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Abstract. Self-similar sequences are sequences that contain a proper subsequence identical
to the original sequence. Kimberling [6] showed that the famous Wythoff array gives rise to an
interesting self-similar sequence. In this paper we discuss the construction of an array similar
to the Wythoff array for a more general class of numeration systems. We then give a con-
struction of a self-similar sequence arising from this array. The self-similar sequences arising
from this construction are also compared to some other well-known self-similar sequences.

1. Introduction

An infinite sequence of integers is self-similar if it contains a proper subsequence that is
identical to the original sequence. Examples of self-similar sequences can be found among
many well-known integer sequences [10, 11]. As an example, consider the sequence {sn}

∞

n=0,
whose nth term is the number of ones in the binary expansion of n. Since multiplication of
n by 2 concatenates a 0 onto the end of the binary expansion of n, it follows that sn = s2n.
Thus, {sn} is self-similar under the action of removing the odd indexed terms. The first few
terms of the sequence, with the odd indexed terms underlined, are

0 1 1 2 1 2 2 3 1 2 2 3 2 3 3 4 1 . . . .

Reducing the entries of the ones counting sequence modulo two maps the ones counting se-
quence onto the well-known Thue-Morse sequence

0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 . . . .

This sequence, denoted {tn}
∞

n=0, is automatically self-similar since it inherits the property
tn = t2n from the ones counting sequence.

As another example, recall that the Zeckendorf representation of a natural number n is the
unique representation of n as a sum of nonconsecutive Fibonacci numbers. This gives rise
to the Fibonacci numeration system in which the natural numbers are represented by strings
over {0, 1} which do not contain the string 11. More precisely, if

n = c0F2 + c1F3 + · · · + ckFk+2

is the Zeckendorf representation of n, where ck = 1 and for ci ∈ {0, 1}, 0 ≤ i < k, ci ∈ {0, 1},
and ci+1 = 0 whenever ci = 1, then the string ckck−1 · · · c0 is the Fibonacci representation of
n. We say that a number has an odd Fibonacci representation if its Fibonacci representation
ends in a 1. We can now define the Fibonacci ones counting sequence {s′n}

∞

n=0, where s
′

n is the
number of ones in the Fibonacci representation of n. It is not hard to see that the Fibonacci
ones counting sequence is self-similar under the action of removing the terms indexed by
numbers with an odd Fibonacci representation. The first few terms of this sequence, with
removable terms underlined, are shown in the following table.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
s′n 0 1 1 1 2 1 2 2 1 2 2 2 3 1

The Fibonacci representations of the natural numbers can be used to construct the famous
Zeckendorf array, also known as the Wythoff array [7], from which another self-similar sequence
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can be constructed. The Zeckendorf array is constructed as follows. The first column is the
increasing sequence of natural numbers with odd Fibonacci representations. The successor of
a number n in any row of the array is the number obtained by concatenating a zero to the
end of the Fibonacci representation of n. The first five rows of the array are

1 2 3 5 8 13 21 34 . . .
4 7 11 18 29 47 76 123 . . .
6 10 16 26 42 68 110 178 . . .
9 15 24 39 63 102 165 267 . . .
12 20 32 52 84 136 220 356 . . . .

Many properties of the Zeckendorf array are discussed in the literature [3, 4, 5, 6, 7]. It follows
from the construction that every positive integer appears exactly once in the array. The
array is also a well-known example of an interspersion [3, 5], i.e., an array in which each row
and column is an increasing sequence, and if {ti} and {ui} are two row sequences satisfying
tm < un < tm+1 for some integers m and n, then tm+1 < un+1 < tm+2.

We define the sequence {rn}, known as the row sequence, whose nth term gives the row of
the array containing n. The first few terms of this sequence are

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
rn 1 1 1 2 1 3 2 1 4 3 2 5 1 6 4 3 7 2 8 5 1

Kimberling [6] showed that {rn} is self-similar under the action of removing the first occurrence
of each integer in the sequence. Notice that this action, like the action of the ones counting
sequence, also removes terms indexed by numbers with odd Fibonacci representations, despite
the fact that the sequences are not the same.

In this paper we will generalize this result to show that the ones counting sequences and
the row sequences corresponding to a large class of nonstandard numeration systems are self-
similar in a manner similar to the examples just mentioned. We begin with definitions related
to generalized numeration systems and in Section 2 we prove our main theorem.

2. Numeration Systems

Suppose that A be a nonempty finite set and denote by A∗ the set of words over A. The
length of a word x, denoted |x|, is defined to be the number of characters in the word. Also,
if x ∈ A, then we write xA∗ to denote the set of all words over A that begin with x. For the
remainder of this paper we let Σk = {0, 1, 2, . . . , k − 1}.

If A is a finite ordered set, then we can order the elements of A∗ as follows. For x, y ∈ A∗

we say that x < y if either |x| < |y|, or if |x| = |y| and there exist u, x′, y′ ∈ A∗ such that
x = uax′ and y = uby′ and a, b ∈ A with a < b. This ordering is known as the radix order
[9] and determines the ordering of numbers in typical numeration systems like the base 10
and binary numeration systems. The following definition is similar to definitions considered
in [2, 8, 12].

Definition 2.1. Let k ∈ N. A numeration system is an infinite subset S of the set Σ∗

k
along

with a bijective map N : S → N such that

(i) S does not contain the empty word.
(ii) No element of S begins with 0.
(iii) N maps the nth word in S (under the radix order) to n.

The map N is referred to as the evaluation map, while N−1 is the representation map. The set
Σk is known as the alphabet of (S, N). If N(w) = n, then we say that w is the S-representation
of n.
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In the literature it is common for a numeration system S to contain the empty word as the S-
representation of 0. For our purposes in this paper we do not need to consider representations
of 0. Thus, requirement (i) in Definition 2.1 is a matter of convenience.

A familiar example of a numeration systems is the binary numeration system, in which
S = 1Σ∗

2. In the Fibonacci numeration system S is the set of all strings over Σ2 that begin
with 1 and do not contain two consecutive ones.

A desirable property for a numeration system S is that x0 ∈ S whenever x ∈ S. We say
such a numeration system is right extendable (see Chapter 7 of [9]). In base 10, concatenating
a 0 to the end of a representation corresponds to multiplying by 10. Concatenating a 0 in the
Fibonacci numeration system corresponds to a shift in the indices on the Fibonacci numbers
in the Zeckendorf representation of n.

Let S be a right extendable numeration system over Σk. We associate an array W(S) to S
as follows. The first row of the array is the sequence of natural numbers

N(v), N(v0), N(v00), N(v000), . . . ,

where N(v) = 1. The first element of any subsequent row is N(w), where w is the minimal
word in S, under the radix order, such that N(w) is not in any preceding row. The complete
row is then

N(w), N(w0), N(w00), N(w000), . . . .

We refer to the array W(S) as the generalized Wythoff array associated with S. Note that
when S is right extendable, W(S) will contain infinitely many columns, but may contain only
finitely many rows. For instance, if S = {1, 10, 100, 1000, . . .}, then W(S) contains only one
row.

As an example in which W(S) contains infinitely many rows, in [2] the authors considered
the numeration system S whose expansions consist of the greedy representations of the natural
numbers with respect to the sequence {bn} defined by b0 = 1, b1 = 2, b2 = 3, and bn =
bn−1 + 2bn−2 − bn−3 for n ≥ 3. (See [1] for a description of greedy numeration systems). The
first few elements of S are listed in the following table.

n 1 2 3 4 5 6 7 8 9 10 11 12
S-representation 1 10 100 101 110 1000 1001 1010 1100 10000 10001 10010

The first 5 rows of the array W(S) are as follows.

1 2 3 6 10 19 . . .
4 8 13 25 43 80 . . .
5 9 16 29 52 94 . . .
7 12 22 39 71 127 . . .
11 21 36 67 118 216 . . . .

We are now ready to state our main theorem.

Theorem 2.2. Let S be a right extendable numeration system with evaluation map N . For
n ≥ 1 let rn be the row of W(S) containing n. Then rn is self-similar under the action of
removing the first occurrence of each natural number.

Proof. Let {rnk
}∞
k=1

be the subsequence of {rn} obtained by removing the first occurrence of
each natural number from {rn}. Notice that {nk}

∞

k=1
is the sequence of natural numbers that

are not in the first column of W(S), since the rows of W(S) are strictly increasing. Now define

S ′ = {N−1(nk) : k ≥ 1}.
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Note that S ′ is a numeration system. Let W(S ′) be the generalized Wythoff array associated
with S ′. It follows that the row sequence of W(S ′) is {rnk

}∞
k=1

. That is, rnk
is the row of

W(S ′) containing k.
Notice that S ′ ⊆ S, and S ′ is precisely the set of S-representations that are not the S-

representation of any number in the first column of S. The first column of W(S) is made up
of those numbers with S representations that either do not end in 0, or else are of the form
w0, where w /∈ S. Since S is right extendable, it follows then that S ′ is the numeration system
obtained by concatenating a 0 to the elements of S. From this it follows that {rnk

} = {rn}. �

Notice that the proof of this theorem can be used to show that any sequence is self-similar
where the action of removing terms depends only on digits which are not trailing zeros in the
S-representation. As an example, consider the ones counting sequence {sn} of the numeration
system considered before the statement of Theorem 2.2. The first few terms of the ones
counting sequence {sn} and the row sequence {rn} are shown in the following table, with the
removable terms underlined.

{sn} 1 1 1 2 2 1 2 2 2 1 2 2 2 3 3 2 3 3 . . .
{rn} 1 1 1 2 3 1 4 2 3 1 5 4 2 6 7 3 8 9 . . .

Notice that these two sequences are not the same, but they have the same self-similar nature
since the same terms must be removed to preserve the sequence. Initially, it may seem that
the ones counting sequence has no relation to the row sequences discussed in Theorem 2.2,
but here we see that when the sequence is viewed from the correct perspective, Theorem 2.2
does apply.

3. Discussion and Examples

Given a numeration system (S, N), our construction of the array W(S) and the resulting
self-similarity properties are heavily dependent on the right extendability of the numeration
system. Kimberling [6] gave a generalized construction of the Wythoff array that did not
depend on right extendability but which applied only to based numeration systems which are
greedy [1].

The numeration system (S, N) with alphabet Σk is said to be based if there exists a strictly
increasing sequence {bi}

∞

i=0 of natural numbers, with b0 = 1, and a function π : S → N, such
that

π(wkwk−1 · · ·w0) =

k∑

i=0

biwi (3.1)

for all wkwk−1 · · ·w0 ∈ S where wi ∈ Σk are the characters of the word. The sequence {bi}
is the base for the numeration system. The set of Zeckendorf representations of the natural
numbers mentioned in Section 1 and the numeration system mentioned prior to the statement
of Theorem 2.2 are examples of based numeration systems.

If (S, N) is a based numeration system, then it follows from the construction that the first
row of W(S) is its base sequence. Kimberling proved four necessary and sufficient conditions
under which the base sequence gives rise to a generalized array W(S) in which the row sequence
is self-similar. One of these conditions is that the numeration system is right extendable. It
should be noted that Kimberling’s result only applies to numeration systems that are based
while Theorem 2.2 also applies to numeration systems for which there is no base sequence.

An example of such a numeration system is the numeration system defined by S = {1n0m :
n ≥ 1,m ≥ 0}. In this numeration system the first few values of the evaluation map N are
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w 1 10 11 100 110 111 1000 1100 1110 1111 10000
N(w) 1 2 3 4 5 6 7 8 9 10 11

To see that this numeration system has no base sequence, notice that since S is right extend-
able, the base sequence must be the sequence {N(10n)}∞

n=0. However, in this base the word
110 would evaluate to 6 instead of 5.

The first 5 rows of the array W(S) are

1 2 4 7 11 16 . . .
3 5 8 12 17 23 . . .
6 9 13 18 24 31 . . .
10 14 19 25 32 40 . . .
15 20 26 33 41 50 . . . .

The row sequence of W(S) is

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, . . .

which is easily seen to be self-similar under the action of removing the first occurrence of each
natural number.

As another example of a non-based numeration system, consider the array constructed by
subtracting 1 from all the elements of the original Wythoff array (disregarding the 0 term in
the first row and shifting that row to the left). The first 5 rows of this array are

1 2 4 7 12 20 33 54 . . .
3 6 10 17 28 46 75 122 . . .
5 9 15 25 41 67 109 177 . . .
8 14 23 38 62 101 164 266 . . .
11 19 31 51 83 135 219 355 . . . .

This array is the generalized array W(S) arising from the numeration system S of all binary
words not containing the subword 11, minus the word 1. Since 1 /∈ S, this numeration system
cannot be based [2, Lemma 1]. The row sequence

1, 1, 2, 1, 3, 2, 1, 4, 3, 2, 5, 1, 6, 4, 3, . . .

is again self-similar, by Theorem 2.2.
It is also worth noting that Kimberling’s result for based numeration systems only applies

to base sequences in which the digit representation can be obtained by the standard greedy
algorithm (see [1] for an explanation of greedy expansions with respect to an arbitrary base
sequence). In general, we say that a based numeration system (S, N) with alphabet Σk is
greedy if, whenever w ∈ S and v ∈ Σ∗

k
, with N(w) = π(w) = π(v), it follows that w ≥ v under

the radix order. That is, for every n ≥ 1 the S-representation of n is the largest possible
representation under the radix order (see [2, 8, 12]).

In the event that a greedy based numeration system is right extendable, our results follow
from those of Kimberling, but Theorem 2.2 also applies to based numeration systems in which
the digits cannot be obtained via the greedy algorithm. For an example of such a numeration
system, consider the numeration system S defined as follows. Let S be the minimal set such
that:

(i) all binary words beginning with 1 that do not possess the subword 11 are in S and
1011 ∈ S;

(ii) if w10000 ∈ S and w is not the empty word then w01011 ∈ S;
(iii) if w ∈ S then w0 ∈ S.
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It is straightforward to show that S is based using [2, Theorem 1]. Let {bi} be the base
sequence. It can quickly be checked that b0 = 1, b1 = 2, b2 = 3, and b3 = 5. Furthermore, if
k ≥ 4 then 10110k−4 is the largest word of length k in S, so the base sequence must satisfy

bi = bi−1 + bi−3 + bi−4 + 1

for i ≥ 4. We note that bi is the sequence of partial sums of A006498 of [10], which is
conjectured to be equal to sequence A097083. The numeration system S is not a greedy based
numeration system, because if it were the representation of 8, for example, would be 1100
instead of 1011.

We note also that the set of representations of the natural numbers obtained from {bi} using
the greedy algorithm is not right extendable. For example, the greedy representation of 14
under this base would be 11000. However, the word 110000 would be the representation of 24,
which has a greedy representation of 1000000. Therefore, by Kimberling’s result [6], the row
sequence of this greedy numeration system is not self similar.

On the other hand, the numeration system S as defined above is not greedy but it is right
extendable. The first few rows of the array W(S) are then

1 2 3 5 9 15 24 . . .
4 7 12 20 33 54 88 . . .
6 11 18 29 48 79 128 . . .
8 14 23 38 63 103 167 . . .
10 17 27 44 73 119 192 . . .
13 22 36 59 97 158 256 . . .

and the row sequence

1, 1, 1, 2, 1, 3, 2, 4, 1, 5, 3, 2, 6, 4, 1, 7 . . .

is self-similar, by Theorem 2.2. These examples show that our result can be viewed as an
extension of the result of Kimberling from [6].

References

[1] A. Fraenkel, Systems of numeration, Amer. Math. Monthly, 92 (1985), 105–114.
[2] D. Garth, T. Ha, and J. Palmer, Self Generating Sets and Numeration Systems, Combinatorial Number

Theory, Walter de Gruyter, Berlin, 2009.
[3] C. Kimberling, The first column of an interspersion, The Fibonacci Quarterly, 32.4 (1994), 301–314.
[4] C. Kimberling, Fractal sequences and interspersions, Ars Combin., 45 (1997), 157–168.
[5] C. Kimberling, Interspersions and dispersions, Proc. Amer. Math. Soc., 117 (1993), 313–321.
[6] C. Kimberling, Numeration systems and fractal sequences, Acta Arithmetica, 73 (1995), 103–117.
[7] C. Kimberling, The Zeckendorf array equals the Wythoff array, The Fibonacci Quarterly, 33.1 (1995), 3–8.
[8] P. B. A. Lecomte and M. Rigo, Numeration systems on a regular language, Theory of Comput. Syst., 34

(2001), 27–44.
[9] M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, Cambridge, 2002.

[10] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org.
[11] C. A. Pickover, Fractal Horizons, St. Martin’s Press, New York, 1996.
[12] M. Rigo, Numeration systems on a regular language: arithmetic operations, recognizability, and formal

power series, Theoret. Comput. Sci., 269.1–2 (2001), 469–498.

FEBRUARY 2016 77



THE FIBONACCI QUARTERLY

MSC 2010: 11B13, 11B75

Department of Mathematics and Computer Science, Truman State University, Kirksville, MO

63501

E-mail address: dgarth@truman.edu

Department of Mathematics, University of California, San Diego, La Jolla, CA 92093

E-mail address: j5palmer@ucsd.edu

78 VOLUME 54, NUMBER 1


