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Abstract. The impetus for this research came from previous work of the author and others.
This work centered around finding generalizations of the identities

F
2
n+1 + F

2
n = F2n+1,

F
3
n+1 + F

3
n − F

3
n−1 = F3n,

and of their higher power analogues. The main result in this paper represents an addition
to the literature of such identities. Specifically, the main result is an identity satisfied by
mth powers of Fibonacci numbers in which the subscripts of the Fibonacci numbers involved
are arbitrarily spaced. From this main result, additional (similar) identities that involve the
Fibonacci/Lucas numbers arise as so-called dual identities.

1. Introduction

The Fibonacci and Lucas numbers are defined, respectively, for all integers n, by

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1,

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1.

We begin by stating an identity that involves sums of powers of Fibonacci numbers. To do
this, we require some notation. The Fibonomial coefficient

(

m
i

)

F
is defined for integers m ≥ 0

by

(

m

i

)

F

=











0, if i < 0 or i > m;

1, if i = 0 or i = m;
Fm···Fm−i+1

F1···Fi
, if 0 < i < m.

For a discussion on generalized binomial coefficients, we recommend [5] and the more recent
paper [8] .

Taking m ≥ 1 to be an integer, the identity to which we refer in the preceding paragraph is

m
∑

i=0

(−1)
i(i+3)

2

(

m

i

)

F

Fm+1
n+m−i = F1 · · ·FmF(m+1)(n+m

2
). (1.1)

Identity (1.1) is a special case of identity (5) in Torretto and Fuchs [12].
The first two cases of (1.1), corresponding to m = 1 and m = 2, are respectively

F 2
n+1 + F 2

n = F2n+1, (1.2)

F 3
n+1 + F 3

n − F 3
n−1 = F3n. (1.3)

Identity (1.2) occurs as I11 in [6, page 56]. Dickson [2, page 395] attributes identity (1.3) to
Edouard Lucas.

In [4], Ginsburg gave the identity F 3
n+2−3F 3

n+F 3
n−2 = 3F3n. It was this identity of Ginsburg

that prompted the present author to seek generalizations of (1.2) and (1.3). This led to (see
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[9])

F 2
n+k+1 + F 2

n−k = F2k+1F2n+1, (1.4)

F3k+1F
3
n+k+1 + F3k+2F

3
n+k − F 3

n−2k−1 = F3k+1F3k+2F3n, (1.5)

in which k and n are integers. In [9], the author also presented a conjecture giving analogues
of (1.4) and (1.5) for higher powers. This conjecture was proved in [8]. In [7], Howard proved
that (1.4) is equivalent to F 2

n +(−1)n+k+1F 2
k = Fn−kFn+k, which occurs as I19 in [6, page 19].

In [10], the present author proved that

FmF 3
n+k + (−1)k+m+1FkF

3
n+m + (−1)k+mFk−mF 3

n = Fk−mFkFmF3n+k+m, (1.6)

which generalizes (1.5). In [11], the present author proposed a fourth power identity analogous
to (1.6). This identity was proved in [1]. Indeed, in [1] the authors went much further, working
with sequences more general than the Fibonacci sequence, and giving mth power identities
satisfied by these sequences.

Of interest to us in the present paper is Theorem 3 in [1], which we now state in the context
of the Fibonacci numbers.

Theorem 1.1. Let m ≥ 2 be an integer, and let a1, a2, . . . , am be distinct integers. Define

P (i,m) =
m
∏

j=1

Fai−aj , in which j 6= i.

Then for any integer m ≥ 2, we have

m
∑

i=1

Fm
n+ai

/P (i,m) = Fmn+a1+a2+···+am . (1.7)

The first two cases of (1.7), corresponding to m = 2 and m = 3, are respectively

F 2
n+a1

/Fa1−a2 + F 2
n+a2

/Fa2−a1 = F2n+a1+a2 , (1.8)

and

F 3
n+a1

/ (Fa1−a2Fa1−a3) + F 3
n+a2

/ (Fa2−a1Fa2−a3) (1.9)

+F 3
n+a3

/ (Fa3−a1Fa3−a2) = F3n+a1+a2+a3 .

It is easy to see that (1.8) generalizes (1.2), and (1.9) generalizes (1.3). In fact, each of
(1.1)–(1.6) arises from (1.7).

On its left side, identity (1.7) consists of a linear combination of mth powers of Fibonacci
numbers that are spaced according to the values of the ai. Furthermore, the subscript of F
on the right side of (1.7) contains each ai.

Let m ≥ 2 be an integer and let k be an integer. Also let a1, a2, . . . , am be integers. Define

S(i,m, k) = Fa1+a2+···+am−ai−k.

We now state our main result, which is the theorem that follows.

Theorem 1.2. Let m ≥ 2 be an integer. Let k be an integer, and let a1, a2, . . . , am+1 be

distinct integers. Then

m+1
∑

i=1

(−1)aiS(i,m+ 1, k)Fm
n+ai

/P (i,m+ 1) = (−1)a1+a2+···+am+1+k+1Fmn+k, (1.10)

where P (i,m) is defined in the statement of Theorem 1.1.
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Notice that (1.10) is analogous to (1.7), but the subscript of F on the right side of (1.10)
is independent of the ai. However, compared to (1.7), (1.10) has an extra mth power on
the left. So each mth power identity that arises from (1.10) involves m + 1 distinct integers
a1, a2, . . . , am+1, and the subscript of F on the right can be chosen to be mn+ k, where k is
an arbitrary integer.

To illustrate the discussion in the previous paragraph, let m = 3 and let k = 1. Take
(a1, a2, a3, a4)=(2, 4, 7, 10). Then (1.10) becomes

902F 3
n+2 − 2261F 3

n+4 − 427F 3
n+7 + 6F 3

n+10 = −14F3n+1. (1.11)

Next take k = 5, and let the remaining parameters be the same. Then (1.10) becomes

752F 3
n+2 − 1885F 3

n+4 − 356F 3
n+7 + 5F 3

n+10 = −80F3n+5. (1.12)

Indeed, for m = 3 and (a1, a2, a3, a4) = (2, 4, 7, 10), (1.11) and (1.12) belong to an infinite
family, parametrized by k, of third power identities produced by (1.10).

In Section 2, we briefly summarize those parts of a paper of L. A. G. Dresel [3] that we
require in Sections 3 and 4. In Section 3, we prove our main result. In Section 4, from our
main result, we generate results that are similar in nature to our main result.

2. Elements of a Seminal Paper of L. A. G. Dresel

From our point of view, the importance of a 1992 paper of L. A. G. Dresel [3] cannot
be overstated. For one thing, Dresel’s paper outlines a method of proof for certain types of
Fibonacci/Lucas identities. It is this method that we use to prove our main result. In order to
make the present paper self contained, we outline, in the next few paragraphs, those elements
of Dresel’s paper that we require in the present paper.

Let α = (1 +
√
5)/2 and β = (1 −

√
5)/2, so that αβ = −1. Then the Binet (closed) forms

for Fn and Ln are

Fn = (αn − βn) /
√
5,

Ln = αn + βn,
(2.1)

and these Binet forms are valid for all integers n.
In (2.1), we make the substitutions

X = αn, Y = βn, XY = αnβn = (−1)n. (2.2)

The substitutions (2.2) transform any Fibonacci/Lucas identity (FL-identity) into an identity
of algebraic forms in the variables X and Y . Dresel calls this identity of algebraic forms the
XY -transform of the FL-identity in question. Conversely, if the XY -transform is an identity,
it proves the corresponding FL-identity. Dresel defines an FL-identity, or expression, as being
homogeneous if its XY -transform is an homogeneous algebraic form in X and Y .

To illustrate, we use the example in [3, page 170]. The algebraic identity

X3 + Y 3 = (X + Y )3 − 3XY (X + Y ) (2.3)

proves the FL-identity

L3n = L3
n − 3(−1)nLn. (2.4)

Furthermore, since (2.3) is homogeneous of degree 3, then (2.4) is an homogeneous FL-identity
of degree 3.
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Next, let j ≥ 0 and k be integers. Then, with the substitutions (2.2), we have

Fjn+k =
(

αkXj − βkY j
)

/
√
5,

Ljn+k = αkXj + βkY j,

(−1)jn = XjY j.

(2.5)

The known identities F
−n = (−1)n+1Fn and L

−n = (−1)nLn justify the restriction j ≥ 0
above. From (2.5), we see that Fjn+k and Ljn+k transform to homogeneous forms of degree
j in X and Y , and (−1)jn transforms to an homogeneous form of degree 2j in X and Y .
Accordingly, we say that Fjn+k and Ljn+k are of degree j in the variable n, while (−1)jn is
of degree 2j in the variable n. Of course, implicit in this discussion is an underlying field of
coefficients, usually Q(

√
5).

In any FL-expression, we take a term to be a product of its factors. We take the degree

of a term to be the sum of the degrees of its factors. If each term of an FL-expression has
the same degree, then the FL-expression is said to be homogeneous. Via (2.5), we can see
when an FL-expression is homogeneous, and determine its degree without writing out its
XY -transform.

Now suppose we have an homogeneous FL-equation of degree s. By definition, the associ-
ated XY -transform of this FL-equation is homogeneous, and has the form

s
∑

i=0

aiX
s−iY i =

s
∑

i=0

biX
s−iY i. (2.6)

In (2.6), the coefficients ai and bi are independent of n, and some of these coefficients may be
zero. Dividing (2.6) by Xs, we obtain the polynomial equation

s
∑

i=0

aiZ
i =

s
∑

i=0

biZ
i, Z = X−1Y, (2.7)

which has degree s, and which Dresel calls the polynomial form of the FL-equation. If the
FL-equation in question is an identity, then (2.7) is satisfied by infinitely many values of Z.
This leads to Dresel’s verification theorem [3, page 171], which follows. To bring together the
concepts that we have outlined above, we give Dresel’s short proof of this theorem.

Theorem 2.1. If an FL-equation is homogeneous of degree s in the variable n, and if this

equation is satisfied for s + 1 different values of n, then it is an identity that is true for all

values of n.

Proof. The homogeneous FL-equation in question can be reduced to a polynomial equation
of the form (2.7). Since the homogeneous FL-equation is satisfied for s + 1 different values
of n, its corresponding polynomial equation is satisfied for s + 1 different values of Z. Since
the polynomials on each side of this polynomial equation are of degree s, it follows from the
fundamental of algebra that they are identical. Therefore, the FL-equation is an identity that
is true for all n. �

When required, we can insert appropriate powers of −1 to write identities in homogeneous
form, thus rendering them provable by Dresel’s verification theorem. As an example, in the
identity [6, page 59]

Fn−2Fn−1Fn+1Fn+2 − F 4
n = −1, (2.8)

we express the right side as −(−1)2n, so that (2.1) becomes an homogeneous identity of degree
4 in the variable n. Thus, we can prove (2.1) by verifying it for the five values n = 0, 1, 2, 3, 4.
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Now suppose that we have a homogeneous FL-identity, in the variable n, with its polynomial
form as given in (2.7). Then, being an identity in Z, (2.7) remains true if Z is replaced by
−Z. That is

s
∑

i=0

ai(−Z)i ≡
s

∑

i=0

bi(−Z)i. (2.9)

But then (2.9) corresponds to a new FL-identity, in the variable n, with an XY -transform in
which Y has been replaced by −Y . Dresel calls this new FL-identity the dual identity of the
original FL-identity. By replacing Y by −Y in (2.5), it follows that the dual identity can be
obtained by making the following changes in the original FL-identity.

• when j is odd, replace Fjn+k by Ljn+k/
√
5,

• when j is odd, replace Ljn+k by
√
5Fjn+k,

• when j is odd, replace (−1)jn by −(−1)jn.

Clearly, when j is even, no changes need to be made when finding the dual identity because
then (−Y )j = Y j.

For instance, the dual of (1.3) is

L3
n+1 + L3

n − L3
n−1 = 5L3n.

As a second example, Simson’s identity is

Fn−1Fn+1 − F 2
n = (−1)n,

and its dual identity is

Ln−1Ln+1 − L2
n = 5(−1)n+1.

In Section 4, we use the concept of a dual identity to obtain further results from our main
result.

3. Proof of Our Main Result

We begin this section by proving a lemma that we employ in the proof of our main result.
In fact, this lemma corresponds to the case m = 2 of our main result, and as such is the first
case of our main result.

Lemma 3.1. Let k be an arbitrary integer, and let a1, a2, a3 be distinct integers. Then

(−1)a1Fa2+a3−kF
2
n+a1

/ (Fa1−a2Fa1−a3) + (−1)a2Fa1+a3−kF
2
n+a2

/ (Fa2−a1Fa2−a3)

+ (−1)a3Fa1+a2−kF
2
n+a3

/ (Fa3−a1Fa3−a2) = (−1)a1+a2+a3+k+1F2n+k.
(3.1)

Proof. In the terminology of Section 2, (3.1) is homogeneous of degree 2 in the variable n.
Accordingly, we prove (3.1) by verifying its validity for n = −a1,−a2,−a3.

In (3.1), substitute n = −a3. Then, upon clearing fractions, and with repeated use of the
well-known identity F

−n = (−1)n+1Fn, we see that we are required to prove that

(−1)a2+1Fa1−a3Fk−a2−a3 + (−1)a1Fa2−a3Fk−a1−a3 + (−1)a2Fa1−a2Fk−2a3 = 0. (3.2)

Identity (3.2) is homogeneous of degree 1 in the variable k. Therefore, to prove (3.2), we
need only verify its validity for k = a1 + a3 and for k = a2 + a3. These verifications follow
immediately, and so (3.1) is true for n = −a3.

The validity of (3.1) for n = −a1 and for n = −a2 follows in the same manner demonstrated
in the previous paragraph. This completes the proof of Lemma 3.1. �
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We now prove Theorem 1.2, the main result in this paper. We proceed by induction on m.
Recall that Lemma 3.1 is the first case, corresponding to m = 2, of our main result. To begin,
suppose that for some integer m0 ≥ 2 we always have

m0+1
∑

i=1

(−1)aiS(i,m0 + 1, k)Fm0
n+ai

/P (i,m0 + 1) = (−1)a1+a2+···+am0+1+k+1Fm0n+k (3.3)

whenever k is an integer, and a1, a2, . . . , am0+1 are distinct integers. By Lemma 3.1, (3.3) is
true for m0 = 2.

We assert that
m0+2
∑

i=1

(−1)aiS(i,m0 + 2, k)Fm0+1
n+ai

/P (i,m0 + 2) = (−1)a1+a2+···+am0+2+k+1F(m0+1)n+k (3.4)

whenever am0+2 is an integer that is distinct from a1, a2, . . . , am0+1.
Identity (3.4) is an homogeneous identity of degree m0 + 1 in the variable n. Therefore, we

can prove (3.4) by verifying its validity for m0 + 2 distinct values of n. In (3.4), substitute
n = −am0+2. Then the rightmost term on the left side of (3.4) vanishes, and cancellation
reduces (3.4) to

m0+1
∑

i=1

(−1)aiS(i,m0 + 1, k − am0+2)F
m0
−am0+2+ai

/P (i,m0 + 1)

= (−1)a1+a2+···+am0+2+k+1F
−(m0+1)am0+2+k.

(3.5)

In (3.3), replace k by k− am0+2, and n by −am0+2. This yields (3.5), which must therefore
be true. So we have verified (3.4) for n = −am0+2. By symmetry, (3.4) is true if n is any of
the m0 + 1 values −a1,−a2, . . . ,−am0+1. Therefore (3.4) is true by the verification theorem
of Dresel.

Finally, as stated earlier, (3.3) is true for m0 = 2, and so we have proved Theorem 1.2 by
induction on m.

4. Further Identities Obtained as Duals

Beginning with identity (1.10), we now take up Dresel’s idea of writing down dual identities.
Here, we simply take a known identity, and make the changes listed in the three dot points
given at the end of Section 2. We begin by considering identity (1.10) as an homogeneous
identity of degree m in the variable n. Therefore, with the same assumptions on the various
parameters, we can write down the dual identity of (1.10) with respect to the variable n.
There are two possibilities that depend upon the parity of m. For m even, the dual identity
in question is

m+1
∑

i=1

(−1)aiS(i,m+ 1, k)Lm
n+ai

/P (i,m + 1) = (−1)a1+a2+···+am+1+k+15
m
2 Fmn+k. (4.1)

For m odd, the dual identity in question is

m+1
∑

i=1

(−1)aiS(i,m+ 1, k)Lm
n+ai

/P (i,m + 1) = (−1)a1+a2+···+am+1+k+15
m−1

2 Lmn+k. (4.2)

We next find the dual identity of (1.10) with respect to the variable k. From (2.5), we see
that (1.10) is homogeneous of degree 3 in the variable k. To proceed, we require the analogue
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of S(i,m, k) for the Lucas sequence. Accordingly, given an integer m ≥ 2, an integer k, and
integers a1, a2, . . . , am, define

T (i,m, k) = La1+a2+···+am−ai−k.

The dual identity of (1.10) with respect to the variable k is then

m+1
∑

i=1

(−1)aiT (i,m+ 1, k)Fm
n+ai

/P (i,m+ 1) = (−1)a1+a2+···+am+1+kLmn+k. (4.3)

Finally, we find the dual identity of (4.3) with respect to the variable n. Once again, this
dual identity depends upon the parity of m. For m even, the dual identity in question is

m+1
∑

i=1

(−1)aiT (i,m+ 1, k)Lm
n+ai

/P (i,m+ 1) = (−1)a1+a2+···+am+1+k5
m
2 Lmn+k. (4.4)

For m odd, the dual identity in question is

m+1
∑

i=1

(−1)aiT (i,m+ 1, k)Lm
n+ai

/P (i,m + 1) = (−1)a1+a2+···+am+1+k5
m+1

2 Fmn+k. (4.5)

5. Concluding Comments

Regarding identities (1.7) and (1.10), neither seems to be obtainable from the other. We
therefore believe that (1.10), together with (4.1)–(4.5), add to the plethora of existing identities
satisfied by powers of Fibonacci/Lucas numbers.

In Section 4, we used Dresel’s method of writing down new (dual) identities from known
identities to write down an additional five identities that are similar in nature to our main
result. However, this is not the end of the story, as we demonstrate via a simple example.
Consider Lemma 3.1, which is the first instance of our main result. The dual identity of (3.1)
with respect to a1 is

(−1)a1+1Fa2+a3−kL
2
n+a1

/ (La1−a2La1−a3) + (−1)a2La1+a3−kF
2
n+a2

/ (La2−a1Fa2−a3)

+ (−1)a3La1+a2−kF
2
n+a3

/ (La3−a1Fa3−a2) = (−1)a1+a2+a3+kF2n+k.
(5.1)

The possibilities seem limitless.
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