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Abstract. In this paper, we follow the path set forth by Euler and Sadek in their study of a
generalized Pell equation. Euler and Sadek effectively studied the positive rational solutions
of the Pell equation in question. Here, we study the positive integer solutions of this equation.
Indeed, by imposing additional conditions on certain parameters, we demonstrate that the
positive rational solutions produced by a certain system of Euler and Sadek turn out to be
positive integer solutions. Furthermore, the positive integer solutions produced by this system
are the only positive integer solutions of the Pell equation in question.

1. Introduction

The standard Fibonacci and Lucas numbers have starting values (F0, F1) = (0, 1), and
(L0, L1) = (2, 1), respectively. The identity

L2
n − 5F 2

n = 4(−1)n, (1.1)

which occurs in [3, p. 56], inspires the two Pell Diophantine equations

x2 − 5y2 = 4 and x2 − 5y2 = −4. (1.2)

All the integer solutions, x > 0 and y > 0, of the first equation in (1.2) are (L2n, F2n), n ≥ 1.
All the integer solutions, x > 0 and y > 0, of the second equation in (1.2) are (L2n−1, F2n−1),
n ≥ 1.

Over the years, various methods have been employed to solve the Diophantine equations in
(1.2). Long and Jordan [6] solve both the equations in (1.2) with the use of continued fractions.
Later, Lind [5] solves these equations by working in the quadratic field Q

(√
5
)

. Then, in a
letter to the editor, Ferguson [2] simultaneously solves these equations with a clever method
of descent.

Motivated by a desire to generalize the first of the equations in (1.2), Euler and Sadek [1]
consider the Pell equation

x2 − dy2 = a2, (1.3)

in which a and d are positive integers, and where a2 + d = b2, for some positive integer b.
Clearly b > a > 0. In this paper, we consider only those a and b for which

√
d is irrational.

These constraints on the parameters a, b, and d are assumed throughout this paper, and
henceforth we do not restate them.

We take an integer solution (x, y) of (1.3) to be a solution in which both x and y are integers.
We take a rational solution (x, y) of (1.3) to be a solution in which both x and y are rational.
An integer solution is a rational solution, but a rational solution is not necessarily an integer
solution. A positive solution is one where x > 0 and y > 0. Throughout this paper, we always
indicate the type of solution that we are considering. As is customary in this topic, we refer
to the solution (x, y), or to the solution x+ y

√
d, interchangeably.
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For n ≥ 1, Euler and Sadek [1] define

xn+1 =
bxn + dyn

a
,

yn+1 =
xn + byn

a
,

(1.4)

with the smallest positive solution (x1, y1) = (b, 1). Given the constraints on a, b, d, they
effectively prove [1, p. 243] that all (xn, yn) generated by (1.4) are positive rational solutions
of (1.3). For instance, with a = 3 and b = 4, the first three solutions generated by (1.4) are
(4, 1),

(

23

3
, 8
3

)

, and
(

148

9
, 55

9

)

. Indeed, without further constraints on the parameters in (1.3),
the paper of Euler and Sadek is effectively a study of the positive rational solutions of (1.3)
that are produced by (1.4).

Our first task in this paper is to show that (1.4) produces only positive integer solutions of
(1.3) when a|(2b). We demonstrate this in Section 3, where we express these solutions in terms
of two second order recurring sequences. We define these second order recurring sequences,
and prove certain identities that we require, in Section 2.

Our second task is to show that, when a|(2b), the positive integer solutions produced by
(1.4) are the only solutions of (1.3). We proceed by considering two cases. In Section 4 we
consider a|(2b) with a even, and in Section 5 we consider a|(2b) with a odd.

2. Two Second Order Recurring Sequences

For an integer p > 2, we require the sequences Un and Vn defined, for all integers n, by

Un = Un(p) = pUn−1 − Un−2, U0 = 0, U1 = 1,

Vn = Vn(p) = pVn−1 − Vn−2, V0 = 2, V1 = p.
(2.1)

Let α and β denote the two distinct real roots of x2 − px+1 = 0. Then the closed forms (the
Binet forms) for Un and Vn are

Un =
αn − βn

α− β
,

Vn = αn + βn.

For the remainder of this paper, we take p = 2b
a

in (2.1), where a and b are as in the
definition of (1.3). Accordingly, for this value of p, we see from the recurrence for Un, that

aUn+1 − bUn = bUn − aUn−1, (2.2)

for all n.
We now proceed by induction to prove the identity

aVn = 2 (bUn − aUn−1) , n ≥ 1, (2.3)

which links the sequences Un and Vn. By substitution, we see that (2.3) is true for n = 1 and
n = 2. Now assume that, for some positive integer k ≥ 2, (2.3) is true for all 1 ≤ n ≤ k. From
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the recurrence for Vn, we have

aVk+1 = 2bVk − aVk−1

=
2b

a
(aVk)− (aVk−1)

=
4b

a
(bUk − aUk−1)− 2 (bUk−1 − aUk−2) by (2.3)

=
4b

a
(aUk+1 − bUk)− 2 (aUk − bUk−1) by (2.2).

Finally, we use the recurrence for Un to replace Uk−1 in the line above by 2b
a
Uk − Uk+1, then

expand the entire line to obtain 2 (bUk+1 − aUk). This proves (2.3).
Notice that since b > a, p = 2b

a
> 2, so that the terms in both the sequences (2.1) are

positive for n ≥ 1.

3. The Condition a|(2b) and Positive Integer Solutions

Our first lemma states that the condition a|(2b) guarantees that (1.4) generates only positive
integer solutions of (1.3). Furthermore, this lemma expresses these solutions in terms of the
integer sequences Un and Vn.

Lemma 3.1. The system (1.4) generates only positive integer solutions of (1.3) when a|(2b).
With p = 2b

a
in (2.1), these solutions are given by

(xn, yn) = (bUn − aUn−1, Un) =

(

aVn

2
, Un

)

, n ≥ 1. (3.1)

Proof. Suppose a|(2b). Then, with p = 2b
a
, both the sequences in (2.1) are integer sequences.

Furthermore, it is easily verified that

(x1, y1) = (bU1 − aU0, U1) = (b, 1) ,

(x2, y2) = (bU2 − aU1, U2) =

(

2b2

a
− a,

2b

a

)

,

(x3, y3) = (bU3 − aU2, U3) =

(

4b3

a2
− 3b,

4b2

a2
− 1

)

.

We now proceed by induction. Suppose that, for some integer k ≥ 1,

(xk, yk) = (bUk − aUk−1, Uk) .

Then, with the use of (1.4), we have

xk+1 =
bxk + dyk

a

=
b (bUk − aUk−1) +

(

b2 − a2
)

Uk

a

=
b (aUk+1 − bUk) +

(

b2 − a2
)

Uk

a
by (2.2)

= bUk+1 − aUk.

Similarly, yk+1 = Uk+1. Finally, we complete the proof of Lemma 3.1 with the use of (2.3). �

It remains for us to show that all the positive integer solutions of (1.3) are generated by the
system (1.4). We achieve this by considering separately the cases a even, and a odd.
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4. The Case Where a|(2b) with a Even

Let c > 2 be an integer, and consider the Diophantine equation

x2 −
(

c2 − 4
)

y2 = 4. (4.1)

We begin with a known result that occurs as Theorem 8 in [4]. We point out that, in [4,
p. 134], there is an error in the definition of the sequence gn, which is our sequence Vn. In the
notation of the present paper, Theorem 8 in [4] is the following theorem.

Theorem 4.1. The only positive integer solutions of (4.1) are (Vn(c), Un(c)), n ≥ 1.

We now consider the case where a|(2b) with a even. Accordingly, set a = 2m for m a positive
integer. Then a|(2b) ⇒ m|b ⇒ b = mc, for c a positive integer. Notice that b > a ⇒ c > 2.
Then the Diophantine equation (1.3) becomes

x2 −m2
(

c2 − 4
)

y2 = 4m2. (4.2)

Our next lemma gives a connection between the solutions of (4.1) and the solutions of (4.2).

Lemma 4.2. There is a one-to-one correspondence between the positive integer solutions of
(4.1), and the positive integer solutions of (4.2).

Proof. Suppose (x0, y0) is a positive integer solution of (4.1). Then x20 −
(

c2 − 4
)

y20 = 4, so

that m2x20 −m2
(

c2 − 4
)

y20 = 4m2. That is, (mx0, y0) is a positive integer solution of (4.2).

Now suppose (x0, y0) is a positive integer solution of (4.2). Substitution gives x20 −
m2

(

c2 − 4
)

y20 = 4m2, in which m2|
(

x20
)

⇒ m|x0. But then
(

x0

m

)2 −
(

c2 − 4
)

y20 = 4, which

implies that
(

x0

m
, y0

)

is a positive integer solution of (4.1). This completes the proof of Lemma
4.2. �

Based on Theorem 4.1 and Lemma 4.2, all the positive integer solutions of (4.2) are
(mVn(c), Un(c)), n ≥ 1. Expressed in terms of a and b, these solutions are

(

a
2
Vn

(

2b
a

)

, Un

(

2b
a

))

,
n ≥ 1. These solutions are of the same form as those presented in Lemma 3.1. This settles
the case where a|(2b) with a even.

5. The Case Where a|(2b) with a Odd

Following Euler and Sadek, assume that there exists a positive integer solution (u, v) of (1.4)
that lies between two successive positive integer solutions, (xn, yn) and (xn+1, yn+1), generated
by (1.4). That is, assume

xn + yn
√
d < u+ v

√
d < xn+1 + yn+1

√
d. (5.1)

Then, following the algebraic path set forth by Euler and Sadek, we arrive at

a <
(uxn − dvyn)

a
+

(vxn − uyn)
√
d

a
< b+

√
d, (5.2)

which is Euler and Sadek’s equation (2.5).
Euler and Sadek effectively demonstrate that

(uxn − dvyn)

a
+

(vxn − uyn)
√
d

a
(5.3)

is a positive rational solution of (1.3) that is less than the smallest positive integer solution

b +
√
d. Under the assumption that a|(2b) with a odd, we now proceed to demonstrate that

(5.3) is actually a positive integer solution.
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Because (u, v) and (xn, yn) are positive integer solutions of (1.3), we have

u2 − dv2 = a2, and (5.4)

x2n − dy2n = a2. (5.5)

Since a|(2b) with a odd, a|b. Let b = ae, where e is a positive integer. Then d = b2 − a2 =
a2

(

e2 − 1
)

, so that

uxn − dvyn

a
=

uxn − a2
(

e2 − 1
)

vyn

a
=

uxn

a
− a

(

e2 − 1
)

vyn. (5.6)

Now, with the use of (5.4), we have

u2x2n
a2

=

(

dv2 + a2

a2

)

x2n, (5.7)

in which d = a2
(

e2 − 1
)

. Equation (5.7) shows that u2x2
n

a2
is an integer, and so uxn

a
is an

integer. Then from (5.6) we see that the leftmost term in (5.3) is an integer.

Next, we square the coefficient of
√
d in (5.3). Then, keeping in mind that d = a2

(

e2 − 1
)

,

we use (5.4) and (5.5) to substitute for u2 and x2n. The fractional part in the resulting

expression is −2uvxnyn
a2

. Again, squaring this expression, and substituting for u2 and x2n, we

see that the resulting expression is an integer. This proves that the coefficient of
√
d in (5.3)

is an integer.
Keeping in mind that (5.3) is known to be a positive rational solution of (1.3), we have

demonstrated that (5.3) is a positive integer solution of (1.3) that is less than the smallest

positive integer solution b +
√
d. This contradiction shows that, under the assumption that

a|(2b) with a odd, all the positive integer solutions of (1.3) are generated by (1.4).

6. A Summary and Concluding Comments

In the theorem that follows, we summarize our conclusions concerning the positive integer
solutions of (1.3) that are generated by (1.4).

Theorem 6.1. Suppose a|(2b). Then the system (1.4) generates only positive integer solutions
of (1.3). With p = 2b

a
in (2.1), these solutions are given by

(xn, yn) = (bUn − aUn−1, Un) =

(

aVn

2
, Un

)

, n ≥ 1. (6.1)

Furthermore, the solutions in (6.1) are the only positive integer solutions of (1.3).

With a = 2 and b = 3, the Diophantine equation (1.3) becomes x2 − 5y2 = 4, and the
sequences (2.1) are

Un = 3Un−1 − Un−2, U0 = 0, U1 = 1,

Vn = 3Vn−1 − Vn−2, V0 = 2, V1 = 3.
(6.2)

In (6.2), Un = F2n, and Vn = L2n, so that the solutions given in (6.1) become (xn, yn) =
(L2n, F2n) , n ≥ 1. This agrees with the result stated in the introduction.

In (6.1), it is easy to prove by induction that U
−n = −Un, and V

−n = Vn, for all integers n.
This means that if we allow negative integer values of n, then (6.1) produces all the integer
solutions of (1.3) that lie in the first and fourth quadrants.

We owe a debt of gratitude to several people. First, we acknowledge our gratitude to
Russell Euler and Jawad Sadek. It was their study of the positive rational solutions of (1.3)
that provided the impetus for the present paper. Secondly, we wish to acknowledge that the
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carefully considered comments of an anonymous referee have greatly improved the presentation
of this paper.
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