, so p = 10k £ 1. A similar argument takes care of the case where
A=2. O

Lemma 2.6. m(a;1) is not of the form (10k; £ 3)(10ke &+ 3) and m(a;2) is not of the form
(8k1 £ 3)(8ks £ 3).

Proof. Multiplying out (10k; £ 3)(10ke + h) = m(a;1) does not yield an expression of the
form 5°(10k £ 1). This contradicts Lemma 2.2. Similarly, by simple multiplication, m(a;2)
is not of the form (8k; £ 3)(8k2 = h). Now we argue the case where A = 1 and h = 3. For
A = 1, assume that a is the first positive integer such that 10k 4+ 3 divides m(a, 1) and that
m(a;1) = (10k1 £3)(10ke £3). By Lemma 2.4 we may assume that 10k; £ 3 is smaller than a.
But by Lemma 2.3, b = a — (10k £ 3) would be a positive integer smaller than a that divides
m(a — b;1). However, a was assumed to be the smallest such number. Since by Lemma 2.5,
the case m(a;1) = (10k 4+ 3)" cannot occur, we have a contradiction. The case where A\ = 2
and h = 3 is similar. O

Lemma 2.7. m(a; 1) is not of the form (10k; & 3)?(10ky & 1) and m(a;2) is not of the form
(8ky + 3)%(8ky £ 1)).

Proof. For A =1, m(a;1) = (10k; + 3)?(10ky & 1) = (10k; & 3)(10k’ & 3). The desired result
follows now from Lemma 2.6. Similarly, the result holds for A = 2. (]

Now we state our first result.

Theorem 2.8. m(a;1) = 5°(10p; £ 1) (10p2 £ 1) --- (10p, £ 1)°" and
m(a;2) =2°(8py £ 1) (8pe £1)™ -+ (8ps £ 1)".

Proof. By Lemmas 2.2 and 2.5 m(a; 1) = 5°(10k £ 1) and m(a; 1) are squares of some integers.
Since (10p £ 3)%*+1 = 10p’ + 3, and (10p & h)" = 10p’ & 1, we only need to check the cases
(10k; + 3)%(10ko £ 1) and (10k; + 3)(10ky & 3). The theorem follows now by Lemmas 2.6 and
2.7. The proof of m(a;2) is similar. O

To prove that (1.1) holds for any m of the form (1.2), we need the following lemmas [2].
Lemma 2.9. If m is of the form (1.3), then > =5 (mod m) has a solution.
Lemma 2.10. If (2,p) = 1, then 2z =1 (mod p) has a solution.
Lemma 2.11. If m is of the form (1.4), then x> =2 (mod m) has a solution.

For the rest of the paper we use the following notations. We let ¢ty be a least residue

satisfying 22 = A2 + 4 (mod %), if it exists, v the multiplicative inverse of %(mod %), and
1

w)y be the multiplicative inverse e

generalization of the results in [4].

when it exists, of ¢y (mod %) [1]. Now we prove our

Theorem 2.12. Let 2 be an odd integer with prime factorization % = p\'p5? - - - pis. Assume
M+4,2)=1and (d,%) =1. Ifa> =X +4 (mod %) has a solution and % (mod )
exists, then go(m)y4n = gn (Mmod 7).
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Proof. 1f the integer ty satisfies (ty,Z) = D > 1, then (3, %) = (\> +4,%) > D > 1. This
contradicts the assumption of the theorem. Also, if (A£vA2 44, %) > 1, then A= VA2 +4 =
kp;, for some integers ¢ and k. Squaring and factoring yield 2\ ()\ + VA2 + 4) +4 = k?p2.

Thus, 2A(kp;) + 4 = k?p? and so p; | 4. Since 7 is odd, we have a contradiction. Now we
proceed using (2.2), the fact that ¢(m) = ¢(%g)#(d), and Euler’s Theorem.

1 A v Ay

Smyin = FRUBIERREER S R f A
VAT 14 2 2

#(d)

m d
= pPm)+ny, <[B — Av) {()\ + tw(v)} A+ t)]"

B - Aul {(r~ tk)as(%)}d’(d) A m]”) (rod)

= 1"wy ([B — Av] A+ 63" — [B — Au] (A — t5}") (modm) .

d
Similarly,
1 vorEwa —Vra)”
gn = —— | [B — Av] AtvAE+4 — [B — Au] A-VAT+4
NorEw 2 2
= v"wy ([B — Av]{A + t\}" — [B — Au] {\ — t,}") (mod%).
The theorem follows. U

Corollary 2.13. If m is of the form (1.3), then Fyp)4n = Fn(mod 7).

Proof. We take A = 1, g9 = 0, and g1 = 1. By Lemmas 2.7 and 2.9, the congruences
22 =5 (mod %) and 2z = 1(mod %) have integral solutions ¢; and v, respectively. Since
(5,%) =1,(1 +t1,%) = 1. It follows from Lemma 2.2 and Theorem 2.12 that

Fymytn = Fa <mod %) . (2.3)
O

Similarly, using Lemmas 2.2, 2.10, and 2.11, and Corollary 2.12 we get

Pymytn = P (mod %) (2.4)

when m is of the form (1.4).

3. PERIODICITY OF LUCAS AND PELL-LUCAS NUMBERS

The following addition formulas are well-known [4]:
Lyin =FnLy-1+ Fpt1Lln, Qmin = PnQn-1+ Pnt1Qn. (3.1)
Theorem 3.1. If m is of the form (1.4) and d = (5,m), then Ly(y)4n = Ln (mod 7).
Proof. By (2.3), Fyum) = Fo =0 (mod %) and Fymypr =F1 =1 (mod Z).
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Thus, from (3.1),
qu(m)-i—n = F¢(m)Ln—l + F¢(m)+1Ln

=(0+Ly,) (mod %)

m
=L, —).
(mod d)

O

A similar theorem holds for the Pell-Lucas numbers Q,,. Precisely, Qg(m)4n = Qn (mod 7),
where m and d are as used in Theorem 3.1. In fact, by (2.4), Py = Py =0 (mod %) and
Pymyp1 =P =1 (mod 2). The result now follows from (3.1).
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