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Abstract. Zeckendorf’s Theorem states that any positive integer can be written uniquely as
a sum of non-adjacent Fibonacci numbers; this result has been generalized to many recurrence
relations, especially those arising from linear recurrences with leading term positive. We in-
vestigate legal decompositions arising from two new sequences: the (s, b)-Generacci sequence
and the Fibonacci Quilt sequence. Both satisfy recurrence relations with leading term zero,
and thus previous results and techniques do not apply. These sequences exhibit drastically
different behavior. We show that the (s, b)-Generacci sequence leads to unique legal decom-
positions, whereas not only do we have non-unique legal decompositions with the Fibonacci
Quilt sequence, we also have that in this case the average number of legal decompositions
grows exponentially. Another interesting difference is that while in the (s, b)-Generacci case
the greedy algorithm always leads to a legal decomposition, in the Fibonacci Quilt setting
the greedy algorithm leads to a legal decomposition (approximately) 93% of the time. In
the (s, b)-Generacci case, we again have Gaussian behavior in the number of summands as
well as for the Fibonacci Quilt sequence when we restrict to decompositions resulting from a
modified greedy algorithm.

1. Introduction

A beautiful result of Zeckendorf describes the Fibonacci numbers as the unique sequence
from which every natural number can be expressed uniquely as a sum of nonconsecutive terms
in the sequence [18]. Zeckendorf’s Theorem inspired many questions about this decomposition,
and generalizations of the notions of legal decompositions of natural numbers as sums of
elements from an integer sequence has been a fruitful area of research [2, 3, 4, 5, 6, 9, 10, 11,
13, 14, 15, 16, 17].

Much of the previous work has focused on sequences given by a Positive Linear Recurrence
(PLR), which are sequences where there is a fixed depth L > 0 and non-negative integers
c1, . . . , cL with c1, cL non-zero such that

an+1 = c1an + · · ·+ cLan+1−L. (1.1)

The restriction that the negative of the trace is positive, i.e. c1 > 0, is required to gain needed
control over roots of polynomials associated to the characteristic polynomials of the recurrence
and related generating functions, though in the companion paper [8] we show how to bypass
some of these technicalities through new combinatorial techniques. The motivation for this
paper is to investigate whether the positivity of the first coefficient is needed solely to simplify
the arguments, or if fundamentally different behavior can emerge if the said condition is not
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met. To this end, we investigate the legal decompositions arising from two different sequences
which we introduce in this paper: the (s, b)-Generacci sequence and the Fibonacci Quilt se-
quence. Both satisfy recurrence relations with leading term zero, hence previous results and
techniques are not applicable. Moreover, although both have non-positive linear recurrences
(as their leading term is zero), they exhibit drastically different behavior: the (s, b)-Generacci
sequence leads to unique legal decompositions, whereas not only do we have non-unique le-
gal decompositions with the Fibonacci Quilt sequence, we also have that the average number
of legal decompositions grows exponentially. Another interesting difference is that while in
the (s, b)-Generacci case the greedy algorithm always leads to a legal decomposition, in the
Fibonacci Quilt setting the greedy algorithm leads to a legal decomposition (approximately)
93% of the time.

We conclude the introduction by first describing the two sequences and their resulting de-
composition rules and then stating our results. Then in Section 2 we determine the recurrence
relations for the sequences, in Section 3 we prove our claims on the growth of the average
number of decompositions from the Fibonacci Quilt sequence, and then analyze the greedy
algorithm and a generalization (for the Fibonacci Quilt sequence) in Section 4.

1.1. The (s, b)-Generacci Sequence and the Fibonacci Quilt Sequence.

1.1.1. The (s, b)-Generacci Sequence. One interpretation of Zeckendorf’s Theorem [18] is that
the Fibonacci sequence is the unique sequence from which all natural numbers can be expressed
as a sum of nonconsecutive terms. Note there are two ingredients to the rendition: a sequence
and a rule for determining what is a legal decomposition. An equivalent formulation for the
Fibonacci numbers is to consider the sequence divided into bins of size one and decompositions
can use the element in a bin at most once and cannot use elements from adjacent bins.
A generalization of this bin idea was explored by the authors in [6], where bins of size 2
with the same non-adjacency condition were considered; the sequence that arose was called
the Kentucky sequence. The Kentucky sequence is what we now refer to here as the (1, 2)-
Generacci sequence. This leads to a natural extension where we consider bins of size b and
any two summands of a decomposition must come from distinct bins with at least s bins
between them. We now give the technical definitions of the (s, b)-Generacci sequences and
their associated legal decompositions.

Definition 1.1 ((s, b)-Generacci legal decompositions). For fixed integers s, b ≥ 1, let an
increasing sequence of positive integers {ai}∞i=1 and a family of subsequences

Bn = {ab(n−1)+1, . . . , abn}
be given (we call these subsequences bins). We declare a decomposition of an integer m =
aℓ1 + aℓ2 + · · · + aℓk where aℓi > aℓi+1

to be an (s, b)-Generacci legal decomposition provided
{aℓi , aℓi+1

} 6⊂ Bj−s ∪ Bj−s+1 ∪ · · · ∪ Bj for all i, j. (We say Bj = ∅ for j ≤ 0.)

Thus if we have a summand aℓi ∈ Bj in a legal decomposition, we cannot have any other
summands from that bin, nor any summands from any of the s bins preceding or any of the s
bins following Bj.

Definition 1.2 ((s, b)-Generacci sequence). For fixed integers s, b ≥ 1, an increasing sequence
of positive integers {ai}∞i=1 is the (s, b)-Generacci sequence if every ai for i ≥ 1 is the smallest
positive integer that does not have an (s, b)-Generacci legal decomposition using the elements
{a1, . . . , ai−1}.

Using the above definition and Zeckendorf’s Theorem, we see that the (1, 1)-Generacci
sequence is the Fibonacci sequence (appropriately normalized). Some other known sequences
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arising from the (s, b)-Generacci sequences are Narayana’s cow sequence, which is the (2, 1)-
Generacci sequence, and the Kentucky sequence, which is the (1, 2)-Generacci sequence.

Theorem 1.3 (Recurrence Relation and Explicit Formula). Let s, b ≥ 1 be fixed. If n >
(s + 1)b + 1, then the nth term of the (s, b)-Generacci sequence is given by the recurrence
relation

an = an−b + ban−(s+1)b. (1.2)

We have a generalized Binet’s formula, with

an = c1λ
n
1 [1 +O ((λ2/λ1)

n)] (1.3)

where λ1 is the largest root of x(s+1)b − xsb − b = 0, and c1 and λ2 are constants with λ1 > 1,
c1 > 0 and |λ2| < λ1.

Remark 1.4. The (s, b)-Generacci sequence also satisfies the recurrence

an = an−1 + an−1−f(n−1), (1.4)

where f(kb + j) = sb + j − 1 for j = 1, . . . , b. While this representation does have its lead-
ing coefficient positive, the depth L = f(n − 1) + 1 is not independent of n, and thus this
representation is not a Positive Linear Recurrence.

The proof of Theorem 1.3 is given in Section 2.1. We note that the leading term in the
recurrence in (1.2) is zero whenever b ≥ 2, and hence this sequence falls out of the scope of
the Positive Linear Recurrences results.

1.1.2. Fibonacci Quilt Sequence. The Fibonacci Quilt sequence arose from the goal of finding
a sequence coming from a 2-dimensional process. We begin by recalling the beautiful fact that
the Fibonacci numbers tile the plane with squares spiraling to infinity, where the side length
of the nth square is Fn (see Figure 1; note that here we start the Fibonacci sequence with two
1’s).

Figure 1. The (start of the) Fibonacci Spiral.

Inspired by Zeckendorf decomposition rules and by the Fibonacci spiral we define the fol-
lowing notion of legal decompositions and create the associated integer sequence which we call
the Fibonacci Quilt sequence. The spiral depicted in Figure 1 can be viewed as a log cabin
quilt pattern, such as that presented in Figure 2 (left). Hence we adopt the name Fibonacci
Quilt sequence.

Definition 1.5 (FQ-legal decomposition). Let an increasing sequence of positive integers
{qi}∞i=1 be given. We declare a decomposition of an integer

m = qℓ1 + qℓ2 + · · · + qℓt (1.5)
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Figure 2. (Left) Log cabin quilt pattern. (Right) First few terms of the
Fibonacci Quilt sequence.

(where qℓi > qℓi+1
) to be an FQ-legal decomposition if for all i, j, |ℓi − ℓj | 6= 0, 1, 3, 4 and

{1, 3} 6⊂ {ℓ1, ℓ2, . . . ℓt}.
This means that if the terms of the sequence are arranged in a spiral in the rectangles of a

log cabin quilt, we cannot use two terms if they share part of an edge. Figure 2 shows that
qn+ qn−1 is not legal, but qn+ qn−2 is legal for n ≥ 4. The starting pattern of the quilt forbids
decompositions that contain q3 + q1.

We define a new sequence {qn}, called the Fibonacci Quilt sequence, in the following way.

Definition 1.6 (Fibonacci Quilt sequence). An increasing sequence of positive integers {qi}∞i=1
is called the Fibonacci Quilt sequence if every qi (i ≥ 1) is the smallest positive integer that
does not have an FQ-legal decomposition using the elements {q1, . . . , qi−1}.

From the definition of an FQ-legal decomposition, the reader can see that the first five terms
of the sequence must be {1, 2, 3, 4, 5}. We have q6 6= 6 as 6 = q4 + q2 = 4 + 2 is an FQ-legal
decomposition. We must have q6 = 7. Continuing we have the start of the Fibonacci Quilt
sequence displayed in Figure 2 (right). Note that with the exception of a few initial terms,
the Fibonacci Quilt sequence and the Padovan (see entry A000931 from the OEIS) sequence
are eventually identical.

Theorem 1.7 (Recurrence Relations). Let qn denote the nth term in the Fibonacci Quilt
sequence. Then

for n ≥ 6, qn+1 = qn + qn−4, (1.6)

for n ≥ 5, qn+1 = qn−1 + qn−2, (1.7)

n−5
∑

i=1

qi = qn − 6. (1.8)

The proof is given in Section 2.2.

Remark 1.8. At first the above theorem seems to suggest that the Fibonacci Quilt sequence is
a PLR, as (1.6) gives us a recurrence where the leading coefficient is positive and, unlike the
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alternative expression for the (s, b)-Generacci, this time the depth is fixed. The reason it is not
a PLR is subtle, and has to do with the second part of the definition: the decomposition law.
The decomposition law is not from using (1.6) to reduce summands, but from the geometry of
the spiral. It is worth remarking that (1.7) is the minimal length recurrence for this sequence,
and the characteristic polynomial arising from (1.6) is divisible by the polynomial from (1.7).

1.2. Results. Our theorems are for two sequences which satisfy recurrences with leading
term zero. Prior results in the literature mostly considered Positive Linear Recurrences and
results included the uniqueness of legal decompositions, Gaussian behavior of the number
of summands, and exponential decay in the distribution of the gaps between summands [2,
4, 9, 10, 16, 17]. In [6], a first example of a non-positive linear recurrence appeared and
the aforementioned results were proved using arguments technically similar to those already
present in the literature. What is new in this paper are two extensions of the work presented in
[6]. The first is the (s, b)-Generacci sequence, whose legal decompositions are unique but where
new techniques are required to prove its various properties. The second is the more interesting
newly discovered Fibonacci Quilt sequence, which displays drastically different behavior, one
consequence being that the FQ-legal decompositions are not unique (for example, there are
three distinct FQ-legal decompositions of 106 : 86 + 16 + 4, 86 + 12 + 7 + 1, and 65 + 37 + 4).

1.2.1. Decomposition results.

Theorem 1.9 (Uniqueness of Decompositions for (s, b)-Generacci). For each pair of integers
s, b ≥ 1, a unique (s, b)-Generacci sequence exists. Consequently, for a given pair of integers
s, b ≥ 1, every positive integer can be written uniquely as a sum of distinct terms of the
(s, b)-Generacci sequence where no two summands are in the same bin, and between any two
summands there are at least s bins between them.

As Theorem 1.9 follows from a similar argument to that in the appendix of [6], we omit it
in this paper.

Remark 1.10. We could also prove this result by showing that our sequence and legal de-
composition rule give rise to an f -decomposition. These were defined and studied in [9], and
briefly a valid f -decomposition means that for each summand chosen a block of consecutive
summands before are not available for use, and that number depends solely on n. The methods
of [9] are applicable and yield that each positive integer has a unique legal decomposition.

These results are not available for the Fibonacci Quilt sequence, as the FQ-legal decomposi-
tion is not an f -decomposition. The reason is that in an f -decomposition there is a function f
such that if we have qn then we cannot have any of the f(n) terms of the sequence immediately
prior to qn. There is no such f for the Fibonacci Quilt sequence, as for n ≥ 8 if we have qn
we cannot have qn−1 and qn−3 but we can have qn−2.

We have already seen that the Fibonacci Quilt sequence exhibits non-unique decompositions;
this is just the beginning of the difference in behavior. The first result concerns the exponential
number of FQ-legal decompositions as we decompose larger integers. First we need to introduce
some notation. Let {qn} denote the Fibonacci Quilt sequence. For each positive integer m
let dFQ(m) denote the number of FQ-legal decomposition of m, and dFQ;ave(n) the average
number of FQ-legal decompositions of integers in In := [0, qn+1); thus,

dFQ;ave(n) :=
1

qn+1

qn+1−1
∑

m=0

dFQ(m). (1.9)

In Section 3 we prove the following.
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Theorem 1.11 (Growth Rate of Average Number of Decompositions). Let r1 be the largest
root of r7 − r6 − r2 − 1 = 0 (so r1 ≈ 1.39704) and let λ1 be the largest root of x3 − x− 1 = 0

(so λ1 =
1
3

(

27
2 − 3

√
69
2

)1/3
+3−2/3

(

1
2

(

9 +
√
69
))1/3 ≈ 1.32472), and set λ = r1/λ1 ≈ 1.05459.

There exist computable constants C2 > C1 > 0 such that for all n sufficiently large,

C1λ
n ≤ dFQ;ave(n) ≤ C2λ

n. (1.10)

Thus the average number of FQ-legal decompositions of integers in [0, qn+1) tends to infinity
exponentially fast.

Remark 1.12. At the cost of additional algebra one could prove the existence of a constant
C such that dFQ;ave(n) ∼ Cλn; however, as the interesting part of the above theorem is the
exponential growth and not the multiplicative factor, we prefer to give the simpler proof which
captures the correct growth rate.

We end with another new behavior. For many of the previous recurrences, the greedy algo-
rithm successfully terminates in a legal decomposition; that is not the case for the Fibonacci
Quilt sequence. In Section 4 we prove the following.

Theorem 1.13. There is a computable constant ρ ∈ (0, 1) such that, as n → ∞, the percent-
age of positive integers in [1, qn) where the greedy algorithm terminates in a Fibonacci Quilt
sequence legal decomposition converges to ρ. This constant is approximately .92627.

Interestingly, a simple modification of the greedy algorithm does always terminate in a legal
decomposition, and this decomposition yields a minimal number of summands.

Definition 1.14 (Greedy-6 Decomposition). The Greedy-6 Decomposition writes m as a sum
of Fibonacci Quilt numbers as follows:

• if there is an n with m = qn then we are done,
• if m = 6 then we decompose m as q4 + q2 and we are done, and
• if m ≥ q6 and m 6= qn for all n ≥ 1, then we write m = qℓ1 + x where qℓ1 < m < qℓ1+1

and x > 0, and then iterate the process with input m := x.

We denote the decomposition that results from the Greedy-6 Algorithm by G(m).

Theorem 1.15. For all m > 0, the Greedy-6 Algorithm results in a FQ-legal decomposition.
Moreover, if G(m) = qℓ1+qℓ2+· · ·+qℓt−1+qℓt with qℓ1 > qℓ2 > · · · > qℓt, then the decomposition
satisfies exactly one of the following conditions:

(1) ℓi − ℓi+1 ≥ 5 for all i or
(2) ℓi − ℓi+1 ≥ 5 for i ≤ t− 3 and ℓt−2 ≥ 10, ℓt−1 = 4, ℓt = 2.

Further, if m = qℓ1 + qℓ2 + · · ·+ qℓt−1+ qℓt with qℓ1 > qℓ2 > · · · > qℓt denotes a decomposition
of m where either

(1) ℓi − ℓi+1 ≥ 5 for all i or
(2) ℓi − ℓi+1 ≥ 5 for i ≤ t− 3 and ℓt−2 ≥ 10, ℓt−1 = 4, ℓt = 2,

then qℓ1 + qℓ2 + · · · + qℓt−1 + qℓt = G(m). That is, the decomposition of m is the Greedy-6
decomposition.

Let D(m) be a given decomposition of m as a sum of Fibonacci Quilt numbers (not neces-
sarily legal):

m = c1q1 + c2q2 + · · · + cnqn, ci ∈ {0, 1, 2, . . . }. (1.11)

We define the number of summands by

#summands(D(m)) := c1 + c2 + · · ·+ cn. (1.12)
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Theorem 1.16. If D(m) is any decomposition of m as a sum of Fibonacci Quilt numbers,
then

#summands(G(m)) ≤ #summands(D(m)). (1.13)

1.2.2. Gaussian Behavior of Number of Summands in (s, b)-Generacci legal decompositions.
Below we report on the distribution of the number of summands in the (s, b)-Generacci legal
decompositions. In attacking this problem we developed a new technique similar to ones used
before but critically different in that we are able to bypass technical assumptions that other
papers needed to prove a Gaussian distribution. We elaborate on this method in [8], where we
also determine the distribution of gaps between summands. We have chosen to concentrate on
the Fibonacci Quilt sequence results in this paper, and just state many of the (s, b)-Generacci
sequence outcomes, as we see the same behavior as in other systems for the (s, b)-Generacci
numbers, but see fundamentally new behavior for the Fibonacci Quilt sequence.

Theorem 1.17 (Gaussian Behavior of Summands for (s, b)-Generacci). Let the random vari-
able Yn denote the number of summands in the (unique) (s, b)-Generacci legal decomposition
of an integer picked at random from [0, abn+1) with uniform probability.1 Then for µn and σ2

n,
the mean and variance of Yn, we have

µn = An+B + o(1) (1.14)

σ2
n = Cn+D + o(1) (1.15)

for some positive constants A,B,C,D. Moreover if we normalize Yn to Y ′
n = (Yn − µn)/σn,

then Y ′
n converges in distribution to the standard normal distribution as n → ∞.

Unfortunately, the above methods do not directly generalize to Gaussian results for the
Fibonacci Quilt sequence. Interestingly and fortunately there is a strong connection between
the two sequences, and in [8] we show how to interpret many questions concerning the Fibonacci
Quilt sequence to a weighted average of several copies of the (4, 1)-Generacci sequence. This
correspondence is not available for questions on unique decomposition, but does immediately
yield Gaussian behavior and determines the limiting behavior of the individual gap measures.

2. Recurrence Relations

2.1. Recurrence Relations for the (s, b)-Generacci Sequence. Recall that for s, b ≥ 1,
an (s, b)-Generacci decomposition of a positive integer is legal if the following conditions hold.

(1) No term ai is used more than once.
(2) No two distinct terms ai, aj in a decomposition can have indices i, j from the same

bin.
(3) If ai and aj are summands in a legal decomposition, then there are at least s bins

between them.

The terms of the (s, b)-Generacci sequence can be pictured as follows:

a1, . . . , ab
B1

, a1+b, . . . , a2b
B2

, . . . , a1+nb, . . . , a(n+1)b

Bn+1

, a1+(n+1)b, . . . , a(n+2)b

Bn+2

, . . . . (2.1)

We now prove the following results related to the elements of the (s, b)-Generacci sequence.

Lemma 2.1. If s, b ≥ 1, then ai = i for all 1 ≤ i ≤ (s + 1)b + 1, where ai is the ith term in
the (s, b)-Generacci sequence.

1Using the methods of [3], these results can be extended to hold almost surely for sufficiently large sub-
interval of [a(n−1)b+1, abn+1).
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Proof. This follows directly from the definition of the (s, b)-Generacci sequence. That is,
we note that at the (s + 1)th-bin, we clearly have s bins to the left, yet we are unable to
use any elements from those bins to decompose any new integers. Thus, ai = i, for all
1 ≤ i ≤ (s+ 1)b+ 1. �

Lemma 2.2. If k can be decomposed using summands {a1, . . . , ap}, then so can k − 1.

Proof. Let k = aℓ1 + aℓ2 + · · · + aℓt with ℓ1 > ℓ2 > · · · > ℓt be a legal decomposition of k. So
k − 1 = aℓ1 + aℓ2 + · · ·+ (aℓt − 1).

It must be the case that either aℓt −1 is zero or it has a legal decomposition with summands
indexed smaller than ℓt, as aℓt was added because it was the smallest integer that could not
be legally decomposed with summands indexed smaller than ℓt. If ℓt was sufficiently distant
from ℓt−1 for the decomposition of k to be legal, using summands with even smaller indices
does not create an illegal interaction with the remaining summands aℓ1 , . . . , aℓt−1 . �

This lemma allows us to conclude that the smallest integer that does not have a legal
decomposition using {a1, . . . , an} is one more than the largest integer that does have a legal
decomposition using {a1, . . . , an}.

Lemma 2.3. If s, b, n ≥ 1 and 1 ≤ j ≤ b+ 1, then

aj+nb = a1+nb + (j − 1)a1+(n−s)b. (2.2)

Proof. The term a1+nb is the first entry in the (n+1)st bin and trivially satisfies the recursion
relation for j = 1.

Recall a legal decomposition containing a member of the (n + 1)st bin would not have
other addends from any of bins {Bn−s+1,Bn−s+2, . . . ,Bn,Bn+1}. So by construction we have
a2+nb = a1+nb+a1+(n−s)b, as the largest integer that can be legally decomposed using addends
from bins B1,B2, . . . ,Bn−s is a1+(n−s)b − 1.

Using the same argument we have

a3+nb = a2+nb + a1+(n−s)b = a1+nb + 2a1+(n−s)b. (2.3)

We proceed similarly for j = 4, . . . , b. For j = b+ 1, the term ab+1+nb = a1+(n+1)b is the first
entry in the (n + 2)nd bin. By construction a1+(n+1)b = a(n+1)b + a1+(n−s)b. Using equation
(2.2) with j = b we have

a1+(n+1)b = a(n+1)b + a1+(n−s)b = a1+nb + (b− 1)a1+(n−s)b + a1+(n−s)b = a1+nb + ba1+(n−s)b.
(2.4)

�

Proof of Theorem 1.3. Set s, b ≥ 1. We proceed by considering i of the form j + nb, j ∈
{1, . . . , b}, so ai = aj+nb is the jth entry in the (n+ 1)st bin. Using Lemma 2.3,

aj+nb = a1+nb + (j − 1)a1+(n−s)b

= a1+(n−1)b + ba1+(n−s−1)b + (j − 1)a1+(n−s)b

= a1+(n−1)b + (j − 1)a1+(n−s−1)b + (b− j + 1)a1+(n−s−1)b + (j − 1)a1+(n−s)b

= aj+(n−1)b + (b− j + 1)a1+(n−s−1)b + (j − 1)a1+(n−s)b. (2.5)
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Again using the construction of our sequence we have a1+(n−s)b = a(n−s)b + a1+(n−2s−1)b.
This substitution gives

aj+nb = aj+(n−1)b + (b− j + 1)a1+(n−s−1)b + (j − 1)a(n−s)b + (j − 1)a1+(n−2s−1)b

= aj+(n−1)b + a1+(n−s−1)b + (j − 1)a1+(n−2s−1)b + (b− j)a1+(n−s−1)b + (j − 1)a(n−s)b

= aj+(n−1)b + aj+(n−s−1)b + (b− j)a1+(n−s−1)b + (j − 1)a(n−s)b. (2.6)

Note that by Lemma 2.3, a(n−s)b = a1+(n−s−1)b + (b− 1)a1+(n−2s−1)b, so the last two terms
in (2.6) may be simplified as

(b− j)a1+(n−s−1)b + (j − 1)a1+(n−s−1)b + (j − 1)(b − 1)a1+(n−2s−1)b

= (b− 1)
[

a1+(n−s−1)b + (j − 1)a1+(n−2s−1)b

]

= (b− 1)aj+(n−s−1)b. (2.7)

Substituting (2.7) into equation (2.6) yields

aj+nb = aj+(n−1)b + aj+(n−s−1)b + (b− 1)aj+(n−s−1)b

= aj+(n−1)b + baj+(n−s−1)b, (2.8)

which completes the proof of the first part of Theorem 1.3.
For the proof of the second part, we have from Lemma 2.3

aj+nb = aj−1+nb + a1+(n−s)b, (2.9)

thus,
aj+nb = aj−1+nb + aj−1+nb−(sb+j−2) (2.10)

for j = 2, . . . , b+1. The result now follows if we define f(j+nb) = sb+ j− 1, for j = 1, . . . , b.
We prove the Generalized Binet Formula and the approximation in Appendix A of [7]. �

2.2. Recurrence Relations for the Fibonacci Quilt Sequence.

Proof of Theorem 1.7. The proof is by induction. The basis cases for n ≤ 11 can be checked
by brute force. We now turn to the inductive step. We assume (1.6), (1.7), and (1.8) hold for
all n = 1, 2, 3, . . . , k − 1 where k ≥ 12. Next we must show they hold for n = k.

We first note that by construction we can legally decompose all numbers in the interval
[1, qk−4 − 1] using terms in {q1, . . . , qk−5}; qk−4 was added to the sequence because it was
the first number that could not be decomposed using those terms. So, using qk and any
subset of {q1, . . . , qk−5} as summands, we can legally decompose all numbers in the interval,
[qk, qk+qk−4−1]. We can decompose all numbers in the interval [qk−4, qk−1] using summands
from {q1, . . . , qk−1} and thus we can decompose all numbers in the interval [1, qk+qk−4−1] using
{q1, . . . , qk}. The term qk+1 will be the smallest number that we cannot legally decompose
using {q1, . . . , qk}. The argument above shows that qk+1 ≥ qk + qk−4.

Notice

qk + qk−4 = (qk−1 + qk−5) + qk−4

= qk−1 + (qk−4 + qk−5)

= qk−1 + qk−2. (2.11)

It remains to show that there is no legal decomposition of m = qk+qk−4 = qk−1+qk−2. If qk
were in the decomposition of m, the remaining summands would have to add to qk−4. But that
is a contradiction as qk−4 was added to the sequence because it had no legal decompositions
as sums of other terms. Similarly, we can see that any legal decomposition of m does not use
qk−1, qk−2, qk−4.
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Notice that qk−3 must be part of any possible legal decomposition of m: if it were not, then

m <
∑k−5

i=1 qi = qk − 6 < qk < qk + qk−4 = m. Hence, any legal decomposition would have
m = qk−3 + x, where the largest possible summand in the decomposition of x is qk−5.

Now assume we have a legal decomposition of m = qk−3 + x. There are two cases.
Case 1: The legal decomposition of x uses qk−5 as a summand. So

m = qk−3 + x = qk−3 + qk−5 + y (2.12)

and y can be legally decomposed using summands from {q1, q2, . . . , qk−10}. Then using equa-

tion (1.8), y <
∑n−10

i=1 qi = qk−5 − 6. This leads us to the following:

qk + qk−4 = m

< qk−3 + qk−5 + qk−5 − 6

< qk−3 + qk−4 + qk−5 − 6

= qk−1 + qk−5 − 6

= qk − 6

< qk, (2.13)

a contradiction.
Case 2: The largest possible summand used in the legal decomposition of x is qk−8. Thus,

qk + qk−4 = m

< qk−3 +

k−8
∑

i=1

qi

= qk−3 + qk−3 − 6

< qk−2 + qk−3

< qk, (2.14)

another contradiction.
So m cannot be legally decomposed using {q1, . . . , qk} and qk+1 = qk + qk−4. The proof of

equation (1.7) follows from the work done in equation (2.11). To prove equation (1.8), note

k−5
∑

i=1

qi = qk−5 +

k−6
∑

i=1

qi = qk−5 + qk−1 − 6 = qk − 6. (2.15)

Thus, equations (1.6), (1.7), and (1.8) hold for all n ≥ 5. �

Proposition 2.4 (Explicit Formula). Let qn denote the nth term in the Fibonacci Quilt se-
quence. Then

qn = α1λ
n
1 + α2λ

n
2 + α3λ2

n
, (2.16)

where α1 ≈ 1.26724,

λ1 =
1

3

(

27

2
− 3

√
69

2

)1/3

+

(

1
2

(

9 +
√
69
))1/3

32/3
≈ 1.32472 (2.17)

and λ2 ≈ −0.662359 − 0.56228i (which has absolute value approximately 0.8688).

Proof. Using the recurrence relation from equation (1.6) in Theorem 1.7, we have the charac-
teristic equation

x3 = x+ 1. (2.18)
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Hence, qn = α1λ
n
1 + α2λ

n
2 +α3λ2

n
, where λ1, λ2 and λ2 are the three distinct solutions to the

characteristic equation, which are easily found by the cubic formula.
We solve for the αi using the first few terms of the sequence. Straightforward calculations

reveal

α1 ≈ 1.26724

α2 ≈ −0.13362 + 0.128277i

α3 ≈ −0.13362 − 0.128277i, (2.19)

completing the proof. �

3. Growth Rate of Number of Decompositions for the Fibonacci Quilt

Sequence

We prove Theorem 1.11 by deriving a recurrence relation for the number of FQ-legal de-
compositions. Specifically, consider the following definitions.

• dn: the number of FQ-legal decompositions using only elements of {q1, q2, . . . , qn}.
Note we include one empty decomposition of 0 in this count. Further, some of the
decompositions are of numbers larger than qn+1 (for example, for n large qn + qn−2 +
qn−20 > qn+1). We set d0 = 1.

• cn: the number of FQ-legal decompositions using only elements of {q1, q2, . . . , qn} and
qn is one of the summands. We set c0 = 1.

• bn: the number of FQ-legal decompositions using only elements of {q1, q2, . . . , qn} and
both qn and qn−2 are used.

By brute force one can compute the first few values of these sequences; see Table 1.

Table 1. Values of the first few terms of dn, cn, and bn; for ease of comparison
we have included qn as well.

n dn cn bn qn

1 2 1 0 1
2 3 1 0 2
3 4 1 0 3
4 6 2 1 4
5 8 2 1 5
6 11 3 1 7
7 15 4 1 9
8 21 6 2 12
9 30 9 3 16

10 42 12 4 21
11 59 17 6 28
12 82 23 8 37
13 114 32 11 49

We first find three recurrence relations interlacing our three unknowns.
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Lemma 3.1. For n ≥ 7 we have

dn = cn + cn−1 + · · ·+ c0 = cn + dn−1 (3.1)

cn = dn−5 + cn−2 − bn−2 (3.2)

bn = dn−7, (3.3)

which implies
dn = dn−1 + dn−2 − dn−3 + dn−5 − dn−9. (3.4)

Proof. The relation for dn in (3.1) is the simplest to see. The left-hand side counts the number
of FQ-legal decompositions where the largest element used is qn, which may or may not be
used. The right-hand side counts the same quantity, partitioning based on the largest index
used. It is important to note that c0 is included and equals 1, as otherwise we would not have
the empty decomposition (corresponding to an FQ-legal decomposition of 0). We immediately
use this relation with n− 1 for n to replace cn−1 + · · ·+ c0 with dn−1.

Our second relation (3.2) comes from counting the number of FQ-legal decompositions where
qn is used and no larger index occurs, which is just cn. Since qn occurs in all such numbers we
cannot use qn−1, qn−3 or qn−4, but qn−2 may or may not be used. If we do not use qn−2 then we
are left with choosing FQ-legal decompositions where the largest index used is at most n− 5;
by definition this is dn−5. We must add back all the numbers arising from decompositions
using qn and qn−2. Note that if n − 2 was the largest index used then the number of valid
decompositions is cn−2; however, this includes bn−2 decompositions where we use both qn−2

and qn−4. As we must use qn, we cannot use qn−4 and thus these bn−2 decompositions should
not have been included; thus cn equals dn−5 + cn−2 − bn−2. (Note: alternatively one could
prove the relation cn = dn−5 + bn.)

Finally, consider the relation for bn (3.3). This counts the times we use qn (which forbids us
from using qn−1, qn−3 and qn−4) and qn−2 (which forbids us from using qn−3, qn−5 and qn−6).
Note all other indices at most n − 7 may or may not be used, and no other larger index can
be chosen. By definition the number of valid choices is dn−7.

We now easily derive a recurrence involving just the d’s. The first relation yields cn =
dn − dn−1 while the third gives bn = dn−7. We can thus rewrite the second relation involving
only d’s, which immediately gives (3.4). �

Armed with the above, we solve the recurrence for dn.

Lemma 3.2. We have
dn = β1r

n
1 [1 +O ((r2/r1)

n)] , (3.5)

where β1 > 0, |r1| ≈ 1.39704 and |r2| ≈ 1.07378 are the two largest (in absolute value) roots
of r7 − r6 − r2 − 1 = 0.

Proof. The characteristic polynomial associated to the recurrence for dn in (3.4) factors as

r9 − r8 − r7 + r6 − r4 + 1 = (r − 1)(r + 1)(r7 − r6 − r2 − 1). (3.6)

The roots of the septic are all distinct, with the largest |r1| approximately 1.39704 and the
next two largest being complex conjugate pairs of size |r2| = |r2| ≈ 1.07378; the remaining
roots are at most 1 in absolute value. Thus by standard techniques for solving recurrence
relations [12] (as the roots are distinct) there are constants such that

dn = β1r
n
1 + β2r

n
2 + · · ·+ β7r

n
7 + β81

n + β9(−1)n. (3.7)

To complete the proof, we need only show that β1 > 0 (if it vanished, then dn would
grow slower than one would expect). As the roots come from a degree 7 polynomial, it is
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not surprising that we do not have a closed form expression for them. Fortunately a simple
comparison proves that β1 > 0. Since dn counts the number of FQ-legal decompositions using
indices no more than qn, we must have dn ≥ qn. As qn grows like λn

1 with λ1 ≈ 1.3247, if
β1 = 0 then dn < qn for large n, a contradiction. Thus, β1 > 0. �

We can now determine the average behavior of dFQ(m), the number of FQ-legal decompo-
sitions of m.

Proof of Theorem 1.11. We have

dFQ;ave(n) =
1

qn+1

qn+1−1
∑

m=0

dFQ(m). (3.8)

We first deal with the upper bound. The summation on the right-hand side of equation
(3.8) is less than dn, because dn counts some FQ-legal decompositions that exceed qn+1. Thus,

dFQ;ave(n) ≤
dn
qn+1

. (3.9)

For n large by Lemma 3.2 we have

dn = β1r
n
1 [1 +O ((r2/r1)

n)] (3.10)

with β1 > 0 and r1 ≈ 1.39704, and from Proposition 2.4

qn = α1λ
n
1 [1 +O ((λ2/λ1)

n)] (3.11)

where α1 ≈ 1.26724,

λ1 =
1

3

(

27

2
− 3

√
69

2

)1/3

+

(

1
2

(

9 +
√
69
))1/3

32/3
≈ 1.32472 (3.12)

and λ2 ≈ −0.662359 − 0.56228i (which has absolute value approximately 0.8688). Thus there
is a C2 > 0 such that for n large we have dFQ;ave(n) ≤ C2(r1/λ1)

n.
We now turn to the lower bound for dFQ;ave(n). As we are primarily interested in the growth

rate of dFQ;ave(n) and not on optimal values for the constants C1 and C2, we can give a simple
argument which suffices to prove the exponential growth rate, though at a cost of a poor
choice of C1. Note that for large n the sum on the right side of equation (3.8) is clearly at
least dn−2016. To see this, note dn−2016 counts the number of FQ-legal decompositions using
no summand larger than qn−2016, and if qn−2016 is our largest summand then by (1.8) our
number cannot exceed

n−2016
∑

i=1

qi = qn−2011 − 6 ≤ qn. (3.13)

Thus,

dFQ;ave(n) ≥
dn−2016

qn+1
. (3.14)

We now argue as we did for the upper bound, noting that for large n we have

dn−2016 = r−2016
1 · β1rn1 [1 +O ((r2/r1)

n)] . (3.15)

Thus for n sufficiently large

dFQ;ave(n) ≥ C1(r1/λ1)
n, (3.16)

completing the proof. �
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4. Greedy Algorithms for the Fibonacci Quilt Sequence

4.1. Greedy Decomposition. Let hn denote the number of integers from 1 to qn+1−1 where
the greedy algorithm successfully terminates in a legal decomposition. We have already seen
that the first number where the greedy algorithm fails is 6; the others less than 200 are 27,
34, 43, 55, 71, 92, 113, 120, 141, 148, 157, 178, 185 and 194.

Table 2 lists hn for the first few values of n, as well as ρn the percentage of integers in
[1, qn+1) where the greedy algorithm yields a legal decomposition.

Table 2. Values of the first few terms of qn, hn and ρn.

n qn hn ρn

1 1 1 100.0000
2 2 2 100.0000
3 3 3 100.0000
4 4 4 100.0000
5 5 5 83.3333
6 7 7 87.5000
7 9 10 90.9091
8 12 14 93.3333
9 16 19 95.0000

10 21 25 92.5926
11 28 33 91.6667
12 37 44 91.6667
13 49 59 92.1875
14 65 79 92.9412
15 86 105 92.9204
16 114 139 92.6667
17 151 184 92.4623

We start by determining a recurrence relation for hn.

Lemma 4.1. For hn as above,

hn = hn−1 + hn−5 + 1, (4.1)

with initial values hk = k for 1 ≤ k ≤ 5.

Proof. We can determine the number integers in [1, qn+1) for which the greedy algorithm is
successful by counting the same thing in [1, qn) and in [qn, qn+1). The number of integers in
[1, qn) for which the greedy algorithm is successful is just hn−1.

Integers m ∈ [qn, qn+1) for which the greedy algorithm is successful must have largest
summand qn. So m = qn + x. We claim x ∈ [0, qn−4). Otherwise m = qn + x ≥ qn + qn−4 =
qn+1, which is a contradiction. If x = 0, then m = qn can be legally decomposed using
the greedy algorithm and we must add 1 to our count. If m is to have a successful legal
greedy decomposition then so must x. Hence it remains to count how many x ∈ [1, qn−4) have
successful legal greedy decompositions, but this is just hn−5. Combining these counts finishes
the proof. �

We now prove the greedy algorithm successfully terminates for a positive percentage of
integers, as well as fails for a positive percentage of integers.
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Proof of Theorem 1.13. Instead of solving the recurrence in (4.1), it is easier to let gn = hn+1
and first solve

gn = gn−1 + gn−5, gk = k + 1 for 1 ≤ k ≤ 5. (4.2)

The characteristic polynomial for this is

r5 − r4 − 1 = 0, or (r3 − r − 1)(r2 − r + 1). (4.3)

By standard recurrence relation techniques, we have

gn = c1λ
n
1 + c2λ

n
2 + · · ·+ c5λ

n
5 , (4.4)

where

λ1 =
1

3

(

27

2
− 3

√
69

2

)1/3

+

(

1
2

(

9 +
√
69
))1/3

32/3
≈ 1.32472 (4.5)

is the largest root of the recurrence for gn (the other roots are at most 1 in absolute value).
By Proposition 2.4 we have

qn = α1λ
n
1 + α2λ

n
2 + α3λ

n
3 , (4.6)

where λ1, λ2, λ3 are the same as in equation (4.4) and α1 ≈ 1.26724.
We must show that c1α1 6= 0, as this will imply that gn and qn both grow at the same

exponential rate. As gn ≥ 2gn−5 implies gn ≥ c2n/5 we have that gn is growing exponentially,
thus, c1 6= 0.

Unfortunately writing c1 in closed form requires solving a fifth order equation, but this can
easily be done numerically and the limiting ratio ρn = hn/(qn+1 − 1) can be approximated
well. That ratio converges to c1

α1

1
λ1

≈ 0.92627. �

4.2. Greedy-6 Decomposition.

Lemma 4.2. For ℓ ≥ 1 + 5k and k ≥ 0, we have qℓ + qℓ−5 + · · ·+ qℓ−5k < qℓ+1.

Proof. We proceed by induction on k. For the Basis Step, note

qℓ + qℓ−5 < qℓ + qℓ−4 = qℓ+1. (4.7)

For the Inductive Step: By the inductive hypothesis and the recurrence relation stated in
Theorem 1.7,

qℓ + (qℓ−5 + · · ·+ qℓ−5k) < qℓ + qℓ−4 = qℓ+1, (4.8)

completing the proof. �

Proof of Theorem 1.15. For the first part, we verify that if m ≤ 151 = q17 the theorem holds.
Define In := [qn, qn+1) = [qn, qn+1 − 1]. Assume for all m ∈ ∪n−1

ℓ=1 Iℓ, m satisfies the theorem.
Now consider m ∈ In. If m = qn then we are done. Assume m = qn + x with x > 0. Since
qn+1 = qn+qn−4, we know x < qn−4. Then by the inductive hypothesis we know the x satisfies
the theorem. Namely, G(x) = qk1 + qk2 + · · ·+ qks is a FQ-legal decomposition which satisfies
either Condition (1) or (2) but not both. Then G(m) = qn + qk1 + qk2 + · · · + qks and lastly
n− k1 ≥ 5.

For the second part, let m = qℓ1 + qℓ2 + · · · + qℓt−1 + qℓt be a decomposition that satisfies
either Condition (1) or (2) but not both. Note that in both cases, this decomposition is legal.
If t = 1, then m is a Fibonacci Quilt number and the theorem is trivial. So we assume t ≥ 2.
Hence by construction of the sequence, m is not a Fibonacci Quilt number.

Let G(m) = qk1 + qk2 + · · · + qks . Note that s ≥ 2. For contradiction we assume the given
decomposition is not the Greedy-6 decomposition. Without loss of generality we may assume
qℓ1 6= qk1 . Since qk1 was chosen according to the Greedy-6 algorithm, qℓ1 < qk1 .
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Case 1: Using Lemma 4.2,

m = qℓ1 + qℓ2 + · · ·+ qℓt−1 + qℓt ≤ qℓ1 + qℓ1−5 + · · ·+ qℓ1−5(t−1) < qℓ1+1 ≤ qk1 < m (4.9)

which is a contradiction.
Case 2: Again using Lemma 4.2,

m = qℓ1 + qℓ2 + · · ·+ qℓt−2 + q4 + q2

= qℓ1 + qℓ2 + · · ·+ qℓt−2 + q5 + q1

≤ qℓ1 + qℓ1−5 + · · · + qℓ1−5(t−2) + q1

< qℓ1+1 + q1

≤ qk1 + q1

≤ m (4.10)

which is a contradiction. �

In order to prove Theorem 1.16 we will need several relationships between the terms in the
Fibonacci Quilt sequence. The following lemma describes those relationships.

Lemma 4.3. The following hold.

(1) If n ≥ 7, then 2qn = qn+2 + qn−5.
(2) If n ≥ 8, then qn + qn−2 = qn+1 + qn−5.
(3) If n ≥ 10, then qn + qn−3 = qn+1 + qn−8.

Proof. The proof follows from repeated uses of the recurrence relations stated in Theorem 1.7:

2qn = qn + qn−1 + qn−5 = qn+2 + qn−5

qn + qn−2 = qn + qn−4 + qn−5 = qn+1 + qn−5

qn + qn−3 = qn + qn−4 + qn−3 − qn−4 = qn+1 + qn−8. (4.11)

�

Proof of Theorem 1.16. The proof follows by showing that we can move from D(m) to G(m)
without increasing the number of summands by doing five types of moves. That the summa-
tion remains unchanged after each move follows from Lemma 4.3 and Theorem 1.7.

(1) Replace 2qn with qn+2 + qn−5 (for n ≥ 7). (If n ≤ 6, replace 2q6 with q8 + q2 , replace
2q5 with q7 + q1, replace 2q4 with q6 + q1, replace 2q3 with q5+ q1, replace 2q2 with q4,
and replace 2q1 with q2.)

(2) Replace qn−1 + qn−2 with qn+1 (for n ≥ 5). In other words, if we have two adjacent
terms, use the recurrence relation to replace. (If n ≤ 4, replace q3 + q2 with q5 and
replace q2 + q1 with q3.)

(3) Replace qn+ qn−2 with qn+1 + qn−5 (for n ≥ 8). (If n ≤ 7, replace q7+ q5 with q8 + q2,
q6 + q4 with q7 + q2, q5 + q3 with q7 + q1, q4 + q2 with q5 + q1, and q3 + q1 with q4.)

(4) Replace qn+qn−3 with qn+1+qn−8 (for n ≥ 10). (If n ≤ 9, replace q9+q6 with q10+q2,
q8 + q5 with q9 + q1, q7 + q4 with q8 + q1, q6 + q3 with q7 + q1, q5 + q2 with q6, and
q4 + q1 with q5.)

NOVEMBER 2016 363



THE FIBONACCI QUARTERLY

(5) Replace qn + qn−4 with qn+1 (for n ≥ 6). In other words, if we have two adjacent
terms, use the recurrence relation to replace.

Notice that in all moves, the number of summands either decreases by one or remains
unchanged. In addition, the sum of the indices either decreases or remains unchanged. There
are three situations where neither the index sum nor the number of summands decreases;
q5 + q3 = q7 + q1, q4 + q2 = q5 + q1, and 2q3 = q5 + q1. But in these situations, the number
of q5, q4, q3, q2 decrease. Therefore this process eventually terminates because the index sum
and the number of summands cannot decrease indefinitely.

Let m = qℓ1 + qℓ2 + · · ·+ qℓt−1 + qℓt be the decomposition obtained after all possible moves.
Each move either decreases the number of summands or replaces two summands with two that
are farther apart in the sequence. In fact, closer examination of the moves reveals ℓi−ℓi−1 ≥ 5
except maybe ℓt−1 = 5 and ℓt = 1.

If ℓt−1 = 5 and ℓt = 1, replace q5 + q1 with q4 + q2. By Theorem 1.15 this is the Greedy-6
decomposition of m. �
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