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Abstract. We show that the generalized repunit (bn−1)/(b−1) is divisible by n if and only
if n is divisible by the multiplicative order of b modulo every prime factor of n. This fact is a
generalization of an older result which holds for b = 10. A few consequences of this theorem
concerning base-b Niven numbers are also discussed.

1. Introduction

A repunit, or a decimal repunit, is a number composed of a string of ones, e.g., 11, 111,
1111, etc. A repunit of length n is denoted by Rn, which can be algebraically expressed as

Rn =
10n − 1

9
.

There are well-known interesting properties of repunits, many of which deal with divisibility.
For instance, it is known that if n is a multiple of m, then Rn is a multiple of Rm. Therefore,
for Rn to be a prime repunit, it is necessary that n be a prime number.

The name repunit was introduced over half a century ago by Albert H. Beiler [3, p. 83].
Then almost twenty years later, in 1982, W. M. Snyder [12] wrote an article in which base-b
repunits were first considered.

Definition 1.1. For integers n ≥ 1 and b ≥ 2, we define the number Rn,b by the formula

Rn,b =
bn − 1

b− 1
.

The numbers Rn,b are now called generalized repunits, because for each b, we may represent
Rn,b by a string of n ones when the base-b number system is considered.

Note that the sequence Rn,b generalizes not only the decimal repunits Rn,10 but also the
Mersenne numbers Rn,2 = 2n−1. This relation seems to have made divisibility of repunits and
their generalization of greater interest, in particular where factorization and primality testing
are concerned, e.g., the works by Harvey Dubner [5] and John H. Jaroma [7].

In 1989 Kennedy and Cooper [8] gave a complete classification of all repunits Rn which are
divisible by their digital length n. This article is now a straight-forward generalization of this
result, i.e., we are seeking for a necessary and sufficient condition for the number n to divide
the generalized repunit Rn,b.

As a preliminary observation, if gcd(n, b) > 1, then we have a prime p dividing both n and
b. In this case, Rn,b = 1+ b+ b2+ · · ·+ bn−1 ≡ 1 (mod p), and neither p nor n can divide Rn,b.
Therefore, a necessary condition for Rn,b to be divisible by n is that gcd(n, b) = 1. We shall
assume this condition in stating the main result, i.e., Theorem 1.3, given after the following
definition.

Definition 1.2. When the number a ≥ 1 is relatively prime to m ≥ 2, we denote by |a|m the

multiplicative order of a modulo m.

FEBRUARY 2016 59



THE FIBONACCI QUARTERLY

Throughout this article, we agree that whenever we write |a|m, we also implicitly assume
that gcd(a,m) = 1, for otherwise such notation makes no sense.

Theorem 1.3. Let n, b ≥ 2. The number Rn,b is a multiple of n if and only if n is a multiple

of |b|p for every prime p dividing n.

Incidentally, a number that is divisible by its sum of digits is called a Niven number. This
name, after the mathematician Ivan M. Niven (1915–1999), was first revealed in 1980 by
Kennedy et al. [9] with regards to decimal representation. But naturally, we may also say
that N is a base-b Niven number when N is divisible by the sum of its digits when expressed in
base b. This generalization of Niven numbers seemed to appear for the first time in an article
by Grundman [6] in 1994.

Thus Theorem 1.3 gives a criterion for identifying all Niven numbers among the generalized
repunits to the same base. We will first present several corollaries of the theorem which are of
some interest, and then we shall provide the proof and discuss some applications of Theorem
1.3 to other problems related to base-b Niven numbers.

In passing, we should mention that repunits belong to the family of repdigits, which, in base
b, are given by dRn,b with 1 ≤ d ≤ b − 1. Now dRn,b is divisible by its digital sum dn if and
only if Rn,b is divisible by n. Hence, Theorem 1.3 may well be extended to read as follows:
A repdigit of length n is a Niven number with respect to a fixed base b if and only if n is a

multiple of |b|p for every prime p dividing n.

2. Immediate Consequences of the Theorem

Corollary 2.1. Suppose that Rn,b is a multiple of n. Then gcd(n, b − 1) > 1. In particular,

the least prime factor of n is a divisor of b− 1.

Proof. Let p be the smallest prime dividing n. Also let d = |b|p, hence, d < p. But by Theorem
1.3, d is also a factor of n. So in order not to contradict the minimality of p, we must conclude
that d = 1. This implies b ≡ 1 (mod p), which gives the claim. �

The next Corollary 2.2 is an old result concerning the Mersenne number 2n − 1 which can
be found, for instance, in the text by W. Sierpiński [11, p. 219], whose proof was attributed to
A. Schnizel.

Corollary 2.2. The Mersenne number Rn,2 is not divisible by n for any value of n ≥ 2.

Proof. This follows from Corollary 2.1 with b = 2, since no prime factor of n would divide
b− 1. �

Corollary 2.3. Let b ≥ 3 and let p be any prime factor of b − 1. If n is a power of p, then
the number Rn,b is divisible by n.

Proof. This too follows immediately from Theorem 1.3, since |b|p = 1 and p is the unique
prime factor of n. �

We remark that Corollary 2.3 is equivalent to an earlier theorem by Trojovský and Tobiáš
[13, Theorem 1] which is given as a rather isolated result on generalized repunits, not within
the context of Niven numbers.

Corollary 2.4. Let the factorization of n into prime numbers be written as n = pe11 pe22 · · · pekk
with e1, e2, . . . , ek ≥ 1 and such that p1 < p2 < · · · < pk. Then n | Rn,b if and only if

(1) p1 is a factor of b− 1 and
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(2) for 2 ≤ i ≤ k, either pi | b− 1 or else |b|pi = pf11 pf22 · · · p
fi−1

i−1 with non-negative integers

f1, f2, . . . , fi−1 such that fj ≤ ej for all j in the range 1 ≤ j ≤ i− 1.

Proof. It is clear that the stated set of conditions is equivalent to having |b|pi divides n for
i = 1, 2, . . . , k. �

Corollary 2.4 is the practical version of Theorem 1.3 which leads to the construction of a
number n that divides Rn,b. For example, let us consider b = 3. Keeping the notation in
Corollary 2.4, we must have p1 = 2. We then evaluate |3|p, say for p = 5, 7, . . . , 97, and record
the primes p for which |3|p factors into the primes that are already in the list:

p |3|p p |3|p
5 22 47 23
11 5 61 2× 5
17 24 67 2× 11
23 11 83 41
41 23 89 23 × 11

These are the primes p < 100 which qualify to form the product n as described in Corollary
2.4. Hence, for instance, we have n | Rn,3 for n = 23 · 5 · 11 · 89 or n = 24 · 17 · 41 · 83.

To see the transitive dependencies among these primes in a more readable manner, we can
transform the above list to a lattice diagram as follows.
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Similarly, we may consider b = 16 and, after computing |16|p using all primes p < 100, we
come up with a more crowded lattice diagram below, with only the primes 2, 17, and 97 being
ineligible.
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Note that for each value of b, we can construct an infinite number of n satisfying the criteria
of Corollary 2.4, e.g., by considering arbitrarily large exponents e1, e2, . . . , ek. Not only so,
but the list of qualifying prime factors of such n is also endless. We state this claim as follows.

Corollary 2.5. Let b ≥ 3 and k ≥ 1 be fixed. Then there exists a number n with at least k
distinct prime factors such that Rn,b is a multiple of n.

Proof. An 1886 result by Bang [2] implies that for a fixed b ≥ 2, the sequence bm − 1 has a
primitive prime divisor p for every m, i.e., where p divides bm−1 but not br−1 with 1 ≤ r < m.
For such prime p, we have |b|p = m.
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Let q denote any prime factor of b − 1, and simply let n = qkp2p3 · · · pk, where for each
prime pj, 2 ≤ j ≤ k, we have |b|pj = qj. Note that pj > q and, after reordering as necessary,
it is clear that n | Rn,b by Corollary 2.4.

�

3. Proof of the Theorem

Following the proof for the case b = 10 [8, p. 140], here we shall likewise prove Theorem 1.3
by introducing an intermediate criterion for the divisibility of Rn,b by n.

Theorem 3.1. The number Rn,b is divisible by n if and only if n is divisible by |b|n.

Proof. One way is easy, for if n divides Rn,b, then n divides the numerator bn − 1, so bn ≡ 1
(mod n) and |b|n divides n.

Conversely, assume that |b|n | n, or equivalently, that n | bn−1. Let p be an arbitrary prime
factor of n and write n = mpk with gcd(m, p) = 1. By the Chinese Remainder Theorem, we
will have n | Rn,b, provided that pk | Rn,b. We proceed in two cases.

Case 1. Suppose b 6≡ 1 (mod p). Then pk divides Rn,b = (bn − 1)/(b − 1) if and only if pk

divides bn − 1, which holds since n also divides bn − 1.

Case 2. Suppose b ≡ 1 (mod p). Let Φm(X) stand for the mth cyclotomic polynomial.
Recall that Φ1(X) = X − 1 and Φp(X) = 1+X +X2 + · · ·+Xp−1. We also have the identity

Xn − 1 =
∏

d|n

Φd(X), (3.1)

which implies that (bn − 1)/(b − 1) is divisible by Φp(b)Φp2(b) · · ·Φpk(b). Then by the well-
known reduction formula Φpm(X) = Φpm−1(Xp), we can show that for each j = 1, 2, . . . , k,

Φpj(b) = Φp(b
pj−1

) ≡ Φp(1) = p ≡ 0 (mod p).

Hence, pk | Rn,b as desired. �

And now evidently, Theorem 1.3 will be established upon proving the next equivalent state-
ment.

Theorem 3.2. Let b, n ≥ 2. Then |b|n divides n if and only if |b|p divides n for every prime

p such that p | n.

Proof. Again, one way is trivial since bn ≡ 1 (mod n) implies that bn ≡ 1 (mod p) when p
is a factor of n. For the converse, now assume that n = mpk for some prime p, such that
gcd(m, p) = 1 and |b|p | n. It will suffice to show that pk | bn − 1.

Since |b|p ≤ p− 1, we have gcd(|b|p, p) = 1 and so |b|p | m. That is, bm ≡ 1 (mod p). Using
again Identity (3.1), we see that bn − 1 is divisible by M1M2 · · ·Mk, where

Mj =
∏

d|m

Φd·pj(b),

for j = 1, 2, . . . , k. This time we call for the factorization formula Φr(X
s) =

∏

d|sΦd·r(X),

which applies when gcd(r, s) = 1 (see the article by Cheng et al. [4, Corollary 2] for a proof
of this identity), and we obtain

Mj = Φpj(b
m) = Φp((b

m)p
j−1

) ≡ Φp(1) ≡ 0 (mod p).

Thus, p | Mj and pk | bn − 1. �
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Alternately, one may wish to prove Theorem 3.1 or Theorem 3.2 without resorting to cyclo-
tomic polynomials. In particular, demonstrating divisibility by pk in both cases can be done
via a congruence property that is also used in the original proof by Kennedy and Cooper [8,
Lemma 2.1].

4. Applications on Base-b Niven Numbers

In a recent article on Smith numbers, the author [14, Definition 4] considered a different
generalization of repunits by allowing a string of zeros of fixed length between each adjacent
ones in Rn, e.g., numbers like 1010101 or 100010001. We now extend this definition to a
general base b, noting that there are multiple ways by which we may express these quantities
algebraically.

Definition 4.1. For each n, k ≥ 1 and b ≥ 2, we define the number Rn,b,k according to

Rn,b,k =

n−1
∑

j=0

bjk =
bnk − 1

bk − 1
=

Rnk,b

Rk,b

= Rn,bk .

We see that in base-b, the number Rn,b,k is composed of n ones, every two of which are
separated by k− 1 zeros. In particular, the relation Rn,b,k = Rn,bk asserts that Rn,b,k has sum

of digits equals n, when evaluated in either base b or base bk. We have the following result.

Theorem 4.2. Let n, b ≥ 2 and k ≥ 1. Then Rn,b,k is a base-b Niven number if and only if

|bk|n | n. In particular, for any k ≥ 1, Rn,b,k is a base-b Niven number whenever Rn,b is.

Proof. The first claim is clear by Theorem 3.1 applied to Rn,bk . The second follows by the

same theorem since |bk|n is always a factor of |b|n. �

The converse of the second part of Theorem 4.2 does not hold: Rn,b may not be a base-b
Niven number even if Rn,b,k is. For a counter-example, we have seen that there is no base-2
Niven number among the Mersenne numbers Rn,2; nevertheless, the preceding diagram can be
used to generate infinitely many base-2 Niven numbers of the form Rn,2,4.

Now one Olympiad-type problem asks for a proof that given n, there exists a number m
divisible by its sum of decimal digits, which equals n. This challenge is due to Sierpiński,
according to the problem book by Andreescu and Andrica [1, Problem 7.2.1], and whose
proposed solution is essentially the number Rn,10,φ(n), provided that gcd(n, 10) = 1. We are
in a position to generalize this result to any base b:

Theorem 4.3. Given n, b ≥ 2, we can find a base-b Niven number m whose sum of base-b
digits is n.

Proof. If gcd(n, b) = 1, simply let m = Rn,b,φ(n). Since |bφ(n)|n = 1 by Euler’s Theorem, then
m is a base-b Niven number by Theorem 4.2.

If gcd(n, b) > 1, we may write n = st, where t is the largest factor of n that is relatively
prime to b. In this case, every prime factor of s is also a factor of b, hence, s | br for some
integer r ≥ 1. Now let m = br · Rn,b,φ(t), whose sum of digits in base b equals n. Again by
Euler’s Theorem,

Rn,b,φ(t) = 1 + bφ(t) + b2φ(t) + · · · + b(n−1)φ(t) ≡ n ≡ 0 (mod t).

Hence, t | Rn,b,φ(t) and n | m. �

Along the same line, we propose one last problem of finding a Niven number with a pre-
scribed digital condition.
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Theorem 4.4. Given N, b ≥ 2, we can find two base-b Niven numbers m1 and m2, such that
⌊m1

bv

⌋

= N and m2 mod bw = N

for some integers v,w ≥ 1, i.e., when expressed in base b, the digits in N are reproduced in

m1 as the leading digits and in m2 as the trailing digits.

Proof. A known result established by McDaniel [10, Lemma 3] states that if bn − 1 ≥ N , then
the number m = (b − 1)Rn,b · N has sum of base-b digits equal (b − 1)n. By Corollary 2.4,
we let m be such a number but where Rn,b is chosen to be divisible by n–so m is a Niven
number–and such that n ≥ d, where d is the number of base-b digits in N .

Writing m = N · bn − N , we observe that the digits in m, as read from left to right,
necessarily begin with those of N − 1 and end with those of bd − N (and repeated digits of
(b − 1)’s in the middle). Hence, to satisfy the claim, we just let m1 = (bn − 1)(N + 1) and
m2 = (bn − 1)(bd −N). �
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[11] W. Sierpiński, Elementary Theory of Numbers, PWN, Warszawa, 1964.
[12] W. M. Snyder, Factoring repunits, Amer. Math. Monthly, 89 (1982), 462–466.
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