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Abstract. A linear composition of a positive integer N is an ordered list of positive integers
(called parts) whose sum equals N . A linear composition of N is called palindromic of type I
if it stays the same when it is read in reverse order, while it is called palindromic of type II if it
becomes a palindromic composition of type I (of an integer smaller than N) when we remove
the first part. By considering all cyclic shifts of a linear composition of N as equivalent
linear compositions, we may define a cyclic composition of N . Cyclic compositions were
originally studied by D. M. Y. Sommerville more than a century ago, who also considered
symmetrical cyclic compositions of N . In this paper, we prove that the equivalence class of
every symmetrical cyclic composition of N with length K (excluding the one with all parts
equal when K divides N) contains exactly two linear palindromic compositions of type I or II.
Using this result, we derive generating functions for the cardinalities of classes of symmetrical
cyclic compositions of N that avoid integers in a set A. We then derive general recurrences for
the cardinalities of these classes of symmetrical cyclic compositions. When A consists of all
multiples of a positive integer r, we use these recurrences to derive Fibonacci-type recurrences.
We also indicate that the number of dihedral compositions of N with K parts in A is the
average of the corresponding numbers of cyclic compositions and Sommerville’s symmetrical
cyclic compositions.

1. Introduction

Linear compositions of positive integers were studied by many mathematicians in the 19th
century, but the first systematic study was made by MacMahon [11, 12]. A linear composition
of a positive integer N of length K is a K-tuple (λ1, λ2, . . . , λK) ∈ Z

K
>0 such that

N = λ1 + λ2 + · · ·+ λK . (1.1)

Here the numbers λ1, λ2, . . . , λK are called the parts of the composition. We may define cyclic
compositions of N of length K as equivalence classes on the set of all linear compositions
of length K such that two compositions are equivalent, that is, they belong to the same
class, if and only if one can be obtained from the other by cyclic shifts. If (λ1, . . . , λK) is a
representative of an equivalence class, we denote the class by [(λ1, . . . , λK)]R. For example,
when N = 4, there are five equivalence classes (cyclic compositions):

• with length 1: [(4)]R;
• with length 2: [(1, 3)]R = [(3, 1)]R and [(2, 2)]R;
• with length 3: [(1, 1, 2)]R = [(1, 2, 1)]R = [(2, 1, 1)]R ;
• with length 4: [(1, 1, 1, 1)]R .

A type I linear palindromic (or self-inverse) composition of N with length K is a linear
composition (λ1, . . . , λK) of N such that

(λ1, λ2, . . . , λK) = (λK , λK−1, . . . , λ1),
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i.e., λi = λK+1−i for i = 1, . . . ,K. Denote by PL1
A (N ;K) the number of type I linear palin-

dromic compositions of N with length K and parts in the set A ⊆ Z>0.
A type II linear palindromic (or self-inverse) composition of N with length K is a linear

composition (λ1, . . . , λK) of N such that

(λ1, λ2, . . . , λK) = (λ1, λK , . . . , λ2),

i.e, λi = λK+2−i for i = 2, . . . ,K. For K = 1, we assume that (λ1) = (N) is a linear

palindromic composition of both types. We denote by PL2
A (N ;K) the number of type II linear

palindromic compositions of N with length K and parts in the set A ⊆ Z>0.
Sommerville [17, pp. 301-304] examined the number of symmetrical cyclic compositions of

N with length K. In the terminology of this paper, a cyclic composition of N with length
K is called symmetrical if and only if its equivalence class contains at least one type I or II
linear palindromic composition. It just so happens that in the previous example with N = 4,
all cyclic compositions are symmetrical.

Denote by PR
A (N ;K) the number of symmetric cyclic compositions of N with length K and

parts in the set A ⊆ Z>0. When A = Z>0 and 0 ≤ k ≤ n, Sommerville [17] proved that

PR
Z>0

(2n+1; 2k+1) = PR
Z>0

(2n+2; 2k+1) = PR
Z>0

(2n+1; 2k) = PR
Z>0

(2n; 2k) =

(

n

k

)

. (1.2)

We have to exclude the cases where either K = 2k = 0 or N = 2n = 0.
In this paper, we generalize Sommerville’s results. One of our main results is the following

theorem.

Theorem 1.1. Assume N,K ∈ Z>0.

(a) If N,K > 1, then the equivalence class of every symmetrical cyclic composition of N
with length K (but excluding the one with all the parts being equal when K divides N)
contains exactly two linear palindromic compositions of type I or II.

(b) If A ⊆ Z>0, then

PR
A (N ;K) =

PL1
A (N ;K) + PL2

A (N ;K)

2
.

Remark 1: The two results in Theorem 1.1 are simple and interesting, and they are useful
for studying dihedral compositions of integers as well — see further discussion in Section 4.

In Section 2.2, for a general A ⊆ Z>0, we provide generating functions for PR
A (2n+1; 2k+1),

PR
A (2n+2; 2k+1), PR

A (2n+1; 2k), PR
A (2n; 2k), and other similar quantities. In Section 2.3, we

present recursive relations for these quantities. Finally, when A is the set of positive integers
that avoid multiples of an integer, we obtain Fibonacci-type recursive formulas in Section 2.4.
For example, when A avoids multiples of integer r ≥ 2, and

fn := PR
A (2n+1; odd) :=

n
∑

k=0

PR
A (2n+1; 2k+1) or fn := PR

A (2n+2; odd) :=
n
∑

k=0

PR
A (2n+2; 2k+1)

we prove in Theorem 2.11 of Section 2.4 that

fn = fn−1 + fn−2 + · · ·+ fn−r for n ≥ r.

On the other hand, if fn := PR
A (2n+1; even) :=

∑n
k=1 P

R
A (2n+ 1; 2k) and r is even, we prove

that

fn = fn−1 + fn−2 + · · ·+ fn−r + r − 2 for n ≥ r.

Proofs of all the results appear in Section 3. Section 4 gives concluding remarks.
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2. Main results

2.1. Some lemmas. In the following lemma (and in other results later in the paper), we
define

I(x ∈ A) = 1 if x ∈ A, and 0 otherwise.

MacMahon [11] proved that, for n, k ∈ Z>0 with 1 ≤ k ≤ n and A = Z>0,

PL1
Z>0

(2n; 2k) = PL1
Z>0

(2n; 2k − 1) = PL1
Z>0

(2n− 1; 2k − 1) =

(

n− 1

k − 1

)

, (2.1)

while PL1
Z>0

(2n− 1; 2k) = 0. Regarding type II linear palindromic compositions, we obtain the

following result.

Lemma 2.1. Let A ⊆ Z>0.

(a) For any N,K ∈ Z>1 with 2 ≤ K ≤ N ,

PL2
A (N ;K) =

N−K+1
∑

i=1

PL1
A (N − i;K − 1) I(i ∈ A).

(b) If A = Z>0 and 0 ≤ k ≤ n, then

PL2
Z>0

(2n+ 1; 2k + 1) = PL2
Z>0

(2n + 2; 2k + 1) =

(

n

k

)

, PL2
Z>0

(2n + 1; 2k) = 2

(

n

k

)

,

and

PL2
Z>0

(2n; 2k) =

(

n− 1

k

)

+

(

n

k

)

.

(We exclude the cases where either N = 2n = 0 or K = 2k = 0.)

In Lemmas 2.2–2.4 below, we present results for general type I and type II palindromic
strings. By general, we mean the strings do not necessarily have to be compositions of a
positive integer. Before we give these results, we introduce our notation as follows.

Let K be a positive integer and consider the column vectors (of K components)

e1 = (1, 0, . . . , 0, 0)′,
e2 = (0, 1, . . . , 0, 0)′,

...
eK = (0, 0, . . . , 0, 1)′.

Consider also the K ×K matrices

S = (eK ,eK−1, . . . ,e2,e1), T = (e1,eK ,eK−1, . . . ,e2),

and

P =















e
′
2

e
′
3
...

e
′
K
e
′
1















.
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Note that for 1 ≤ j ≤ K − 1,

P
j =





















e
′
j+1
...

e
′
K
e
′
1
...
e
′
j





















,

that is, P j is a cyclic shifter. Note that the string λ = (λ1, . . . , λK)′ is palindromic of type I
if and only if Sλ = λ, and it is palindromic of type II if and only if Tλ = λ. (We treat all
strings as column vectors.)

Next, we define the period of linear string λ= (λ1, . . . , λK)′ to be the smallest positive
integer d with the property that λ can be obtained by repeating K/d times the linear string
(λ1, . . . , λd)

′. In such a case, λjd+i = λi for i = 1, . . . , d and j = 0, . . . , (K/d) − 1.
The following three lemmas are important in proving Theorem 1.1.

Lemma 2.2. Let d be the period of λ= (λ1, . . . , λK)′. If λ is a palindromic string, then
(λ1, . . . , λd)

′ is a palindromic string of the same type.

Lemma 2.3. Let d denote the period of a palindromic string λ= (λ1, . . . , λK)′. We assume
1 < d ≤ K, i.e., λ has at least two distinct parts. Let j be an integer with 1 ≤ j ≤ d− 1.

• Case 1: d = 2m with m ∈ Z>0.
(1) If Sλ = λ (i.e., λ is of type I), then:

(a) when j = m, λ is in the null space of P j
S−SP j ; when j 6= m, λ is not in

the null space of P j
S−SP j ;

(b) on the other hand, λ is not in the null space of P j
S−TP

j .
(2) If Tλ = λ (i.e., λ is of type II), then:

(a) when j = m, λ is in the null space of P j
T−TP

j; when j 6= m, λ is not in
the null space of P j

T−TP
j ;

(b) on the other hand, λ is not in the null space of P j
T−SP j .

• Case 2: d = 2m+ 1 with m ∈ Z>0.
(1) If Sλ = λ (i.e., λ is of type I), then:

(a) when j = m, λ is in the null space of P j
S−TP

j; when j 6= m, λ is not in
the null space of P j

S−TP
j;

(b) on the other hand, λ is not in the null space of P j
S−SP j.

(2) If Tλ = λ (i.e., λ is of type II), then:
(a) when j = m + 1, λ is in the null space of P j

T−SP j ; when j 6= m + 1, λ
is not in the null space of P j

T−SP j;
(b) on the other hand, λ is not in the null space of P j

T−TP
j.

Lemma 2.4. Let d denote the period of λ and assume 1 < d ≤ K. Let m1 = ⌊d/2⌋ and
m2 = ⌈d/2⌉, where ⌊·⌋ and ⌈·⌉ are the floor and ceiling functions, respectively.

(a) If λ is a type I palindromic string, then among the d distinct strings, λ, Pλ, P 2
λ,

. . ., P d−1
λ, only λ and P

m1λ are palindromic strings of either type.
(b) If λ is a type II palindromic string, then among the d distinct strings, λ, Pλ, P 2

λ,
. . ., P d−1

λ, only λ and P
m2λ are palindromic strings of either type.

2.2. Results about generating functions. Given a set A ⊆ Z>0, we denote by cLA(N ;K)

and cRA(N ;K) the number of linear and cyclic compositions, respectively, of lengthK of positive
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integer N with parts in A. We also let

cLA(N) =
N
∑

K=1

cLA(N ;K) and cRA(N) =
N
∑

K=1

cRA(N ;K).

MacMahon [11], and probably others before him, proved that, for 1 ≤ K ≤ N ,

cL
Z>0

(N ;K) =

(

N − 1

K − 1

)

and cL
Z>0

(N) = 2N−1.

Regarding the number of cyclic compositions of N when A = Z>0, partial results were obtained
by Sommerville [17]. His results were generalized more than seven decades later by Razen et
al. [14]; see also [1], [3, p. 48], [8], [18, pp. 70-71], and [19]. In these references, it is proven
that, for 1 ≤ K ≤ N ,

cRZ>0
(N ;K) =

1

N

∑

j| gcd(N,K)

φ(j)

(

N/j

K/j

)

and cRZ>0
(N) = −1 +

1

N

∑

j|N

φ(j)2
N
j ,

where φ(j) is Euler’s totient function at j, giving the number of positive integers that are less
than or equal to j and co-prime to j. Note the summation ranges over all positive divisors j
of gcd(N,K) in the first sum and all the positive divisors j of N in the second sum.

It is proven in Hoggatt and Lind [7] that the bivariate generating function for the number
of linear compositions of N with K parts in the set A ⊆ Z>0 is

∑

N,K≥0

cLA(N ;K)xNyK =
1

1− y
∑

m∈A xm
.

(Here we assume cLA(N ; 0) = 0 if N > 0, and cLA(0; 0) = 1.) Setting y = 1 in the above
equation, we get that the generating function of the total number of linear compositions of N
with parts in A is

∑

N≥1

cLA(N)xN =
1

1−
∑

m∈A xm
.

See also Beck and Robbins [2] and Heubach and Mansour [6].
It also follows from the results in Hadjicostas [5] that the bivariate generating function for

the number of cyclic compositions of N with K parts in A is

∑

N,K≥0

cRA(N ;K)xNyK =
∑

N≥1

φ(N)

N
log

1

1− yN
∑

m∈A xmN
.

Setting again y = 1 in the above equation, we get that the generating function of the total
number of cyclic compositions of N with parts in A is

∑

N≥1

cRA(N)xN =
∑

N≥1

φ(N)

N
log

1

1−
∑

m∈A xmN
.

These generating functions can also be obtained using the theory in Flajolet and Sedgewick [3,
pp. 27 and 729-730] and Flajolet and Soria [4]. This theory concerns the generating function
of cycles of unlabeled combinatorial structures.

Now, we focus our attention on palindromic compositions. We let

PL1
A (N) =

N
∑

K=1

PL1
A (N ;K), PL2

A (N) =

N
∑

K=1

PL2
A (N ;K), and PR

A (N) =

N
∑

K=1

PR
A (N ;K).
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When the number of parts K ∈ Z>0 is fixed, it follows from Heubach and Mansour [6] that the
generating function for the number of type I linear palindromic (or self-inverse) compositions
of N with K parts in A is

∑

N≥1

PL1
A (N ;K)xN =

{

(
∑

m∈A xm
) (
∑

m∈A x2m
)(K−1)/2

, if K is odd;
(
∑

m∈A x2m
)K/2

, if K is even.
(2.2)

Summing over all K ∈ Z>0, we get that the generating function for the total number of type I
linear palindromic (or self-inverse) compositions of N with parts in A is

∑

N≥1

PL1
A (N)xN =

1 +
∑

m∈A xm

1−
∑

m∈A x2m
− 1.

Using part (a) of Lemma 2.1, we prove in Section 3 the following lemma that gives various
generating functions for the number of type II linear palindromic compositions:

Lemma 2.5. Let A ⊆ Z>0.

(a) For each K ∈ Z>0,

∑

N≥1

PL2
A (N ;K)xN =

{

(
∑

m∈A xm
) (
∑

m∈A x2m
)(K−1)/2

, if K is odd;
(
∑

m∈A xm
)2 (∑

m∈A x2m
)(K/2)−1

, if K is even.

(b) The bivariate generating function of the numbers PL2
A (N ;K) is given by

∑

K≥1

∑

N≥1

PL2
A (N ;K)xNyK =

(
∑

m∈A xm
)

y +
(
∑

m∈A xm
)2

y2

1− y2
∑

m∈A x2m
.

(c) The generating function of the numbers PL2
A (N) is given by

∑

N≥1

PL2
A (N)xN =

(
∑

m∈A xm
)

+
(
∑

m∈A xm
)2

1−
∑

m∈A x2m
.

Theorem 2.6. Let A ⊆ Z>0. For K ∈ Z>0,

∑

N≥1

PR
A (N ;K)xN =

{
(
∑

m∈A xm
) (
∑

m∈A x2m
)(K−1)/2

, if K is odd;
1
2

[

(
∑

m∈A xm
)2

+
(
∑

m∈A x2m
)

]

(
∑

m∈A x2m
)(K/2)−1

, if K is even.

Next, we state another main result of the paper regarding the generating functions for the
four cases of Sommerville’s symmetrical cyclic compositions of N with K parts in A. For this
theorem, we use the following notation:

Ao = A ∩ {2j − 1 | j ∈ Z>0} and Ae = A ∩ {2j | j ∈ Z>0}.

Theorem 2.7. Let A ⊆ Z>0 and k be a nonnegative integer. Then

(1)
∑∞

n=0 P
R
A (2n + 1; 2k + 1)x2n+1 =

(
∑

m∈Ao
xm
) (
∑

m∈A x2m
)k
.

(2)
∑∞

n=0 P
R
A (2n + 2; 2k + 1)x2n+2 =

(
∑

m∈Ae
xm
) (
∑

m∈A x2m
)k

.

(3)
∑∞

n=0 P
R
A (2n + 1; 2k)x2n+1 =

(
∑

m∈Ao
xm
) (
∑

m∈Ae
xm
) (
∑

m∈A x2m
)k−1

.

(4)
∑∞

n=1 P
R
A (2n; 2k)x2n = 1

2hA(x)
(
∑

m∈A x2m
)k−1

, where

hA(x) :=
(
∑

m∈Ao
xm
)2

+
(
∑

m∈Ae
xm
)2

+
(
∑

m∈A x2m
)

. (2.3)

(For cases (3) and (4) above we assume k ≥ 1.)
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Corollary 2.8. For K = 2k + 1 with k ≥ 0,

PL1
A (N,K = 2k + 1) = PL2

A (N,K = 2k + 1) = PR
A (N,K = 2k + 1) for all N ∈ Z>0.

Remark 2: Corollary 2.8 reveals that, when K is a fixed odd positive integer, the numbers
of type I linear palindromic compositions, type II linear palindromic compositions, and Som-
merville’s symmetrical cyclic compositions of a positive integer N with K parts in A are all
equal.

Corollary 2.9. Let A ⊆ Z>0. Then the generating function for the total number of Som-
merville’s symmetrical cyclic compositions of N with parts in A is

∑

N≥1

PR
A (N) xN =

(

1 +
∑

m∈A xm
)2

2
(

1−
∑

m∈A x2m
) −

1

2
.

In addition,
∑

N≥1

PR
A (N ; odd) xN =

∑

m∈A xm

1−
∑

m∈A x2m
,

and
∑

N≥1

PR
A (N ; even) xN =

(
∑

m∈A xm
)2

+
(
∑

m∈A x2m
)

2
(

1−
∑

m∈A x2m
) .

Remark 3: Multiplying both sides of the equation in Theorem 2.6 by yK and summing from
K = 1 to K =∞, it is easy to derive the following bivariate generating function for PR

A (N ;K):

∑

N,K≥1

PR
A (N ;K)xNyK =

(

1 + y
∑

m∈A xm
)2

2
(

1− y2
∑

m∈A x2m
) −

1

2
.

2.3. Results about some general recurrences. It follows from (1.2) that

PR
Z>0

(2n+ 1; even) =
n
∑

k=1

PR
Z>0

(2n + 1; 2k) = 2n − 1;

PR
Z>0

(2n + 1; odd) =
n
∑

k=0

PR
Z>0

(2n + 1; 2k + 1) = 2n;

PR
Z>0

(2n; even) =
n
∑

k=1

PR
Z>0

(2n; 2k) = 2n − 1;

PR
Z>0

(2n; odd) =
n−1
∑

k=0

PR
Z>0

(2n; 2k + 1) = 2n−1.

In addition, PR
Z>0

(2n+1) = 2n+1 − 1 and PR
Z>0

(2n) = 3 · 2n−1 − 1. In this subsection we state
some general recurrence relations about the numbers

PR
A (2n+ 1; odd), PR

A (2n+ 2; odd), PR
A (2n+ 1; even), and PR

A (2n; even) (2.4)

for a general set A ⊆ Z>0. These recurrences are useful in proving generalized Fibonacci-type
recurrence equations in next subsection when A is a set of positive integers that avoid multiples
of a fixed integer.
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Theorem 2.10. Let A ⊆ Z>0 and n be a non-negative integer. Then

PR
A (2n+ 1; odd) =

n−1
∑

s=0

PR
A (2s + 1; odd) I(n − s ∈ A) + I(2n + 1 ∈ A); (2.5)

PR
A (2n+ 2; odd) =

n−1
∑

s=0

PR
A (2s + 2; odd) I(n − s ∈ A) + I(2n + 2 ∈ A); (2.6)

PR
A (2n+ 1; even) =

n−1
∑

s=0

PR
A (2s + 1; even) I(n − s ∈ A)

+

n−1
∑

s=0

I(2s + 1 ∈ A) I(2(n − s) ∈ A); (2.7)

PR
A (2n; even) =

n−1
∑

s=1

PR
A (2s; even) I(n − s ∈ A) +

1

2

n−1
∑

s=0

I(2s + 1 ∈ A) I[2(n − s)− 1 ∈ A]

+
1

2

n−1
∑

s=1

I(2s ∈ A) I(2(n − s) ∈ A) +
1

2
I(n ∈ A). (2.8)

(For equation (2.8) we assume n ≥ 1.)

2.4. Fibonacci-type recurrence equations. When A is a set of positive integers that avoid
all multiples of a fixed positive integer r ≥ 2, the four sequences of numbers in (2.4) satisfy
Fibonacci-like recurrence equations similar to those in [5, 15, 16, 20].

Theorem 2.11. Let r be a fixed positive integer (r ≥ 2) and A be the set all of positive integers
that are not multiples of r.

(1) If fn = PR
A (2n + 1; odd) or fn = PR

A (2n + 2; odd), then the sequence (fn : n ∈ Z≥0)
satisfies

fn = fn−1 + fn−2 + · · ·+ fn−r for n ≥ r.

In addition, we have:
(a) If fn = PR

A (2n + 1; odd) and r is even, then fn = 2n for 0 ≤ n ≤ r − 1.
(b) If fn = PR

A (2n + 1; odd) and r is odd, then

fn =











2n, if 0 ≤ n ≤ r−3
2 ,

2
r−1
2 − 1, if n = r−1

2 ,

2n − 2n−
r+1
2 , if r+1

2 ≤ n ≤ r − 1.

(c) If fn = PR
A (2n + 2; odd) and r is even, then

fn =















2n, if 0 ≤ n ≤ r
2 − 2,

2
r
2
−1 − 1, if n = r

2 − 1,

2n − 2n−
r
2 , if r

2 ≤ n ≤ r − 2,

2r−1 − 2
r
2
−1 − 1 if n = r − 1.

(d) If fn = PR
A (2n + 2; odd) and r is odd, then fn = 2n for 0 ≤ n ≤ r − 2 and

fr−1 = 2r−1 − 1.
(2) If fn = PR

A (2n + 1; even), then the sequence (fn : n ∈ Z≥0) satisfies

fn = fn−1 + fn−2 + · · ·+ fn−r + α(n) for n ≥ r,
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where α(n) = r − 2 if r is even, and

α(n) =

{

r − 1, if n ≡ r−1
2 (mod r),

r − 2, if n 6≡ r−1
2 (mod r),

if r is odd. In addition, for 0 ≤ n ≤ r − 1, we have

fn =

{

2n − 1, if 0 ≤ n ≤
⌈

r
2

⌉

− 1,

2n − 2n−⌈
r
2⌉ − 1, if

⌈

r
2

⌉

≤ n ≤ r − 1.

(3) If fn = PR
A (2n; even), then the sequence (fn : n ∈ Z≥1) satisfies

fn = fn−1 + fn−2 + · · ·+ fn−r + β(n) for n ≥ r + 1,

where

β(n) =























1, if r = 2,
r − 1, if n ≡ 0

(

mod r
2

)

and r is even ≥ 4,
r − 2, if n 6≡ 0

(

mod r
2

)

and r is even ≥ 4,
r − 1, if n ≡ 0 (mod r) and r is odd,
r − 2, if n 6≡ 0 (mod r) and r is odd.

In addition, for 1 ≤ n ≤ r, we have

fn =

{

2n − 1, if 1 ≤ n ≤
⌊

r
2

⌋

,

2n − 2n−1−⌊ r2⌋ − 1, if
⌊

r
2

⌋

+ 1 ≤ n ≤ r.

3. Proofs

Proof of Lemma 2.1. (a) Assume N,K ∈ Z>0 with 2 ≤ K ≤ N . Let PL1
A (N ;K) and

PL2
A (N ;K) be the collections of all linear palindromic compositions of N with K parts in

A of types I and II, respectively. Let

B = {1, . . . , N −K + 1} ∩A, C1 = P
L2
A (N ;K), and C2 =

⋃

ℓ∈B

PL1
A (N − ℓ;K − 1),

and define the function g : C1 → C2 by

g((λ1, . . . , λK)) = (λ2, . . . , λK) for all (λ1, . . . , λK) ∈ C1.

One can easily show that g is well-defined and is a bijection between the sets C1 and C2 with
inverse function g−1 : C2 → C1 given by

g−1((λ2, . . . , λK)) =

(

N −
K
∑

s=2

λs, λ2, . . . , λK

)

for all (λ2, . . . , λK) ∈ C2.

This implies that

PL2
A (N ;K) = #PL2

A (N ;K) = #
⋃

ℓ∈B

PL1
A (N − ℓ;K − 1) =

N−K+1
∑

ℓ=1

PL1
A (N − ℓ;K − 1) I(ℓ ∈ A),

which proves the first part of the lemma.
(b) Using the identity

n
∑

m=s

(

m

s

)

=

(

n+ 1

s+ 1

)

, (3.1)
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the first part of the lemma, and MacMahon’s [11] results (see equations (2.1)), we can easily

prove the second part of the lemma. We only show the proof for the formula for PL2
Z>0

(2n; 2k).

We have

PL2
Z>0

(2n; 2k) =

2n−2k+1
∑

ℓ=1

PL1
Z>0

(2n− ℓ; 2k − 1)

=
n−k
∑

t=1

PL1
Z>0

(2n − 2t; 2k − 1) +
n−k
∑

t=0

PL1
Z>0

(2n− 2t− 1; 2k − 1)

=
n−k
∑

t=1

(

n− t− 1

k − 1

)

+
n−k
∑

t=0

(

n− t− 1

k − 1

)

=

(

n− 1

k

)

+

(

n

k

)

,

where we have applied the identity (3.1) twice. �

Proof of Lemma 2.2. The proof is easy and the details are omitted here. �

Proof of Lemma 2.3. We only prove Case 1 when d = 2m with m ∈ Z>0. The proof of Case 2
is similar and hence is omitted.

(1)(a) If Sλ = λ, then, for 1 ≤ j ≤ d− 1,

P
j
Sλ = P

j
λ = (λj+1, . . . , λ2m,

−−→
· · · , λ1, . . . , λj)

′,

where
−−→
· · · comprises (K/d)− 1 replicates of (λ1, . . . , λd). Using Lemma 2.2 and the fact that

λ is a type I palindromic string, we then have

SP
j
λ = S(P j

λ)

= (λj , . . . , λ1,
←−−
· · · , λ2m, . . . , λj+1)

′

= (λj , . . . , λ1,
−−→
· · · , λ2m, . . . , λj+1)

′

= (λ2m+1−j , . . . , λ2m,
−−→
· · · , λ1, . . . , λ2m−j)

′

= P
2m−j

λ = P
d−j

λ,

where
←−−
· · · comprises (K/d) − 1 replicates of (λd, . . . , λ1). Since d is the period of λ, the

strings λ, Pλ, . . ., P d−1
λ are all different. Thus,

P
j
Sλ = SP

j
λ⇔ P

j
λ = P

d−j
λ⇔ j = d− j ⇔ j =

d

2
= m.

This proves part (1)(a) of Case 1 in the lemma.
(1)(b) If Sλ = λ, then, for 1 ≤ j ≤ d− 1,

P
j
Sλ = P

j
λ = (λj+1, . . . , λ2m,

−−→
· · · , λ1, . . . , λj)

′.

FEBRUARY 2017 63



THE FIBONACCI QUARTERLY

Using Lemma 2.2 and the fact that λ is a type I palindromic string, we then have

TP
j
λ = T (P j

λ)

= (λj+1, λj , . . . , λ1,
←−−
· · · , λ2m, . . . , λj+2)

′

= (λj+1, λj , . . . , λ1,
−−→
· · · , λ2m, . . . , λj+2)

′

= (λ2m−j , λ2m+1−j , . . . , λ2m,
−−→
· · · , λ1, . . . , λ2m−j−1)

′

= P
2m−1−j

λ.

Because j 6= 2m− 1− j,

P
j
λ 6= P

2m−1−j
λ, and thus, P

j
Sλ 6= TP

j
λ.

At this point, the proof of (1) in Case 1 is complete.
(2)(a) If Tλ = λ, then, for 1 ≤ j ≤ d− 1,

P
j
Tλ = P

j
λ = (λj+1, . . . , λ2m,

−−→
· · · , λ1, . . . , λj)

′.

Because λ is a type II palindromic string, we then have

TP
j
λ = T (P j

λ)

= (λj+1, λj , . . . , λ1,
←−−
· · · , λ2m, . . . , λj+2)

′

= (λj+1, λj , . . . , λ2,
−−→
· · · , λ1, λ2m, . . . , λj+2)

′

= (λ2m+1−j , λ2m+2−j , . . . , λ2m,
−−→
· · · , λ1, λ2, . . . , λ2m−j)

′

= P
2m−j

λ = P
d−j

λ.

Thus,

P
j
Tλ = TP

j
λ⇔ P

j
λ = P

d−j
λ⇔ j = d− j ⇔ j =

d

2
= m.

This proves part (2)(a) in Case 1 of the lemma.
(2)(b) If Tλ = λ, then, for 1 ≤ j ≤ d− 1,

P
j
Tλ = P

j
λ = (λj+1, . . . , λ2m,

−−→
· · · , λ1, . . . , λj)

′.

We have

SP
j
λ = S(P j

λ)

= (λj , . . . , λ1,
←−−
· · · , λ2m, . . . , λj+1)

′

=

{

(
−−→
· · · , λ1, λ2m, . . . , λ2)

′ = λ, if j = 1,

(λj , . . . , λ2,
−−→
· · · , λ1, λ2m, . . . , λj+1)

′, if 2 ≤ j ≤ d− 1,

=

{

λ, if j = 1,

(λ2m+2−j , . . . , λ2m,
−−→
· · · , λ1, λ2, . . . , λ2m+1−j)

′, if 2 ≤ j ≤ d− 1,

=

{

λ, if j = 1,
P

2m+1−j
λ, if 2 ≤ j ≤ d− 1.

Since j 6= 2m+ 1− j, we have proved that

P
j
Tλ 6= SP

j
λ.

At this point, the proof of (2) in Case 1 is complete. �
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Proof of Lemma 2.4. It follows immediately from Lemma 2.3. �

Proof of Theorem 1.1. Part (a) of the theorem follows from Lemma 2.4. To prove part (b),
note that part (a) implies that the equivalence class of every symmetric cyclic composition of N
with K parts in A (at least two of which are distinct) contains exactly two linear palindromic
compositions of N with K parts in A (of either type). In addition, every cyclic composition of
N with K parts in A that are all equal contains exactly one linear composition (with all parts
in A) that is palindromic of both types. Also, every linear palindromic composition (with
parts in A) of type I or II belongs to exactly one symmetrical cyclic composition of N with K
parts in A. Hence,

2PR
A (N ;K) = PL1

A (N ;K) + PL2
A (N ;K),

and this completes the proof of the theorem. �

Proof of Lemma 2.5. (a) For K = 1, we have PL2
A (N ;K = 1) = I(N ∈ A), so

∑

N≥1

PL2
A (N ;K)xN =

(

∑

m∈A

xm

)(

∑

m∈A

x2m

)(1−1)/2

.

Assume now K ≥ 2. By part (a) in Lemma 2.1,

∑

N≥K

PL2
A (N ;K)xN =

∑

N≥K

N−K+1
∑

i=1

PL1
A (N − i;K − 1) I(i ∈ A)xN .

Since i ≤ N −K + 1 if and only if N ≥ i +K − 1, changing the order of summation in the
above double sum, we get

∑

N≥K

PL2
A (N ;K)xN =

∑

i≥1

I(i ∈ A)xi
∑

N≥i+K−1

PL1
A (N − i;K − 1)xN−i.

Defining PL1
A (N ;K) = 0 = PL2

A (N ;K) when N < K and using the change of variables
M = N − i, we get

∑

N≥1

PL2
A (N ;K)xN =

∑

m∈A

xm
∑

M≥K−1

PL1
A (M ;K − 1)xM

=

(

∑

m∈A

xm

)





∑

M≥1

PL1
A (M ;K − 1)xM



 .

Using equations (2.2), we get

∑

N≥1

PL2
A (N ;K)xN =

(

∑

m∈A

xm

){

(
∑

m∈A xm
) (
∑

m∈A x2m
)(K−2)/2

, if K − 1 is odd;
(
∑

m∈A x2m
)(K−1)/2

, if K − 1 is even,

from which we can easily prove part (a) of the lemma.
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(b) We have from part (a) of the lemma that

∑

K≥1

∑

N≥1

PL2
A (N ;K)xNyK =

(

∑

m∈A

xm

)

∞
∑

ℓ=0

(

∑

m∈A

x2m

)
(2ℓ+1)−1

2

y2ℓ+1

+

(

∑

m∈A

xm

)2 ∞
∑

ℓ=1

(

∑

m∈A

x2m

) 2ℓ
2
−1

y2ℓ

=

(

∑

m∈A

xm

)

y

∞
∑

ℓ=0

(

y2
∑

m∈A

x2m

)ℓ

+

(

∑

m∈A

xm

)2

y2
∞
∑

ℓ=1

(

y2
∑

m∈A

x2m

)ℓ−1

,

from which part (b) of the lemma follows easily.
(c) This part of the lemma follows from part (b) by setting y = 1. �

Proof of Theorem 2.6. The theorem follows directly from part (b) of Theorem 1.1, equa-
tion (2.2), and part (a) of Lemma 2.5. �

Proof of Theorem 2.7. We indicate how to prove parts (1) and (4). The proofs of parts (2)
and (3) are similar, and hence are omitted.

Part (1). It follows from Theorem 2.6 that, for k ≥ 0,

∞
∑

n=0

PR
A (2n+ 1; 2k + 1)x2n+1 =

1

2

∑

N≥1

PR
A (N ; 2k + 1)

[

xN − (−x)N
]

=
1

2

(

∑

m∈A

xm

)(

∑

m∈A

x2m

)k

−
1

2

[

∑

m∈A

(−x)m

][

∑

m∈A

(−x)2m

]k

=

(

∑

m∈Ao

xm

)(

∑

m∈A

x2m

)k

.
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Part (4). It follows again from Theorem 2.6 that, for k ≥ 0,

∞
∑

n=1

PR
A (2n; 2k)x2n =

1

2

∑

N≥1

PR
A (N ; 2k)[xN + (−x)N ]

=
1

4





(

∑

m∈A

xm

)2

+
∑

m∈A

x2m





(

∑

m∈A

x2m

)k−1

+
1

4





(

∑

m∈A

(−x)m

)2

+
∑

m∈A

(−x)2m





(

∑

m∈A

(−x)2m

)k−1

=
1

4





(

∑

m∈Ae

xm +
∑

m∈Ao

xm

)2

+

(

∑

m∈Ae

xm −
∑

m∈Ao

xm

)2

+ 2
∑

m∈A

x2m

](

∑

m∈A

x2m

)k−1

=
1

2





(

∑

m∈Ae

xm

)2

+

(

∑

m∈Ao

xm

)2

+
∑

m∈A

x2m





(

∑

m∈A

x2m

)k−1

.

This completes the proof of Theorem 2.7. �

Proof of Corollary 2.8. It follows from equation (2.2), part (a) of Lemma 2.5, and Theorem 2.6.
�

Proof of Corollary 2.9. If we let

PR
A (N ; odd) =

∞
∑

k=0

PR
A (N ; 2k + 1) and PR

A (N ; even) =
∞
∑

k=1

PR
A (N ; 2k),

then the result below follows immediately from Lemma 2.6. �

Proof of Theorem 2.10. We prove the recursive formulas for PR
A (2n+1; odd) and PR

A (2n; even).
The proofs of the other two recursive formulas, about PR

A (2n+ 2; odd) and PR
A (2n+ 1; even),

are similar and are thus omitted. It follows from Theorem 2.7 that

∞
∑

n=0

PR
A (2n + 1; odd)x2n+1 =

∞
∑

n=0

n
∑

ℓ=0

PR
A (2n + 1; 2ℓ+ 1)x2n+1

=

∞
∑

ℓ=0

∞
∑

n=0

PR
A (2n + 1; 2ℓ+ 1)x2n+1

=

∞
∑

ℓ=0

(

∑

m∈Ao

xm

)(

∑

m∈A

x2m

)ℓ

=

∑

m∈Ao
xm

1−
∑

m∈A x2m
.
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Therefore,

∞
∑

n=0

PR
A (2n + 1; odd)x2n+1 =

∞
∑

n=0

∞
∑

m=1

I(m ∈ A)x2m PR
A (2n + 1; odd)x2n+1

+

∞
∑

m=1

I(m ∈ Ao)x
m

=

∞
∑

n=0

[

n−1
∑

s=0

PR
A (2s+ 1; odd) I(n − s ∈ A)

]

x2n+1

+
∞
∑

n=0

I(2n + 1 ∈ A)x2n+1,

from which the recursive relation about PR
A (2n + 1; odd) follows easily.

Again, it follows from Theorem 2.7 that

∞
∑

n=1

PR
A (2n; even)x2n =

∞
∑

n=1

n
∑

ℓ=1

PR
A (2n; 2ℓ)x2n

=

∞
∑

ℓ=1

∞
∑

n=1

PR
A (2n; 2ℓ)x2n

=
hA(x)

2

∞
∑

ℓ=1

(

∑

m∈A

x2m

)ℓ−1

=
hA(x)

2
(

1−
∑

m∈A x2m
) ,

where hA(x) is defined by equation (2.3). We then have

2
∞
∑

n=1

PR
A (2n; even)x2n = 2

∞
∑

n=1

∞
∑

m=1

PR
A (2n; even) I(m ∈ A)x2(n+m)

+

∞
∑

s=0

∞
∑

ℓ=0

I(2s+ 1 ∈ A) I(2ℓ+ 1 ∈ A)x2(s+ℓ+1)

+

∞
∑

s=1

∞
∑

ℓ=1

I(2s ∈ A) I(2ℓ ∈ A)x2(s+ℓ) +

∞
∑

n=1

I(n ∈ A)x2n

= 2

∞
∑

n=1

[

n−1
∑

s=1

PR
A (2s; even) I(n − s ∈ A)

]

x2n+

+

∞
∑

n=1

[

n−1
∑

s=0

I(2s + 1 ∈ A) I[2(n − s)− 1 ∈ A]

]

x2n

+

∞
∑

n=1

[

n−1
∑

s=1

I(2s ∈ A) I(2(n − s) ∈ A)

]

x2n +

∞
∑

n=1

I(n ∈ A)x2n.

Equating coefficients of x2n, we can easily prove the recursive relationship for PR
A (2n; even) in

Theorem 2.10. �
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Proof of Theorem 2.11. Assume r ∈ Z≥2 and A is the set of all positive integers that are not
multiples of r. We only prove parts (1)(a,b) and (3). The proofs of the other parts are similar
and hence are omitted.

Part (1)(a,b). Assume fn = PR
A (2n + 1; odd) for n ∈ Z≥0. When n ≥ r, equation (2.5) in

Theorem 2.10 gives

fn =

n−1
∑

s=n−r

fs I(n− s ∈ A) +

n−r−1
∑

s=0

fs I(n− r − s ∈ A) + I(2(n − r) + 1 ∈ A) (3.2)

because x ∈ A if and only if x− r ∈ A for x > r. By applying equation (2.5) again for n− r
rather than n, we get

fn−r =

n−r−1
∑

s=0

fs I(n− r − s ∈ A) + I(2(n − r) + 1 ∈ A). (3.3)

Subtracting equation (3.3) from equation (3.2), we get

fn =
n−1
∑

s=n−r

fs I(n− s ∈ A) + fn−r =
r
∑

s=1

fn−s

because I(r ∈ A) = 0.
If r is even, then for 0 ≤ n ≤ r − 1 we have 1 ≤ 2n+ 1 ≤ 2r − 1, i.e., I(2n+ 1 ∈ A) = 1; in

addition, for 0 ≤ s ≤ n− 1 we have 1 ≤ n− s ≤ n ≤ r − 1 and so I(n − s ∈ A) = 1. In such

a case, it follows from equation (2.5) that f0 = 1 and fn =
∑n−1

s=0 fs + 1, from which we can
easily prove that fn = 2n for 0 ≤ n ≤ r − 1. This completes the proof of Part (1)(a).

If r is odd, then for 0 ≤ n ≤ r−3
2 we have 1 ≤ 2n+1 ≤ r−2. In this case, using equation (2.5)

we get fn =
∑n−1

s=0 fs + 1, and thus, fn = 2n for 0 ≤ n ≤ r−3
2 .

If r is odd and n = r−1
2 , then 2n+ 1 = r, and so, equation (2.5) implies

fn =
n−1
∑

s=0

fs =
n−1
∑

s=0

2s = 2n − 1.

If r is odd and r+1
2 ≤ n ≤ r − 1, then r + 2 ≤ 2n + 1 ≤ 2r − 1 and 1 ≤ n − s ≤ n ≤ r − 1

for 0 ≤ s ≤ n− 1. It follows from equation (2.5) that

fn =

n−1
∑

s=0

fs + 1.

This implies

f r+1
2

=

r−3
2
∑

s=0

2s +
(

2
r−1
2 − 1

)

+ 1 = 2
r+1
2 − 1.

In addition, fn+1 = 2fn, and thus we can easily prove by induction that fn = 2n − 2n−
r+1
2 for

r+1
2 ≤ n ≤ r − 1. This completes the proof of Part (1)(b).

Part (3). Assume first n ≥ r + 1. Applying equation (2.8) twice, once for n and once for
n− r, we get

fn =

n−1
∑

s=n−r

fs + β(n),
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where

β(n) :=
1

2

n−1
∑

s=n−r

I(2s+ 1 ∈ A) I[2(n − s)− 1 ∈ A] +
1

2

n−1
∑

s=n−r

I(2s ∈ A) I(2(n − s) ∈ A). (3.4)

We shall prove that β(n) is given by the formula in Part (3) of Theorem 2.11. When r = 2,
we get

β(n) =
1

2
[I(2n − 3 ∈ A) I(3 ∈ A) + I(2n − 1 ∈ A) I(1 ∈ A) + I(2n − 4 ∈ A) I(4 ∈ A)

+ I(2n − 2 ∈ A) I(2 ∈ A)] = 1.

Next assume r is even ≥ 4 and n ≡ 0
(

mod r
2

)

. It is clear in this case that

I(2s + 1 ∈ A) I(2(n − s)− 1 ∈ A) = 1 for n− r ≤ s ≤ n− 1. (3.5)

Also, 1 ≤ n − s ≤ r for n − r ≤ s ≤ n − 1; in such a case, I(2(n − s) ∈ A) = 0 if and only if
s ∈ {n− r

2 , n− r}. In addition, there is ℓ ∈ Z≥1 such that n = ℓ r2 . It follows that

r(ℓ− 2) ≤ 2s ≤ rℓ− 2 for n− r ≤ s ≤ n− 1.

In such a case, I(2s ∈ A) = 0 if and only if s ∈ { r(ℓ−2)
2 , r(ℓ−1)

2 } = {n − r, n − r
2}. It follows

from equation (3.4) that β(n) = (r + r − 2)/2 = r − 1.
Next assume r is even ≥ 4 and n 6≡ 0

(

mod r
2

)

. Again, equation (3.5) holds. Furthermore,
for n − r ≤ s ≤ n − 1, I(2(n − s) ∈ A) = 0 if and only if s ∈ {n − r

2 , n − r}. Also, there is
ℓ ∈ Z≥0 such that n = ℓ r2 + a, where a ∈ {1, . . . , r2 − 1}. Then

r(ℓ− 2) + 2a ≤ 2s ≤ rℓ+ 2a− 2 for n− r ≤ s ≤ n− 1.

It follows that I(2s ∈ A) = 0 if and only if s ∈ { r(ℓ−1)
2 , rℓ2 }. Since 1 ≤ a ≤ r

2 − 1, we have

{n − r, n−
r

2
} ∩ {

r(ℓ− 1)

2
,
rℓ

2
} = {

r(ℓ− 2)

2
+ a,

r(ℓ− 1)

2
+ a} ∩ {

r(ℓ− 1)

2
,
rℓ

2
} = ∅,

and therefore β(n) = (r + r − 4)/2 = r − 2.
Assume next that r is odd ≥ 3 and n ≡ 0 (mod r) . Then there is ℓ ∈ Z≥1 such that n = ℓr.

Since 2 ≤ 2(n − s) ≤ 2r for n − r ≤ s ≤ n − 1, we have I(2(n − s) ∈ A) = 0 if and only if
s = n − r = r(ℓ − 1). Since also 1 ≤ 2(n − s) − 1 ≤ 2r − 1 for n − r ≤ s ≤ n − 1, we have

I(2(n − s)− 1 ∈ A) = 0 if and only if 2(n − s)− 1 = r if and only if s = n− r+1
2 = r(2ℓ−1)−1

2 .
In addition, we have

2r(ℓ− 1) = 2n − 2r ≤ 2s ≤ 2ℓr − 2 = 2n− 2 for n− r ≤ s ≤ n− 1;

whence I(2s ∈ A) = 0 if and only if s = r(ℓ − 1) = n − r. Finally, I(2s + 1 ∈ A) = 0 if and

only if 2s + 1 = r(2ℓ − 1) if and only if s = r(2ℓ−1)−1
2 . It follows from equation (3.4) that

β(n) = (r − 1 + r − 1)/2 = r − 1.
Finally, assume r is odd ≥ 3 and n 6≡ 0 (mod r) . Thus, there is ℓ ∈ Z≥0 and a ∈ {1, . . . , r−1}

such that n = rℓ+a. Since 2 ≤ 2(n−s) ≤ 2r for n−r ≤ s ≤ n−1, we have I(2(n−s) ∈ A) = 0
if and only if s = n−r = r(ℓ−1)+a; also, I(2(n−s)−1 ∈ A) = 0 if and only if 2(n−s)−1 = r

if and only if n− s = r+1
2 if and only if s = r(2ℓ−1)−1

2 + a. In addition,

2r(ℓ− 1) + 2a = 2n − 2r ≤ 2s ≤ 2n− 2 = 2rℓ+ 2a− 2 for n− r ≤ s ≤ n− 1.

It follows that I(2s ∈ A) = 0 if and only if 2s = 2rℓ if and only if s = rℓ. Also, I(2s+1 ∈ A) = 0

if and only if 2s + 1 = r(2ℓ − 1) if and only if s = r(2ℓ−1)−1
2 . Since the numbers r(2ℓ−1)−1

2

and r(2ℓ−1)−1
2 + a are distinct, and so are the numbers r(ℓ − 1) + a and rℓ, it follows from

equation (3.4) that β(n) = (r − 2 + r − 2)/2 = r − 2.
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We finish the proof of Part (3) of the theorem by verifying the formulae for the initial
conditions. For 1 ≤ n ≤ r, we have I(n − s ∈ A) = 1 when 1 ≤ s ≤ n− 1 because n − 1 < r.
Also, I(n ∈ A) = 1 when 1 ≤ n ≤ r − 1 and I(n ∈ A) = 0 when n = r.

Assume first 1 ≤ n ≤
⌊

r
2

⌋

. For 0 ≤ s ≤ n− 1, we have

1 ≤ 2s+ 1 ≤ 2n− 1 ≤ 2
⌊r

2

⌋

− 1 ≤ r − 1 < r and 1 ≤ 2(n − s)− 1 ≤ 2n− 1 < r.

Thus, in this case, I(2s + 1 ∈ A) = 1 = I(2(n − s) − 1 ∈ A). In addition, for 1 ≤ s ≤ n − 1,
we have

2 ≤ 2s ≤ 2n− 2 < r and 2 ≤ 2(n− s) ≤ 2n− 2 < r.

In such a case, I(2s ∈ A) = 1 = I(2(n− s) ∈ A). Using equation (2.8), we can prove that, for
1 ≤ n ≤

⌊

r
2

⌋

,

fn =

n−1
∑

s=1

fs +
n+ n− 1 + 1

2
=

n−1
∑

s=1

fs + n. (3.6)

It is then easy to prove by finite induction that fn = 2n − 1.
Finally, assume

⌊

r
2

⌋

+ 1 ≤ n ≤ r. Then, for 0 ≤ s ≤ n− 1, we have

1 ≤ 2s+ 1 ≤ 2n− 1 ≤ 2r − 1 and 1 ≤ 2(n − s)− 1 ≤ 2n− 1 ≤ 2r − 1.

Thus, in this case, I(2s+1 ∈ A) = 0 if and only if r is odd and s = r−1
2 ; and I(2(n−s)−1 ∈ A) =

0 if and only if r is odd and s = n− r+1
2 . (In particular, I(2s+1 ∈ A) = 0 = I(2(n−s)−1 ∈ A)

if and only if r is odd, n = r, and s = r−1
2 .) On the other hand, for 1 ≤ s ≤ n− 1,

2 ≤ 2s ≤ 2n− 2 ≤ 2r − 2 and 2 ≤ 2(n − s) ≤ 2n− 2 ≤ 2r − 2.

It follows that (in this case) I(2s ∈ A) = 0 if and only if r is even and s = r
2 ; also, I(2(n−s) ∈

A) = 0 if and only if r is even and s = n− r
2 . (In particular, I(2s ∈ A) = 0 = I(2(n− s) ∈ A)

if and only if r is even, n = r, and s = r
2 .) Note that when r is odd, r−1

2 =
⌊

r
2

⌋

≤ n− 1, while

when r is even, we have r
2 =

⌊

r
2

⌋

≤ n− 1.

If
⌊

r
2

⌋

+ 1 ≤ n < r and r is odd, then

fn =
n−1
∑

s=1

fs +
n− 2 + n− 1 + 1

2
=

n−1
∑

s=1

fs + n− 1. (3.7)

On the other hand, if
⌊

r
2

⌋

+ 1 ≤ n < r and r is even, then

fn =

n−1
∑

s=1

fs +
n+ n− 3 + 1

2
=

n−1
∑

s=1

fs + n− 1.

One can easily prove that, if n = r and r is odd, or n = r and r is even, the formula
fn =

∑n−1
s=1 fs + n− 1 is still true.

It follows from equations (3.6) and (3.7) that

f⌊ r2⌋+1 = 2f⌊ r2⌋
= 2⌊

r
2⌋+1 − 2.

Equation (3.7) also implies fn = 2fn−1 + 1 for
⌊

r
2

⌋

+ 1 < n ≤ r. We can then prove by finite
induction that

fn = 2n − 2n−1−⌊ r2⌋ − 1 for
⌊

r
2

⌋

+ 1 ≤ n ≤ r.

This completes the proof of Part (3) of Theorem 2.11. �
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4. Concluding Remarks

In Remark 1, we mentioned that our results are useful for studying dihedral compositions.
Dihedral compositions of N of length K are defined as equivalence classes on the set of all
linear compositions of N of length K. Here, two linear compositions of N with length K
are said to be equivalent if and only if they differ by a cyclic shift or a reversal of order; see
Knopfmacher and Robbins [9]. Given a set A ⊆ Z>0, we denote by cDA (N ;K) the number of
dihedral compositions of N with length K and parts in A. With insights gained from this
study, we have

cDA (N ;K) =
cRA(N ;K)− PR

A (N ;K)

2
+ PR

A (N ;K)

=
cRA(N ;K) + PR

A (N ;K)

2

=
2cRA(N ;K) + PL1

A (N ;K) + PL2
A (N ;K)

4
,

which generalizes Theorem 1 in [9].
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