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Abstract. A power product recurrence (due to M. W. Bunder) is extended here by the
introduction of a scaling factor, and delivers a sequence whose general term closed form is
derived for both degenerate and non-degenerate characteristic root cases. It is shown how
recurrence parameter conditions dictate the nature of each solution type, and a fundamental
link between them is highlighted together with some other observations and results.

1. Introduction

Let c ∈ Z
+ be an arbitrary scaling variable. Consider, given z0 = a, z1 = b, the scaled

power product recurrence
zn+1 = c(zn)

p(zn−1)
q, n ≥ 1, (1.1)

which defines a sequence {zn}
∞

n=0 = {zn}
∞

0 = {zn(a, b, p, q; c)}
∞

0 with first few terms

{zn(a, b, p, q; c)}
∞

0 = {a, b, aqbpc, apqbp
2+qcp+1, ap

2q+q2bp
3+2pqcp

2+p+q+1,

ap
3q+2pq2bp

4+3p2q+q2cp
3+p2+p(2q+1)+q+1, . . .}. (1.2)

In 1975 Bunder [1] considered the c = 1 instance of (1.1) and noted that the general (n+1)th
term has, for n ≥ 0, a closed form

zn(a, b, p, q; 1) = awn(1,0;p,−q)bwn(0,1;p,−q) (1.3)

featuring terms of two particular (initial values specific) Horadam sequences {wn(1, 0; p,−q)}∞0
and {wn(0, 1; p,−q)}∞0 . The Horadam sequence {wn(w0, w1; p, q)}

∞

0 is defined, for given
w0, w1, by the order two linear recurrence

wn+1 = pwn − qwn−1, n ≥ 1, (1.4)

the notation for which, and the standard form of the recursion (1.4), having been fixed by the
originator Alwyn F. Horadam in the 1960’s [4].

Recently, Bunder’s observation (1.3) has been proved inductively and generalized [2], and
subsequently reproved again from first principles [5]. The article [3] looks at the case p = q =
1/2 of (1.1), developing results when c = 1 in the main but also (in an Appendix) discussing
the version where c is held intact symbolically; both the resulting sequences themselves, and
their growth rates, are of interest in [3] wherein (1.1) delivers a scaled (c > 1) or non-scaled
(c = 1) so called geometric mean sequence. In this paper the retention, along with p, q, of
the multiplicative scalar c as a generic variable in (1.1) constitutes a collective extension of
previous publications which also include those works [6, 8, 9] that are referenced more fully in
[3] and afford this paper additional background context for the reader. Using standard differ-
ence equations theory we formulate—according to characteristic root types—closed forms for
zn(a, b, p, q; c) that are conditional on the recurrence parameters p and q, and give a funda-
mental connection between them together with some other observations and results. We base
our paper on the premise that the powers of (1.1) satisfy the constraint

p+ q = 1, (1.5)
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and we refer to the recurrence as a balanced one such as that instance studied in [3].

2. Results and Analysis

Let tn = ln(zn) (assuming a, b, c > 0). Then (1.1) reads

tn+1 − ptn − qtn−1 = ln(c), (2.1)

the characteristic equation of which is

0 = λ2 − pλ− q (2.2)

with roots

α̂(p, q) = (p +
√

p2 + 4q)/2, β̂(p, q) = (p−
√

p2 + 4q)/2. (2.3)

Clearly, there are two separate characteristic root cases to consider in formulating closed
forms for zn(a, b, p, q; c) and, as we shall see, they arrive with their own additional attendant
conditions on the power parameters p, q of (1.1) as part of the process.

2.1. Non-Degenerate Roots Case (p2 + 4q 6= 0). For p2 6= −4q the roots α̂(p, q), β̂(p, q)

are distinct, and the homogeneous solution of (2.1) takes the form Eα̂n(p, q) +Fβ̂n(p, q) with
E,F arbitrary constants. A particular solution to (2.1) is chosen to be Cnln(c) which, when
substituted into it, yields

C[(1− p− q)n+ 1 + q] = 1 (2.4)

and, with p + q = 1 imposed (1.5), gives C(q) = 1/(1 + q) where q 6= −1 (or, equivalently,
C(p) = 1/(2 − p) where p 6= 2).

From hereon we will absorb the relationship between p and q as p(q) = 1−q for convenience.

Writing fn(q) = C(q)n = n/(1 + q), and the characteristic roots as α̂(q) = α̂(p(q), q), β̂(q) =

β̂(p(q), q), we have a general solution

tn(α̂(q), β̂(q), q, c) = Eα̂n(q) + Fβ̂n(q) + fn(q)ln(c), (2.5)

from which, applying the initial values t0 = ln(a), t1 = ln(b), we obtain simultaneous equations

ln(a) = E + F,

ln(b)− f1(q)ln(c) = Eα̂(q) + Fβ̂(q), (2.6)

for E,F , with solutions

E =
ln(b) − β̂(q)ln(a)− f1(q)ln(c)

α̂(q)− β̂(q)
,

F =
α̂(q)ln(a)− ln(b) + f1(q)ln(c)

α̂(q)− β̂(q)
, (2.7)

giving tn(α̂(q), β̂(q), q, a, b, c) = Na(α̂(q), β̂(q), n)ln(a)+Nb(α̂(q), β̂(q), n)ln(b)+Nc(α̂(q), β̂(q),
q, n)ln(c) as a full solution, where

Na(α̂(q), β̂(q), n) = [α̂(q)β̂n(q)− β̂(q)α̂n(q)]/[α̂(q)− β̂(q)],

Nb(α̂(q), β̂(q), n) = [α̂n(q)− β̂n(q)]/[α̂(q)− β̂(q)],

Nc(α̂(q), β̂(q), q, n) = fn(q)− f1(q)Nb(α̂(q), β̂(q), n). (2.8)

In other words,

zn(a, b, p(q), q; c) = aNa(α̂(q),β̂(q),n)bNb(α̂(q),β̂(q),n)cNc(α̂(q),β̂(q),q,n) (2.9)
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for n ≥ 0, where the functional powers of a, b, c are seen as, respectively, Na, Nb, Nc (these
exponents are denoted Da,Db,Dc in the degenerate roots case which follows). Note that it is
known, from [5, p. 176], that

Na(α̂(q), β̂(q), n) = wn(1, 0; p(q),−q) (2.10)

and

Nb(α̂(q), β̂(q), n) = wn(0, 1; p(q),−q), (2.11)

so that, from (2.8),

Nc(α̂(q), β̂(q), q, n) = [n− wn(0, 1; p(q),−q)]/(1 + q). (2.12)

Finally, since p(q) = 1 − q the characteristic roots in this instance simplify conveniently as

α̂(q) = 1, β̂(q) = −q, and (2.8) reduces to

Na(q, n) =
q + (−q)n

1 + q
,

Nb(q, n) =
1− (−q)n

1 + q
,

Nc(q, n) =
1

1 + q

(

n−
[1− (−q)n]

1 + q

)

; (2.13)

hence, (2.9) reads

zn(a, b, p(q), q; c) = aNa(q,n)bNb(q,n)cNc(q,n), n ≥ 0, (2.14)

as our final form for the general term of the sequence delivered by (1.1) with p(q) = 1 − q,
q 6= −1 (the initial elements of which are, of course, given explicitly by (1.2) with p = p(q)).

Remark 2.1. We note from (2.13) that, for n ≥ 0, Na(q, n) +Nb(q, n) = 1 by inspection, in
addition to which the relation Nb(q, n) + (1 + q)Nc(q, n) = n holds. By way of example, for
n = 4 we see, using the term z4(a, b, p(q), q; c) of (1.2), Na(q, 4) = p2(q)q+q2 = (1−q)2q+q2 =
q − q2 + q3 and Nb(q, 4) = p3(q) + 2p(q)q = (1 − q)3 + 2(1 − q)q = 1− q + q2 − q3, for which
Na(q, 4)+Nb(q, 4) = 1 trivially. Furthermore, withNc(q, 4) = p2(q)+p(q)+q+1 = (1−q)2+(1−
q)+q+1 = 3−2q+q2 thenNb(q, 4)+(1+q)Nc(q, 4) = 1−q+q2−q3+(1+q)(3−2q+q2) = · · · = 4
as expected.

Remark 2.2. Writing Jn as the general (n + 1)th term of the familiar Jacobsthal se-
quence {Jn}

∞

0 = {J0, J1, J2, J3, J4, . . .} = {0, 1, 1, 3, 5, . . .} (with, for n ≥ 0, closed form
Jn = [2n − (−1)n]/3), and Sn as that for the sequence {Sn}

∞

0 = {S0, S1, S2, S3, S4, . . .} =
{0, 1, 3, 9, 23, . . .} (Sequence No. A045883 on the OEIS [7], with Sn = [(3n+1)2n − (−1)n]/9),
we remark, as a further check on (2.13), thatNa(1/2, n) = Jn−1/2

n−1 (n ≥ 1) andNb(1/2, n) =
Jn/2

n−1 (n ≥ 0), together with Nc(1/2, n) = Sn−1/2
n−2 (n ≥ 1); these recover results for the

geometric mean recursion examined previously (that is, for the case p = q = 1/2 of (1.1))—
see the Appendix of [3], where Na(1/2, n), Nb(1/2, n), Nc(1/2, n) are denoted as, respectively,
Ωa(n),Ωb(n),Ωc(n).

Remark 2.3. Closed forms for Na(1/2, n), Nb(1/2, n) andNc(1/2, n) combine, from the above
remarks, to give immediate identities Jn−1 + Jn = 2n−1 and Jn + 3Sn−1 = n2n−1 for n ≥ 1,
which are easily verified; these two, in turn, yield 3Sn − Jn = n2n (n ≥ 0) as a further one,
together with Sn + Sn−1 = n2n−1 (n ≥ 1).
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2.2. Degenerate Roots Case (p2 + 4q = 0). For p2 = −4q the characteristic roots α̂(p) =

β̂(p) = 1
2p are non-distinct and the homogeneous solution of (2.1) is, with G,H arbitrary, of

the form (Gn +H)α̂n(p). This time we must choose a particular solution Cn2ln(c) to (2.1),
which on substitution yields

C[(1− p− q)n2 + 2(1 + q)n+ 1− q] = 1. (2.15)

Thus q = −1, which combines with p+q = 1 (1.5) to give p = 2 (with the governing constraint

p2 = −4q satisfied) and α̂(2) = β̂(2) = 1, and so a general solution

tn(c) = Gn+H + n2ln(c)/2 (2.16)

to (2.1). Initial values for t0, t1 give G,H readily as G = ln[b/(ac1/2)], H = ln(a), and (2.16)

reads tn = ln(a1−nbncn(n−1)/2) after a little rearrangement, that is

zn(a, b, 2,−1; c) = aDa(n)bDb(n)cDc(n), n ≥ 0, (2.17)

where

Da(n) = 1− n,

Db(n) = n,

Dc(n) = n(n− 1)/2; (2.18)

these exponent functions agree with computations to independently generate

{zn(a, b, 2,−1; c)}∞0 = {a, b, b2c/a, b3c3/a2, b4c6/a3, b5c10/a4, b6c15/a5, . . .} (2.19)

using (1.1) or (1.2).

Remark 2.4. As a mark of self-consistency in this degenerate roots case we note that,
given the governing condition p2 + 4q = 0, the constraint p + q = 1 is alone sufficient to
force q = −1, p = 2 as explicit recurrence parameter values, for (i) writing p(q) = 1− q then
0 = p2(q) + 4q = (1 − q)2 + 4q = (1 + q)2 ⇒ q = −1 and p(−1) = 2, while (ii) writing
q(p) = 1− p then 0 = p2 + 4q(p) = p2 + 4(1− p) = (p− 2)2 ⇒ p = 2 and q(2) = −1.

2.3. A Solutions Connection. We finish by noting that (2.18) is available directly from
(2.13) using simple limiting arguments, thus establishing a basic link between the two solution
types described by the closed forms of (2.14) and (2.17). Letting q(ε) = −1+ ε, then Da(n) =
limε→0{Na(q(ε), n)} = limε→0{N

u
a (ε, n)/N

l
a(ε)}, where N

u
a (ε, n) = ε−1+(1−ε)n and N l

a(ε) =
ε. Since Nu

a (0, n)/N
l
a(0) has the indeterminate form 0/0 then, applying L’Hôpital’s Rule,

Da(n) = limε→0{
d
dε [N

u
a (ε, n)]/

d
dε [N

l
a(ε)]} = limε→0{1 − n(1 − ε)n−1} = 1 − n; it is left as a

straightforward reader exercise to confirm that the functions Db(n) and Dc(n) are given as,
respectively, limε→0{Nb(q(ε), n)} and limε→0{Nc(q(ε), n)} in a similar fashion.

Had Na, Nb, Nc been expressed in terms of q(p) = 1 − p and n, these results would have
been forthcoming by considering the limit as ε → 0 in each, having set p(ε) = 2 + ε.

Remark 2.5. The identities of Remark 2.1 are valid in the limit q → −1 and so with
reference to the counterpart exponent functions of (2.18) in this degenerate roots case, for
consider limq→−1{Na(q, n) +Nb(q, n)} = limq→−1{Na(q, n)} + limq→−1{Nb(q, n)} = Da(n) +
Db(n) = (1 − n) + n = 1. Also, we see trivially that limq→−1{Nb(q, n) + (1 + q)Nc(q, n)} =
Db(n) + 0 ·Dc(n) = Db(n) = n.
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3. Summary

In this paper a scaled power product recursion has been analyzed, with balanced powers
in the sense described. Recurrence parameter-conditional closed forms for the general term
of resulting sequences have been derived in degenerate and non-degenerate characteristic root
cases and, along with other observations given, a fundamental link between them highlighted.
Note that the restriction of positivity for a, b, c at the outset of the formulation procedures
has no bearing on either (2.14) or (2.17), which are valid for any non-zero values of these
variables. We remark, too, that a natural particular solution to (2.1), of form Cln(c), has
C = [1− (p+ q)]−1 which is inadmissible since the recurrence (1.1) is balanced; should this be
relaxed (that is, p+ q 6= 1), then a new solution scenario emerges which is beyond the chosen
remit of this article and within which the relatively tractable nature of the exponent functions
of (2.13) is lost.

It remains to be seen if this type of scaled power product recurrence can be examined by any
method(s) other than the routine application of difference equations theory presented here.

Dedication

This paper is dedicated to David Evans by the author PJL, in memory of his gentle personal-

ity and demeanor that made the lives of those with whom he interacted professionally so much

the better. He will be sadly missed as a colleague for his warmth, charm, wit and kindness,

and his untimely death is a great loss to all who worked with him.
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