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Abstract. Certain second-order recurrence sequences (Gn) and (Hn) give the coefficients
for sequences P and Q of polynomials in R[x]. The t-sion of P and Q, denoted by P ◦t Q, is
then defined so as to generalize both the fusion and fission of P and Q. Specifically, P ◦t Q

is the fusion of P and Q if t = 1 and the fission if t = −1. Choosing Q in a certain manner

derived from P gives a sequence P̃ for which P ◦t P̃ is the self t-sion of P . Explicit formulas

are obtained for the polynomials in P ◦t P̃ .

1. Introduction

Let A denote a positive real number, and consider the second-order recurrence sequence
given by G0 = 0, G1 = 1, and

Gn = AGn−1 +Gn−2, n ≥ 2.

The companion sequence (Hn)
∞

n=0 of (Gn)
∞

n=0 has the initial values H0 = 2, H1 = A, and

Hn = AHn−1 +Hn−2, n ≥ 2.

Let D = A2 + 4. It is known that the zeros α and β of the common characteristic polynomial
c(x) = x2−Ax−1 of the sequences (Gn)

∞

n=0 and (Hn)
∞

n=0 are distinct real numbers, say α > β,
and that

Gn =
αn − βn

α− β
, Hn = αn + βn. (1.1)

Also, α+ β = A, αβ = −1, and (α− β)2 = D.
In this paper, we investigate certain polynomials whose coefficients come from the two

sequences above, thus generalizing results in Kimberling [1] in two ways. First, the present
work involves the two sequences (Gn)

∞

n=0 and (Hn)
∞

n=0, whereas in [1], only the Fibonacci
sequence is studied. Second, the operations of fusion and fission in [1] are shown to be special
cases of a single operation.

Let t denote an arbitrary integer, let

ω(x) = ωux
u + ωu−1x

u−1 + · · ·+ ω1x+ ω0,

be a polynomial in R[x], and let Q = (qn(x))
∞

n=0 be a sequence in R[x]. For u + t ≥ 0 the
(Q, t)-step of ω(x) is the polynomial in R[x] defined by

ht(ω(x)) = ωuqu+t(x) + ωu−1qu−1+t(x) + · · · + ωτqτ+t(x),

where

τ =

{
0, if t ≥ 0;
|t|, if t < 0,

(1.2)

otherwise let ht(ω(x)) be the zero polynomial. Now taking another sequence P = (pn(x))
∞

n=0

in R[x], we define the t-sion of P by Q, denoted by P ◦t Q, as the sequence R = (rn(x))
∞

n=0 of
polynomials

rn(x) = ht(pn(x)).
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For t = 1 and t = −1, the sequences P ◦tQ are the fusion and fission of P and Q, respectively,
as defined in [1].

The subsequence (rn(x))
k
n=0 can be represented as follows. Let

Dk = max
n=0...k

{deg(pn(x))} − τ,

where τ has been defined in (1.2). Clearly, it suffices to assume that Dk ≥ 0. The nth row

(1 ≤ n ≤ k + 1) of the matrix Pk,t ∈ R
(k+1)×(Dk+1) includes the coefficients of

pn−1(x) = pn−1,ux
u + pn−1,u−1x

u−1 + · · · + pn−1,1x+ pn−1,0,

and their positions from right to left, starting with the coefficient of the term of least degree,
are given by

[0 . . . 0 pn−1,u pn−1,u−1 . . . pn−1,τ+1 pn−1,τ ].

(Every entry is zero if u+ t < 0.) We also define the matrix Qk,t ∈ R
(Dk+1)×(D′

k
+1), where

D′

k = max
j=0...Dk

{deg(qτ+t+j(x))},

corresponding to Pk,t, but with two differences. First, the rows, by starting at the bottom of
the matrix, consist of the coefficients of the polynomials qτ+t(x), qτ+t+1(x), . . . , qτ+t+Dk

(x),
respectively. Second, the last column consists entirely of constants. Obviously,

Pk,tQk,t = Rk,t ∈ R
(k+1)×(D′

k
+1).

If one assumes that deg(pn(x)) = deg(qn(x)) = n, then, except for trivial cases, for k ≥ τ
we find

Dk =

{
k, if t ≥ 0;
k − τ = k + t, if t < 0,

and D′

k = k + t.

Now let (an)
∞

n=0 be a fixed sequence of nonzero real numbers. The rest of this paper is
restricted to these pairs of polynomials:

pn(x) = anx
n + an−1x

n−1 + · · ·+ a0,

qn(x) = a0x
n + a1x

n−1 + · · · + an.

We shall rewrite Q as P̃ in order to match (qn(x)) with (pn(x)). We call P ◦t P̃ the self t-sion
of P .

It is easy to see that

Pk,t(i, j) =

{
0, if i+ j ≤ k + 1, 1 ≤ i ≤ k + 1;
ak+1−j, if i+ j > k + 1, 1 ≤ j ≤ Dk + 1,

Qk,t(i, j) =

{
0, if i > j, 1 ≤ i ≤ Dk + 1;
aj−i, if i ≤ j, 1 ≤ j ≤ D′

k + 1.
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2. First Type: an = Gn+1

In this section, we develop representations for rn(x) in the case that an = Gn+1, noting that
G0 = 0. Assume first that t ≥ 0. Expanding the product of the matrices

Pk,t =




G1

G2 G1

. .
. ...

...

. .
. ...

...

. .
. ...

...
0 . . . 0 Gn . . . Gn−j . . . G2 G1

. .
. ...

...
Gk . . . G2 G1

Gk+1 Gk . . . G2 G1




(2.1)

and

Qk,t =




G1 G2 . . . Gk Gk+1 Gk+2 . . . Gk+t+1

G1 . . . Gk−1 Gk Gk+1 . . . Gk+t

. . .
...

...
...

...
0 . . . 0 G1 . . . Gj . . . Gn−1 Gn Gn+1 . . . Gn+t

. . .
...

...
...

...
. . .

...
...

...
...

. . .
...

...
...

...
G1 G2 G3 . . . Gt+2

G1 G2 . . . Gt+1




(2.2)

shows, for 1 ≤ n ≤ k + 1, that

rn−1(x) = Gn

(
(G1x

n+t−1 +G2x
n+t−2 + · · ·+Gnx

t)+(Gn+1x
t−1 + · · ·+Gn+t)

)

+ Gn−1

(
(G1x

n+t−2 + · · ·+Gn−1x
t)+(Gnx

t−1 + · · ·+Gn−1+t)
)
+

...

+ Gn−j

(
(G1x

n+t−1−j + · · · +Gn−jx
t)+(Gn+1−jx

t−1 + · · ·+Gn−j+t)
)
+

...

+ G1

(
(G1x

t)+(G2x
t−1 + · · · +Gt+1)

)
.
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Hence,

rn−1(x) = (GnG1)x
n+t−1 + (GnG2 +Gn−1G1) x

n+t−2+

...

+
(
G2

n +G2
n−1 + · · ·+G2

1

)
xt

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

+ (GnGn+1 +Gn−1Gn + · · · +G1G2) x
t−1+

...

+ (GnGn+t +Gn−1Gn+t−1 + · · ·+G1Gt+1) .

Applying Corollary 4.2 (of Lemma 4.1, in Section 4), we have

rn−1(x) =
Hn+2 −Hn−2

AD
xn+t−1 +

Hn+3 −Hn−1

AD
xn+t−2 +

Hn+4 −Hn−4

AD
xn+t−3 + · · ·

+
H2n+1 − (−1)n

AD
xt

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

+
H2n+2 −H1+(−1)n

AD
xt−1 +

H2n+3 −H2+(−1)n

AD
xt−2 + · · · +

H2n+t+1 −Ht+(−1)n

AD
.

Finally, by Lemma 4.4, we conclude that

Arn−1(x) =
(
GnG2x

n+t−1 +Gn+1G2x
n+t−2

)
+

(
GnG4x

n+t−3 +Gn+1G4x
n+t−4

)
+ · · ·

+

{ (
GnGnx

t+1 +Gn+1Gnx
t
)
, if n ≡ 0 (mod 2),

Gn+1Gnx
t, if n ≡ 1 (mod 2),

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

+

{
Gn+2Gnx

t−1 +Gn+3Gnx
t−2 + · · ·+Gn+t+1Gn, if n ≡ 0 (mod 2),

Gn+1Gn+1x
t−1 +Gn+2Gn+1x

t−2 + · · · +Gn+tGn+1, if n ≡ 1 (mod 2).

Hence, we have proved the following theorem.

Theorem 2.1. If n ≥ 2 is even, then

Arn−1(x) = (Gnx+Gn+1)
(
G2x

n+t−2 +G4x
n+t−4 + · · ·+Gnx

t
)

+Gn

(
Gn+2x

t−1 +Gn+3x
t−2 + · · ·+Gn+t+1

)
,

if n ≥ 1 is odd, then

Arn−1(x) = (Gnx+Gn+1)
(
G2x

n+t−2 +G4x
n+t−4 + · · ·+Gn−1x

t+1
)

+Gn+1

(
Gnx

t +Gn+1x
t−1 + · · ·+Gn+t

)
.

If A = 1 and t = 1, then Theorem 2.1 gives Theorem 4.1 in [1]. Choosing A = 1 and t = −1
gives Theorem 4.2 of [1].
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Assume now that t < 0. Then expanding the product of

Pk,t =




0 . . . 0
...

...
...

0 . . . 0
Gτ+1

Gτ+2 Gτ+1

. .
. ...

...

. .
. ...

...

. .
. ...

...
0 . . . 0 Gn . . . Gn−j . . . Gτ+2 Gτ+1

. .
. ...

...
Gk . . . Gτ+2 Gτ+1

Gk+1 Gk . . . Gτ+2 Gτ+1




(2.3)

and

Qk,t =




G1 G2 . . . Gk−τ Gk+1−τ

G1 . . . Gk−1−τ Gk−τ

. . .
...

...
0 . . . 0 G1 . . . Gj . . . Gn−1−τ Gn−τ

. . .
...

...
. . .

...
...

. . .
...

...
G1 G2

G1




(2.4)

in the manner already shown for t ≥ 0 (we omit the details), gives the following theorem.

Theorem 2.2. If n− τ ≥ 1 is even, then

Arn−1(x) = (Gnx+Gn+1)
(
G2x

n−τ−2 +G4x
n−τ−4 + · · ·+Gn−τ

)
;

if n− τ ≥ 1 is odd, then

Arn−1(x) = x (Gnx+Gn+1)
(
G2x

n−τ−3 +G4x
n−τ−5 + · · ·+Gn−τ−1

)
+GnGn−τ+1.

3. Second Type: an = Hn

Here we represent the polynomials rn(x) in the case that an = Hn. Replacing Gi+1 by Hi

in the matrices (2.1) and (2.2) if t ≥ 0, and in the matrices (2.3) and (2.4) if t < 0, gives
matrices for the polynomials having coefficients in the sequence (Hn)

∞

n=0. The method and
calculations are nearly identical to those in the proof of Theorem 2.1.

The following two theorems are our final results. We prove only the first result, as the proof
of the second is quite similar.

Theorem 3.1. Let t ≥ 0. If n ≥ 2 is even, then

Arn−1(x) = A
(
(2Hn−1x

n+t−1 +Hn−2x
n+t−2 + · · ·+ 2H1x

t+1 +H0x
t) + (H1x

t−1 + · · ·+Ht)
)

+
(
Hnx

2 +DGnx+Hn

) (
G2x

n+t−4 +G4x
n+t−6 + · · · +Gn−2x

t
)
+HnGnx

t

+ Hn−1

(
Hn+1x

t−1 + · · ·+Hn+t

)
.
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If n ≥ 1 is odd, then

Arn−1(x) = A
(
(2Hn−1x

n+t−1 +Hn−2x
n+t−2 + · · ·+H1x

t+1 + 2H0x
t) + (2H1x

t−1 + · · ·+ 2Ht)
)

+
(
Hnx

2 +DGnx+Hn

) (
G2x

n+t−4 +G4x
n+t−6 + · · ·+Gn−3x

t+1
)

+ HnGn−1x
t+1 +DGnGn−1x

t

+ DGn−1

(
Gn+1x

t−1 + · · ·+Gn+t

)
.

Theorem 3.2. Let t < 0. If n− τ ≥ 1 is even, then

Arn−1(x) = A
(
2Hn−1x

n−τ−1 +Hn−2x
n−τ−2 + 2Hn−3x

n−τ−3 + · · · +Hτ

)

+
(
Hnx

2 +DGnx+Hn

) (
G2x

n−τ−4 +G4x
n−τ−6 + · · ·+Gn−τ−2

)

+ Gn−τHn.

If n− τ is odd, then

Arn−1(x) = A
(
2Hn−1x

n−τ−1 +Hn−2x
n−τ−2 + 2Hn−3x

n−τ−3 + · · · + 2Hτ

)

+
(
Hnx

2 +DGnx+Hn

) (
G2x

n−τ−4 +G4x
n−τ−6 + · · ·+Gn−τ−3x

)

+ Gn−τ−1 (Hnx+DGn) .

Proof. (Theorem 3.1.)

rn−1(x) = Hn−1

(
(H0x

n+t−1 +H1x
n+t−2 + · · · +Hn−1x

t)+(Hnx
t−1 + · · ·+Hn+t−1)

)

+Hn−2

(
(H0x

n+t−2 + · · ·+Hn−2x
t)+(Hn−1x

t−1 + · · ·+Hn−2+t)
)
+

...

+Hn−j

(
(H0x

n+t−j + · · · +Hn−jx
t)+(Hn+1−jx

t−1 + · · ·+Hn+t−j)
)
+

...

+H0

(
(H0x

t)+(H1x
t−1 + · · ·+Ht)

)
.

Thus,

rn−1(x) = (Hn−1H1) x
n+t−1 + (Hn−1H1 +Hn−2H0) x

n+t−2

+ (Hn−1H2 +Hn−2H1 +Hn−3H0) x
n+t−3

+ (Hn−1H3 +Hn−2H2 +Hn−3H1 +Hn−4H0) x
n+t−4+

...

+
(
H2

n−1 +H2
n−2 + · · ·+H2

0

)
xt

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

+ (Hn−1Hn +Hn−2Hn−1 + · · ·+H0H1) x
t−1+

...

+ (Hn−1Hn+t−1 +Hn−2Hn+t−2 + · · ·+H0Ht) .
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Applying Lemma 4.3 gives

Arn−1(x) = 2AHn−1x
n+t−1 + (Hn+1 −Hn−1 +AHn−2)x

n+t−2 + (Hn+2 −Hn−2 + 2AHn−3)x
n+t−3

+ (Hn+3 −Hn−3 +AHn−4)x
n+t−4 + · · ·

+

(
H2n−2 −H2 +

3 + (−1)n−2

2
AH1

)
xt+1 +

(
H2n−1 −H1 +

3 + (−1)n−1

2
AH0

)
xt

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

+

(
H2n −H2 +

3 + (−1)n−1

2
AH1

)
xt−1 + · · ·+

(
H2n+t−1 −Ht+1 +

3 + (−1)n−1

2
AH0

)
.

Let

h0(x) = (2Hn−1x
n+t−1 +Hn−2x

n+t−2 + · · ·+ 2H1x
t+1 +H0x

t) + (H1x
t−1 + · · ·+Ht),

h1(x) = (2Hn−1x
n+t−1 +Hn−2x

n+t−2 + · · ·+H1x
t+1 + 2H0x

t) + (2H1x
t−1 + · · · + 2Ht).

If n is even, we apply Lemmata 4.4 and 4.5 to find

Arn−1(x) = Ah0(x)

+Hn (G0 +G2) x
n+t−2 +DGnG2x

n+t−3 +Hn (G2 +G4) x
n+t−4 +DGnG2x

n+t−5

+ · · · +DGnGn−2x
t+1 +Hn(Gn +Gn−2)x

t

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

+Hn+1(Gn +Gn−2)x
t−1 + · · ·+Hn+t(Gn +Gn−2)x

t−1.

Separating the appropriate parts completes the proof for even n.
Suppose now that n is odd, and apply again Lemmata 4.4 and 4.5 to obtain

Arn−1(x) = h1(x)

+Hn (G0 +G2) x
n+t−2 +DGnG2x

n+t−3 +Hn (G2 +G4) x
n+t−4 +DGnG2x

n+t−5

+ · · · +Hn(Gn−1 +Gn−3)x
t+1 +DGnGn−1x

t

−−−−−−−−−−−−−−−−−−−−−−−−−−−−

+DGn+1Gn−1x
t−1 + · · ·+DGn+tGn−1x

t,

which leads immediately to a proof for odd n. �

4. Lemmata

We introduce

εk =

{
0, if k ≡ 0 (mod 2);
1, if k ≡ 1 (mod 2).

Lemma 4.1. Let s ≥ 0 be an integer. Then

k∑

i=1

GiGi+s =
H2k+s+1 −Hs+1

AD
+

εkHs

D
.

Proof. Similar to the proof of the next lemma. �

Corollary 4.2. The sum above is

H2k+s+1 −Hs+1

AD
or

H2k+s+1 −Hs−1

AD

if k is even or odd, respectively. Indeed, in (4.1), we have Hn = 0 if k is even and Hn = Hs/D
if k is odd.
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Lemma 4.3. Let s ≥ 0 be an integer. Then

k∑

i=1

HiHi+s =
H2k+s+1 −Hs+1

A
− εkHs

and
k∑

i=0

HiHi+s =
H2k+s+1 −Hs+1

A
+

3 + (−1)k

2
Hs.

Proof. We will apply the identitites αβ = −1, α2 − 1 = Aα, and β2 − 1 = Aβ.

k∑

i=1

HiHi+s =

k∑

i=1

(αi + βi)(αi+s + βi+s) =

k∑

i=1

α2i+s + β2i+s + (αβ)i(αi + βi)

= αs+2
k−1∑

i=0

(α2)i + βs+2
k−1∑

i=0

(β2)i −Hs

k−1∑

i=0

(−1)i

= αs+2α
2k − 1

α2 − 1
+ βs+2β

2k − 1

β2 − 1
−Hs

(−1)k − 1

−2

=
α2k+s+1 + β2k+s+1

A
−

αs+1 + βs+1

A
+Hs

(−1)k − 1

2
,

and the proof is complete. �

Lemma 4.4. Let x ≥ y be non-negative integers. Then

Hx+y −Hx−y =

{
DGxGy, if y ≡ 0 (mod 2);
HxHy, if y ≡ 1 (mod 2).

Proof. This is an easy consequence of (1.1). �

Lemma 4.5. If x is a positive integer, then Hx = Gx−1 +Gx+1.

Proof. Use the explicit formulae (1.1). �
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