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Abstract. A balancing problem associated with two integer sequences is introduced. The
problem is studied using the sequences obtained from a binary recurrence and its associate
sequence. We provide an algorithm to solve, under some circumstances, the Diophantine
equation G0 +G1 + · · ·+ Gx = H0 +H1 + · · ·+Hy in the non-negative integer unknowns x
and y, where the sequence {Hn}

∞

n=0 is the associate of {Gn}
∞

n=0.

1. Introduction

According to Behera and Panda [1], a natural number n is a balancing number if 1 + 2 +
· · · + (n − 1) = (n + 1) + · · · + (n + r) for some natural number r. By slightly modifying
the defining equation of balancing numbers, Panda and Ray [5] called a natural number n a
cobalancing number with cobalancer r if 1+2+ · · ·+n = (n+1)+ · · ·+(n+ r). The concepts
of balancing and cobalancing numbers have been extended in several directions. Panda [6] felt
that the natural numbers used in the definition of balancing and cobalancing numbers could
possibly be replaced by an arbitrary integer sequence am,m = 1, 2, . . .. He called a term an of
this sequence a sequence balancing number if a1+a2+ · · ·+an−1 = an+1+ · · ·+an+r for some
r, while he called an a sequence cobalancing number if a1 + a2 + · · ·+ an = an+1 + · · ·+ an+r

for some r. He studied the existence of sequence balancing and cobalancing numbers in the
sequence of odd and even natural numbers. However, for n > 1, he failed to find any sequence
balancing or cobalancing number in the sequence ak = kn.

In 2011, Szakács [8] thought of replacing the additions used in the definitions of balancing
and cobalancing numbers by multiplications and defined multiplying balancing numbers n as
natural numbers satisfying the Diophantine equation 1·2· · · · ·(n−1) = (n+1)(n+2) · · · (n+r)
for some r and proved that 7 is the only multiplying balancing number. T. Kovács, K. Liptai
and P. Olajos [4] extended the concept of balancing numbers to arithmetic progressions and
studied sequence balancing numbers with terms from an arithmetic progression. They called
an+b an (a, b)-balancing number if (a+b)+· · ·+(a(n−1)+b) = (a(n+1)+b)+· · ·+(a(n+r)+b)
holds for some r where a > 0 and b > 0 are coprime integers. They provided certain conditions
for the existence of such numbers. Komatsu and Szalay [3] replaced natural numbers occurring
in the definition of balancing numbers with binomial coefficients and studied certain special
cases of sequence balancing numbers.

Simple algebraic manipulations in the defining equations of balancing and cobalancing num-
bers allow us to redefine balancing and cobalancing numbers as follows.

A natural number n is a balancing number if

1 + 2 + · · ·+m = O1 +O2 + · · ·+On (1)

for some natural number m, and n is a cobalancing number if

1 + 2 + · · ·+ ℓ = E1 + E2 + · · ·+ En (2)
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for some natural number ℓ, where On and En denote the nth odd number and the nth even
number, respectively. These definitions motivate us to consider Diophantine equations of the
form

a1 + a2 + · · · + am = b1 + b2 + · · · + bn, (3)

where {an}∞n=1 and {bn}∞n=1 are integer sequences. This paper considers binary recurrences of
certain type and their associate sequences.

Let {Gn}∞n=0 be a sequence defined by the binary recurrence Gn = AGn−1 +BGn−2, n ≥ 2
where A, B, G0 and G1 are given integers and let D = A2 + 4B. It is well-known that if
D 6= 0, then the explicit form (also popularly known as the Binet form) for Gn is given by

Gn =
(G1 − βG0)α

n − (G1 − αG0)β
n

α− β
, n ≥ 0, (4)

where α = (A+
√
D)/2 and β = (A −

√
D)/2 are the two distinct roots of the characteristic

equation x2 −Ax−B = 0 of the sequence {G}∞n=0. If D = 0, then α = β = A/2 and

Gn = nαn−1G1 − (n− 1)αnG0, n ≥ 0. (5)

Let {Hn}∞n=0 be the sequence defined by the recurrence relation Hn = AHn−1+BHn−2 where
H0 = 2G1 − AG0, H1 = AG1 + 2BG0. {Hn}∞n=0 is called the associate sequence of {G}∞n=0.
According to D 6= 0 or D = 0,

Hn = (G1 − βG0)α
n + (G1 − αG0)β

n or Hn = (2G1 −AG0)α
n, (6)

respectively. The objective of this paper is to study the Diophantine equation

G0 +G1 + · · · +Gx = H0 +H1 + · · · +Hy, (7)

which we call the balancing problem associated with the sequences {Gn}∞n=0 and {Hn}∞n=0.
We describe an algorithm which, under some conditions, solves (7). At the end of the paper
we illustrate the method and obtain the following result.

Theorem 1. The only solutions to equation (7) is (x, y) = (2, 0) if {G}∞n=0 is the Fibonacci
sequence or the Jacobsthal sequence. Further, (7) has no solution if {G}∞n=0 is the Pell se-
quence. Moreover, in the case of the sequence Gn = Gn−1 + 9900Gn−2, G0 = 0, G1 = 1
equation (7) possesses only the solution (x, y) = (2, 0) again.

2. Preliminaries

As usual let {Gn}∞n=0 and {Hn}∞n=0 be binary recurrences as defined in the last section.
The following lemma, which deals with the sum formulas for the sequence {Gn}∞n=0, has an
important role in the solution of the problem (7).

Lemma 2. For every natural number n,

n
∑

i=0

Gi =































Gn+1+BGn−G1+(A−1)G0

A+B−1 if D 6= 0 and A+B 6= 1,

Gn+1−G0+(−G1+(A−1)G0)(n+1)
A−2 if D 6= 0 and A+B = 1,

Gn+1+BGn−G1+(A−1)G0

A+B−1 if D = 0 and A+B 6= 1,

(Gn+G0)(n+1)
A

if D = 0 and A+B = 1.

(8)

Note that the last case occurs if and only if (A,B) = (2,−1). Observe that if A + B 6= 1,
then the sum of the terms does not depend on the value of D.
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Proof. The proof relies on the explicit forms (4) and (5), and the summation formula of the
consecutive terms of a geometric progression.

The results of Lemma 2 are well-known. The first case was shown by Horadam [2]. Moreover,
Lemma 2 is equivalent to the statements of Theorem 1 in [7] due to Russell. Since the article
[7] gives only hints to the proofs, here we go into details, but only in the third case when
D = 0 and A+B 6= 1. Then the appropriate conditions imply α = β 6= 1. Note that α = A/2,
α2 = −B and (α− 1)2 = 1−A−B hold now. Clearly,

n
∑

i=0

Gi =

n
∑

i=0

(

iαi−1G1 − (i− 1)αiG0

)

= G1

n
∑

i=0

(

αi
)′ − α2G0

n
∑

i=0

(

αi−1
)′

= G1

(

n
∑

i=0

αi

)′

− α2G0

(

n
∑

i=0

αi−1

)′

= G1
nαn+1 − (n+ 1)αn + 1

(α− 1)2
−G0

(n − 1)αn+2 − nαn+1 + 2α − 1

(α− 1)2

=
α2Gn −Gn+1 +G1 − (2α− 1)G0

(α− 1)2
,

and then it immediately leads to the statement. Thus the proof of the third case is complete.
�

From this point onward we assume A > 0, B 6= 0, A+B 6= 1, D > 0, and also |G0|+|G1| 6= 0.
Thus, α and β are real numbers, α > 1, α > |β|, β 6= 0, β 6= 1. Clearly, α+ β = A, αβ = −B

and α− β =
√
D also hold. The first case of Lemma 2 allows us to replace equation (7) by

Gx+1 +BGx = Hy+1 +BHy + η, (9)

where η = (A− 1)G1 + (−A2 − 2B + 1)G0.
We also assume that Gn ≥ 0 and Hn ≥ 0 for all n ∈ N. Consequently, by (4) and first part of

(6), G1−βG0 = (
√
DGn+Hn)/(2α

n) ≥ 0 follows. We claim that G1−βG0 > 0. Observe that

if G1−βG0 = 0, then Gn = −(G1−αG0)β
n/

√
D and Hn = (G1−αG0)β

n have opposite signs
(since G1 −αG0 6= 0), which is a contradiction. Solving the system H0 = 2G1 −AG0 ≥ 0 and
H1 = AG1+2BG0 ≥ 0, we find that the initial values G0 and G1 must satisfy 0 ≤ G0 ≤ 2G1/A,
0 < G1 (independently from the sign of B). Note that H0 = 0 = H1 would imply D = 0.

The solution of (9) essentially relies on the following lemma.

Lemma 3. For any non-negative integer n0 and for all n ≥ n0

αn+ε1(n0) ≤ Gn ≤ αn+ε2(n0) and αn+δ1(n0) ≤ Hn ≤ αn+δ2(n0), (10)

where

εj(n0) = logα

(G1 − βG0) + (−1)j |G1 − αG0|
(

|β|
α

)n0

√
D

(11)

and

δj(n0) = εj(n0) + logα
√
D, (12)

j = 1, 2.

Proof. Recall (4), and note that if G1 − αG0 = 0, then

Gn =
G1 − βG0√

D
αn = αn+ε and Hn = (G1 − βG0)α

n = αn+δ

AUGUST 2016 237



THE FIBONACCI QUARTERLY

hold for the constants ε = logα((G1 − βG0)/
√
D) and δ = logα(G1 − βG0) (i.e. ε1(n0) = ε =

ε2(n0) and δ1(n0) = δ = δ2(n0) are valid independently from the value n0). Assume now that

G1 − αG0 6= 0. Let c1 =
√
D for the sequence {G}∞n=0 and c1 = 1 for the sequence {H}∞n=0.

Then, by (4) we have

Gn

Hn

}

≤ (G1 − βG0)α
n + |G1 − αG0||β|n
c1

= αn
(G1 − βG0) + |G1 − αG0|

(

|β|
α

)n

c1
.

If n ≥ n0, then the last part is not more than

αn
(G1 − βG0) + |G1 − αG0|

(

|β|
α

)n0

c1
=

{

αn+ε2(n0)

αn+δ2(n0)
.

In order to get lower bounds, we must be sure that (G1 −βG0)α
n− |G1 −αG0||β|n is never

negative. Clearly,

(G1 − βG0)α
n − |G1 − αG0||β|n ≥ min{

√
DGn,Hn} ≥ 0.

Then, obviously,

Gn

Hn

}

≥ (G1 − βG0)α
n − |G1 − αG0||β|n
c1

= αn
(G1 − βG0)− |G1 − αG0|

(

|β|
α

)n

c1

≥ αn
(G1 − βG0)− |G1 − αG0|

(

|β|
α

)n0

c1
=

{

αn+ε1(n0)

αn+δ1(n0)
.

�

The principal idea of this paper is the following. Observe that if n0 → ∞, then the
common limit of δ1(n0) and δ2(n0) is δ = logα(G1 − βG0), while ε = limn0→∞ ε1(n0) =

limn0→∞ ε2(n0) = ε = δ − logα
√
D. Therefore, if ∆ = logα

√
D is not an integer, then com-

bining (9) and Lemma 3, one can conclude that the difference of x and y is not an integer
which is clearly a contradiction.

We are going into details after making other observations. Consider first the case when
∆ ∈ Z.

Lemma 4. If ∆ ∈ Z, then ∆ = 0, A is odd, B = (1 − A2)/4 is negative. Moreover α =
(A+ 1)/2, β = (A− 1)/2.

Proof. In view of the value of ∆, we split the proof into parts. Clearly, we have to maintain
the equation α− β = α∆.

• Note that ∆ < 0 is not possible since α|∆|√D = 1 contradicts α > 1 and D ≥ 1.
• If ∆ = 0, then

√
D = 1 and subsequently B = (1 − A2)/4 and α = (A + 1)/2,

β = (A− 1)/2. Trivially, A is odd and B < 0.
• Obviously, ∆ = 1 is impossible since α− β 6= α.
• Suppose ∆ ≥ 2. If D is non-square, then

√
D = α∆ implies that the

√
D-free part R∆

of ((A+
√
D)/2)∆ = R∆ +

√
DS∆ is zero. But, clearly the rational number

R∆ =
A∆ +

(∆
2

)

A∆−2D + · · ·
2∆

> 0.
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Hence there exist a positive integer d such that D = d2. Obviously, with d = 1 we
arrive at a contradiction since 1 = ((A+1)/2)∆ leads to A = 1 and then B = 0. Thus,
d ≥ 2 and

d =

(

A+ d

2

)∆

,

i.e. d is a ∆th-power. Assuming d = t∆ (t ≥ 2), we get t = (A+ t∆)/2. Consequently,
A = 2t− t∆ > 0 which contradicts t ≥ 2 and ∆ ≥ 2.

�

3. Solution of (9)

The details are only worked out for positive B, but a slight modification of the method
together with separation of specific subcases is able to handle the case B < 0 as well. Observe
that B > 0 entails

√
D > 2. Therefore (9) has no solution if G1−αG0 = 0 since Hi =

√
DGi >

2Gi for any i ∈ N (trivially, G0 = 0 is not possible, because it would imply G1 = 0). Further
∆ /∈ Z also follows from B > 0. (See Lemma 4. In the investigation of the case B < 0 the
relation ∆ ∈ Z is possible.) So assume B > 0. Then A+B − 1 > 0, and by (9), Gx+1 +BGx

and Hy+1 +BHy + η are also positive. In order to get a good estimate for the difference of x
and y, we apply Lemma 3 as follows. Let µ = logα(1 +B/α) and suppose that x ≥ x0, where
x0 is a suitable non-negative integer. Also assume y ≥ y0 for some integer y0 ≥ 0. Then

Gx+1 +BGx ≤ αx+1+ε2(x0) +Bαx+ε2(x0) = αx+1+ε2(x0)+µ, (13)

and
Gx+1 +BGx ≥ αx+1+ε1(x0) +Bαx+ε1(x0) = αx+1+ε1(x0)+µ. (14)

Similarly, we have

αy+1+δ1(x0)+µ ≤ Hy+1 +BHy ≤ αy+1+δ2(x0)+µ. (15)

At this point we distinguish two cases.

Case 1. η ≥ 0. Obviously, αy+1+δ1(x0)+µ ≤ Hy+1 +BHy + η and, if u0 ≤ y + 1 + δ2(x0) + µ
is a suitable positive number, then

Hy+1 +BHy + η ≤ αy+1+δ2(x0)+µ+κ(u0), (16)

where κ(u0) = logα(1+ η/αu0). Combining (14) and (16), and then the lower estimate of (15)
and (13), together with (9) one can obtain

y + δ1(y0)− ε2(x0) ≤ x ≤ y + δ2(y0)− ε1(x0) + κ(u0).

In order to facilitate to reach our goal, assume that x0 = y0 and both are tending to infinity.
Then δ1(y0)−ε2(x0) → ∆, and δ2(y0)−ε1(x0) → ∆. Letting u0 → ∞ and y0 → ∞, κ(u0) → 0
follows. Hence, if x0 and u0 are all large enough, then there exist small positive real numbers
h1 and h2 such that

y +∆− h1 ≤ x ≤ y +∆+ h2. (17)

Supposing ∆ /∈ Z, we arrive at a contradiction. Indeed, since ∆ is not an integer, D ≥ 2 and
α > 1 implying ∆ > 0. Choosing suitable, sufficiently large x0 and u0, we have

K < ∆− h1 < ∆+ h2 < K + 1,

where K = ⌊∆⌋ < ∆. Thus there exists no integer between y +∆− h1 and y +∆+ h2.

Case 2. η < 0. Then Gx+1 + BGx + |η| = Hx+1 +BHx and we repeat the treatment of the
previous case to conclude

y + δ1(y0)− ε2(x0)− κ(v0) ≤ x ≤ y + δ2(y0)− ε1(x0), (18)
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where v0 is a suitable positive number satisfying v0 ≤ x+1+ ε2(x0)+µ and κ(v0) = logα(1+
|η|/αv0). The argument is the same: since ∆ /∈ Z, we can find sufficiently large x0 = y0 and
v0 such that (18) cannot hold.

Finally, to finish the proof, one needs to verify the small integral values x ≤ x0 − 1 or
y ≤ y0 − 1.

4. Examples

In this section we completely solve equation (7) in the case of the four given sequences
{Gn}∞n=0 including the Fibonacci, the Pell, and the Jacobsthal numbers. We always chose the
initial values G0 = 0 and G1 = 1. The value x0 = y0 is as sharp as possible. The following
table contains the details of the calculations.

Gn = Gn−1 +Gn−2 2Gn−1 +Gn−2 Gn−1 + 2Gn−2 Gn−1 + 9900Gn−2

α, β 1+
√
5

2 , 1−
√
5

2 1 +
√
2, 1−

√
2 2, −1 100, −98

H0, H1 H0 = 2, H1 = 1 H0 = 2, H1 = 2 H0 = 2, H1 = 1 H0 = 2, H1 = 1

η η = 0 η = 1 η = 0 η = 0

x0 = y0 3 2 3 110

∆− h1 1.439 1.112 1.222 1.00003

∆ + h2 1.905 1.302 1.948 1.29883

If x ≤ x0 − 1 or y ≤ y0 − 1, one must check by hand or by computer the remaining cases.
Then we obtain the proof of Theorem 1.

Note that if A = 1, G0 = 0 and G1 = 1, then G2 = 1 and hence, H0 = 2. Thus,
G0 + G1 + G2 = 2 = H0 is always true. Theorem 1 ascertains no solution in the aforesaid
cases apart from the trivial one.
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