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Abstract. The discovery of two passages from 1769 by the German Georg Christoph Lich-
tenberg and the Japanese Yoriyuki Arima, respectively, sheds some new light on the early
history of integer sequences and mathematical induction. Both authors deal with the solution
of the ancient Chinese rings puzzle, where metal rings are moved up and down on a very
sophisticated mechanical arrangement. They obtain the number of (necessary) moves to
solve it in the presence of n rings. While Lichtenberg considers all moves, Arima concentrates
on the down moves only of the first ring. We will present a unified view on integer sequences
and discuss some of their most fundamental representatives before collecting properties of the
Lichtenberg sequence ℓn, defined mathematically by the recurrence ℓn + ℓn−1 = 2n − 1, and
related sequences such as the Jacobsthal sequence, which is the sequence of differences of ℓ.
And, of course, at some point Fibonacci numbers will enter the scene.

Die Mathematik i� eine gar herrli�e Wi�ens�aft,

aber die Mathematiker taugen oft den Henker ni�t.

Georg Christoph Lichtenberg [12, p. 287]

1. Integer Sequences

An integer sequence is a mapping

a : N0 → Z, n 7→ an (:= a(n)) .

As a convention we define a−n := 0 for n ∈ N. However, there will be no a(−n), which means that
a ∈ Z

N0 .
Elementary examples for integer sequences are 0̂, defined by 0̂(n) = 0n (A000007)1, and 1 with

1(n) = 1 (A000012). We also define αa for α ∈ Z by (αa)(n) = αa(n) and a + b by (a + b)(n) =
a(n) + b(n); in particular, 0 denotes the trivial sequence 0n = 0 (A000004).

The most important statement about integer sequences is the following.

Lemma 1.1. Let α ∈ Z, a, b ∈ Z
N0 . Then

∀n ∈ N0 : bn = an − α an−1 ⇔ ∀n ∈ N0 : an =

n∑

k=0

αn−k bk .

Proof. The proof of “⇒” is via a telescoping sum, while “⇐” is trivial. �

If α = 1 in Lemma 1.1, then a is the sequence Σb of partial sums (or the integral) of b and b is the
sequence a of differences (or the derivative) of a. As is desirable, we have the Fundamental Theorem

of Integer Sequences:

Σa = a = Σa .

As an example let us consider the identity sequence (A001477)

id : N0 → N0, n 7→ n , (id)

for which id = 1− 0̂ = 0, 1, 1, . . . (cf. A057427), i.e. it is the characteristic function of N in N0. For the
sequence ∆ := Σ id = 0, 1, 3, 6, 10, 15, 21, . . . (A000217) we obtain, from ∆ = id,

1Throughout, this refers to [16] as of 2016–06–22.
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∆n = ∆n−1 + n ; (∆)

these are the triangular numbers, known for ages and somehow related to Carl Friedrich Gauss (1777–
1855) (cf. [7, p. 34–36]).

Lemma 1.1 has another useful consequence:

Corollary 1.2. Let α, β ∈ Z; then

(β − α)

n∑

k=0

αn−k βk = βn+1 − αn+1.

Proof. Put ak = βk+1 − αk+1 and bk = (β − α)βk in Lemma 1.1. �

2. The Dyadic Number System

In his (draft of a) letter2 dated 1697–01–02 (the “New Year’s Letter”) to Duke Rudolph August,
Prince of Brunswick-Wolfenbüttel, Gottfried Wilhelm Leibni(t)z (1646–1716) presented an explicit list
of the first 15 entries of the dyadic sequence (A000079) given by

Dn = 2n (D)

in both decimal
D = 1, 2, 4, 8, 16, 32, 64, . . .

and binary representation

D = 1, 10, 100, 1000, 10000, 100000, 1000000 . . . ;

they will be identified with each other by writing Dn = (10n)2.
Of equal interest is the Mersenne sequence (A000225)

M := D − 1 = 0, 1, 3, 7, 15, 31, 63, . . . ,

named for Marin Mersenne (1588–1648), a member of the order of the Minims. He had tried, mostly in
vain, to devise methods to test the primality ofMersenne numbers3 Mn = Dn−1 = (1n)2 in order to find
(even) perfect numbers. The latter are known to be those members of the, also otherwise interesting,
sequence4 ∆ ◦M (A006516) for which Mn is prime (Euclid-Euler theorem), namely a Mersenne prime;

it was the French number theorist Édouard Lucas (1842–1891) who first came up with a satisfactory
test; cf. [20].

For technical reasons it is often useful to employ the sequence (A131577)

M = 0, 1, 2, 4, 8, 16, 32, . . . ,

where obviously Mn = Dn−1 = (ω(n))2, with ω(0) being the empty (binary) string and ω(n) = 10n−1

for n ∈ N. Moreover, the sequence (A011782)

D = 1, 1, 2, 4, 8, 16, 32, . . .

fulfills Dn = Mn−1 + 1. Finally, from Corollary 1.2 it follows that ΣDn = Mn+1 = Dn+1 − 1 and
ΣMn = Mn+1 − (n+ 1) = 2Mn − n, the latter because Mn+1 = 2Mn + 1. The sequence

E := ΣM = 0, 1, 4, 11, 26, 57, 120, . . .

is called (an) Eulerian sequence (cf. A000295) for Leonhard Euler (1707–1783), who in 1755 considered
a certain list of polynomials whose coefficients have found a modern combinatorial interpretation as
follows. Let Sn be the set of permutations on [n] := {1, . . . , n} and for σ ∈ Sn let exc(σ) = |{i ∈
[n] | σi > i}| (∈ [n]0 := {0, . . . , n − 1}) denote the number of excedances of σ; then

〈
n

k

〉
:= |{σ ∈

2This draft is preserved in the State Library of Lower Saxony in Hanover (LBr II/15); a facsimile can be
found between pages 24 and 25 in: R. Loosen, F. Vonessen (eds.), G. W. Leibniz, Zwei Briefe über das binäre
Zahlensystem und die chinesische Philosophie, Belser, Stuttgart, 1968.

3so named in [14, p. 230].
4as usual, ◦ stands for the composition of mappings.
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Figure 1. The state graph for the three-ring game.

Sn | exc(σ) = k}|. This opens a whole new world of Eulerian numbers; cf. [17]. Our sequence is then
given by En =

〈
n+1
1

〉
(see [17, Chapter 1]). Compare this with ∆n =

(
n+1
2

)
.

3. The Chinese Rings

In the modern mathematical theory of the Chinese rings (cf. [7, Chapter 1]), this ancient puzzle,
whose (European) tradition can be traced back at least to the beginning of the 16th century (cf. [5]),
is modeled by its state graph which turns out to be a path graph on 2n vertices. Here n is the number
of rings which are arranged mechanically on or off a bar (or loop). A state of the puzzle, i.e. a vertex
of the state graph Rn, is represented by an s ∈ {0, 1}n and written as s = sn . . . s1, where sr is 0 or 1
depending on whether ring r ∈ [n] is off or on the bar, respectively. An edge is then between vertices
sn . . . sr+1srω

(r−1) and sn . . . sr+1(1 − sr)ω
(r−1) and represents a move of ring r. See Figure 1 for the

example where n = 3.
The classical task is to get from 1n to 0n (or vice versa), and the fundamental mathematical problem

is to find the minimal number of ring moves ℓn to achieve this task.
Since 1n lies on the path from 0n to 10n−1 of length Mn, it is clear from the rules of the game that

the following holds (cf. [7, (1.2)], where ℓ is denoted by β):

ℓn + ℓn−1 = Mn . (L.0)

Thus, (recall that by convention ℓ−1 = 0 and consequently ℓ0 = M0 = 0)

ℓ = 0, 1, 2, 5, 10, 21, 42, 85, 170, 341, . . .

is the sequence (A000975). It has been studied as early as 1769 by Georg Christoph Lichtenberg
(1742–1799) in [11], so we propose to call it the Lichtenberg sequence5.

4. Lichtenberg’s Analysis

The title of Lichtenberg’s article, which addressed a more general audience and was therefore written
in the local language German, translates as “On the game with elaborately intertwined rings, commonly
known as Nürnberger Tand”. The latter expression cannot easily be translated, not even into modern
German. It seems to have been originally attached to what we now call the Chinese rings6 and has
later been carried over to other toys from the German city which demonstrates its ongoing importance
in the toy industry by its annual toy trade fair. Another German name at the time was “Zankeisen”,
somehow related to the English “tiring irons”. The article is written clearly and with an unusual, for
the time, mathematical rigor.

After pronouncing his goal of a mathematical examination into the law of times needed to get
a certain (positive) quantity of rings down, the author presents, without proof as he admits, four
statements which can be summarized in modern terms as

1. Because of the composition of the “machine”, a ring can be brought down from the bar only if
all other rings before it, except its immediate neighbor, are off the bar. The same applies to the
move of a ring onto the bar.

2. The task 1n → 0n needs the same amount of time as the task 0n → 1n, just the procedure is in
reverse.7

5We use small ℓ because capital L is reserved for the Lucas sequence (A000032).
6This name has not been reported earlier than 1872 in [2], where ℓ60 was asked for; hint by A. Heeffer.
7Of course, Lichtenberg does not employ our formal notation, but he does use the letter n for the number of

rings!
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3. From statement 1 one deduces that after the removal from the bar of ring n in the task 1n → 0n

state 010n−2 is reached. Thereafter, in order to get ring n− 1 off the bar, one has to bring back
the first n− 2 rings onto the bar, i.e. one has to pass the state 01n−1.8

4. The time needed to solve the task 1n → 0n is assumed to be proportional to the number of
moves made, i.e. to ℓn.

After this preparation, Lichtenberg sets off to calculate ℓn without recourse to the extreme state
10n−1 (if n ≥ 2) by deducing, from statement 3 and with explicit reference to statement 2, what we
would write as

ℓn = ℓn−2 + 1 + ℓn−2 + ℓn−1 ;

note that this applies only for n ∈ N. In a lengthy footnote, Lichtenberg explicates what is meant
if n = 1, when n − 2 has a “negated” value: he defends statement 1 in this case mathematically by
introducing a ring 0 on the bar and a ring −1 off the bar and bearing in mind that ℓ0 = 0 = ℓ−1. This
is in perfect accordance with our convention!

In order to match our definition of an integer sequence having offset 0, we summarize Lichtenberg’s
recurrence as

ℓ0 = 0, ℓn+1 = ℓn + 2ℓn−1 + 1 . (L.1)

Let us note in passing that by combination of (L.1) and (L.0) we obtain

ℓ0 = 0, ℓn+1 = Dn + ℓn−1 . (L.2)

Lichtenberg establishes a table with the numerical values from ℓ1 to ℓ9 and identifies from this list
yet another recursive law for his sequence, namely9

ℓn = 2ℓn−1 + n0, (L.3)

which can easily be established by induction: the case n = 0 is clear, and for the induction step we
have

2ℓn + (n+ 1)0 = ℓn + ℓn + 1− n0 = ℓn + 2ℓn−1 + 1 = ℓn+1,

the latter equality following from (L.1).
Finally, Lichtenberg notices from this law (put α = 2, a = ℓ and bn = n0 in Lemma 1.1) that if

written according to Leibniz’s dyadic system his sequence fulfills

ℓn =

n−1∑

k=0

(n− k)0 · 2
k, (L.4)

i.e. the Lichtenberg number ℓn is the number with binary (or dyadic) representation of length n and
alternating bits; in particular, (ℓn)0 = n0. A list of ℓ1 to ℓ9 is given in this form and Lichtenberg
concludes: “From this results a similarity of this machine to a calculating machine for Leibnitz’s dyadic
system”.

Possibly to impress the reader, the article ends with some numerical examples for the time needed
to solve the task. Here the physicist Lichtenberg starts with an apparently empirical value of 11 to 12
minutes needed for (the classical) 9 rings, such that a move takes approximately 2 seconds. He claims
that, if one devotes 6 hours per day to the solution, a game with “only” 20 rings would take more than
64 days to accomplish. His calculation for 30 rings (2760 years)10 is erroneous, however, whereas his
statement that for 50 rings one would need “many million years” is, of course, correct.

8It would be interesting to know Lichtenberg’s argument for this (true) statement, because it contains the
minimality of his solution; private communication by Paul K. Stockmeyer, 2016–09–09.

9Every n ∈ N0 can be identified with the binary sequence of its coefficients in base 2 representation. We
therefore write n0 for n mod 2. Note that n0 + (n+ 1)0 = 1.

10This error is a bit surprising because the times are essentially doubling with every ring added, such that
going from 20 to 30 would roughly result in a factor of 1000, leading to less than 200 years.
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5. More Properties of the Lichtenberg Sequence

Since Dn−1 ≤ ℓn < Dn, it follows from (L.4) that ℓn is the smallest l greater than ℓn−1 with
the property that d1(l, ℓn−1) = n, where l and ℓn−1 are interpreted as their corresponding (infi-
nite) bit strings and d1 is the distance function on

{
α ∈ {0, 1}N0 |

∑∞
k=0 αk < ∞

}
given by d1(α, β) =

|{k ∈ N0 | αk 6= βk}|. So the Lichtenberg numbers have the same relation to the d1 (or Hamming11)
metric as the triangular numbers to the canonical one; cf. (∆).

Explicit formulas for the Lichtenberg numbers are collected in the following proposition.

Proposition 5.1.

ℓn =

⌈
2

3
Mn

⌉
=

1

3
(Mn+1 − 1 + n0) =

⌊
2

3
Dn

⌋
. (L.5)

Proof. Putting α = −1, a = ℓ and b = M in Lemma 1.1, we get

ℓn =

n∑

k=0

(−1)n−kMk =

n∑

k=0

(−1)n−k2k −

n∑

k=0

(−1)n−k,

such that from Corollary 1.2 we arrive at

ℓn =
1

3

(
2n+1 − (−1)n+1

)
−

1

2

(
1− (−1)n+1

)
=

1

3
(Mn+1 − 1 + n0) .

This can also be expressed as

1

3
(2Mn + n0) = ℓn =

1

3
(2Dn − 2 + n0) ,

from which the other two expressions in (L.5) follow. �

Note in passing that ℓ2m = 2
3 (4

m − 1) is (10)m in binary representation (“power” m meaning m-

fold repetition). Therefore, .(10)m = 4−mℓ2m = 2
3 (1 − 4−m), so that 2

3 = (.101010 . . .)2. This fact is

noteworthy because 2
3 was a special fraction in Ancient Egypt (cf. [7, p. 85]). The connection between 2

3
and ℓ was observed by Paul K. Stockmeyer, who explored the mathematical properties of the sequence
further; see [19].

As Lichtenberg mentions, rings go up and down many times during execution of the solution. Let
us call λn the number of up-moves in the 1n → 0n task or, equivalently, the down-moves in 0n → 1n.
(This is related to the paper folding sequence; cf. [7, p. 62f].) Then

ℓ = 2λ+ id, (Λ.1)

because what goes up must come down and there are n rings down in 0n which had been up in 1n. So
we have ℓn+1 − ℓn = 2λn+1 + 1, whence from (L.1) we get λn+1 = ℓn−1; moreover, λ0 = λ0 = 0. But
then

λn+1 = Σλn+1 =

n∑

k=0

λk+1 =

n∑

k=0

ℓk−1 = Σℓn−1. (Λ.2)

The sequence µ describing the number of down-moves in 1n → 0n or of up-moves in 0n → 1n, is
(cf. A086445)

µ = λ+ id = 0, 1, 2, 4, 7, 13, 24, 46, 89, . . . ;

its differences are given by (cf. A005578)

µ = 0, 1, 1, 2, 3, 6, 11, 22, 43, . . . .

Here λ has been evaluated from the sequence of partial sums of ℓ which is (cf. A178420)

Σℓ = 0, 1, 3, 8, 18, 39, 81, 166, 336, . . . ,

11cf. the remark of V. Shevelev (2012) in [16, A000975].
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Figure 2. The state graph for the accelerated three-ring game.

because from (Λ.2), (Λ.1) and (L.2) we obtain

Σℓn =
1

2
(ℓn+2 − (n+ 2)) =

1

2
(ℓn +Dn+1 − (n+ 2)) =

1

2
(ℓn + En) ,

i.e. Σℓ is the arithmetic mean of Lichtenberg’s and Euler’s sequences. Moreover, it fulfills the recurrence

Σℓ0 = 0, Σℓn+1 = Σℓn−1 +Mn+1 . (L.2bis)

An alternative way to approach the sequence A := µ, and consequently the sequence µ = ΣA, is
obtained from the recurrence

A0 = 0, A1 = 1, An+2 = 2An+1 − 1 + n0, (L.3bis)

which follows via (Λ.2) from (L.3). The same recurrence is fulfilled for the number of down moves of
ring 1 in the 1n → 0n task. This is so because for n+2 rings, ring 1 has to move down after each move,
up or down, of ring 2 and there are An+1 of these going down and An+1 − 1 going up; for odd n the
first move of ring 1 is an extra move down allowing ring 3 to move down directly without ring 2 being
involved. This immediately leads to a practical solution (cf. [7, Proposition 1.6]): ring 1 is transferred
in every move whose parity is the same as that of n. (Obviously, in the task(s) 0n → 1n (or 10n−1),
ring 1 moves in every odd move.)

Actually, An−r+1 is the number of down moves of ring r ∈ [n]. This follows from the fact that the
moves of rings 2 to n form an optimal solution for n− 1 rings and An−r+1 = A(n−1)−(r−1)+1.

The smart idea to reduce the question of the length of an optimal solution to the analysis of down
moves appears in the book “Shūki Sanpō” (Vol. 2, p. 20r–21r; for a modern transcription, see [21,
p. 27f])12 by the Japanese mathematician Yoriyuki Arima (1714–1783) from 1766/9 (cf. the Historical

note in [10, p. 679]). The author uses an inductive argument based on the recurrence relation

∀n ∈ N : An+1 = 2An − n0 (A.1)

and presents tables for both, Ar and A9−r+1 for r ∈ [9]. (The value for A8 is reproduced incorrectly in
[21], but properly in the original.) We therefore call A the Arima sequence; see [3].

By induction one can show that An = 1
3 (Dn−1 + 1 + n0) (and therefore An+1 = An−1 +Dn−1) for

n ∈ N. As a consequence, ⌈
1

3
M

⌉
= A =

⌊
1

3
(M + 2)

⌋
.

It follows that for n ∈ N0 the domination number of Rn (cf. [7, p. 270]) is γ(Rn) = An+1 = ℓn−1 + 1,
the latter identity being a direct consequence of (Λ.2).

6. The Purkiss Sequence

Playing the Chinese rings one realizes that rings 1 and 2 can be moved simultaneously, either both
up or both down. If this is counted as one move (or rather “movement” to distinguish it from the
normal rules), then we get what has been called the accelerated run; see [7, p. 56]. This counting was
already employed by Cardano in the middle of the 16th century; cf. [5]. Looking for a shortest path, we
may delete all vertices of the state graph modeling this situation ending in 01, because they subdivide
those edges which correspond to the simultaneous movements of rings 1 and 2; cf. Figure 2. The result
is again a path graph joining 0n with 10n−1, but now of length Dn−1 +Mn−1 (cf. [7, p. 269]; the cases

12I thank Osanobu Yamada (Kusatsu) and Steffen Döll (Hamburg) for their support in translating this
passage.
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n = 0 and n = 1 are also covered by our formula, for n ≥ 2 the value is 3 · 2n−2 − 1), so that for the
number pn of move(ment)s to get from 1n to 0n or vice versa, we now have

pn + pn−1 = Dn−1 +Mn−1 . (P.0)

From this we get πn+πn−1 = 1 for the sequence π := D−p, whence πn = 1−n0 and pn = Dn−1+n0 =
Mn−1+n0. Therefore, p = 0, 1, 1, 4, 7, 16, 31, 64, 127, 256, . . . , which is essentially (A051049). Note that
by (L.5) we have

pn+1 = 3ℓn−1 + 1. (PL.1)

Already in 1865, Henry John Purkiss (1842–186513), who calls the Chinese rings, following Wallis,
the complicati annuli or common ring-puzzle, observed in [18] (cf. the Historical note in [10, p. 679])
that (in our notation)

(p0 = 0, ) p1 = 1 = p2, ∀n ≥ 2 : pn+1 = pn + 2pn−1 + 1, (P.1)

which is the same as (L.1), except that now only p2 = 1 move(ment) is necessary for just two rings.
As he was considering the case of general n, we propose to name the sequence Purkiss sequence. In
[13, p. 42], Lucas attributes this sequence to Théodore Parmentier (1821–1910), so that the letter “p”
is justified in any case.

Note that for n ≥ 2 the movements of discs 1 and 2 together correspond precisely to those moves in
the normal run where disc 2 changes position, i.e. in the accelerated run disc 2 never walks alone. We
therefore have

∀n ≥ 2 : pn = ℓn − 2An−1 + 1. (PLA)

The sequence of partial sums is Σpn = Mn − 1
2 (n− n0) (cf. A173009). The differences are given by

pn = Mn−1 −Dn−1 + 2n0 (cf. A062510).

7. The Jacobsthal Sequence

Even more interesting, and in fact more popular (cf., e.g., [8, 1]), is the sequence which we obtain
as the differences in the Lichtenberg sequence (A001045):

J := ℓ = 0, 1, 1, 3, 5, 11, 21, 43, 85, 171, . . . ;

as can be seen from (PL.1) it can also be written as

Jn =
1

3
p
n+2 , (JP.1)

or, making use of (L.1) and (PL.1),

ℓn − pn = Jn−1 . (JP.2)

This means that the number of moves we “save” when employing the accelerated counting for n rings
is just Jn−1. By (L.0) this sequence fulfills

Jn + Jn−1 = Mn = Dn−1 . (J.0)

It is usually called the Jacobsthal sequence for Ernst Jacobsthal (1882–1965), but the relation to the
latter’s article [9] is a bit vague. In that paper, Jacobsthal considers a special type of Fibonacci

polynomials fn given for every x ∈ R by the recurrence

f−1(x) = 0, f0(x) = 1, fn+1(x) = fn(x) + xfn−1(x).

Letting x = 0, 1, 2 we get

fn−1(0) = idn, fn−1(1) = Fn, fn−1(2) = Jn, (IFJ)

respectively; here F is, of course, the Fibonacci sequence and the last identity follows from

J0 = 0, J1 = 1, Jn+2 = Jn+1 + 2Jn, (J.1)

13“who was drowned while bathing in the Cam” (from an obituary in: The Oxford, Cambridge, and Dublin
Messenger of Mathematics 3 (1866)).
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which in turn is a consequence of (J.0) and (L.2); (L.2) also leads to

J0 = 0, J1 = 1, Jn+2 = Jn +Dn. (J.2)

Relations between the Jacobsthal and Lichtenberg sequences can easily be obtained from (L.1)

J0 = 0, Jn+1 = 2ℓn−1 + 1 (JL.1)

and (L.3)

Jn = ℓn−1 + n0, (JL.2)

which in turn combine to

J0 = 0, Jn+1 = 2Jn + (−1)n. (J.3)

This means that for n ≥ 2 the binary representation of Jn has length n− 1 and bits alternating from
left to right, but with the rightmost bit being always 1; in other words, it is an alternating bit string
of length n− 2 followed by a 1:

Jn = 1 +
n−2∑

k=1

(n− 1− k)0 · 2
k. (J.4)

Another consequence of (J.3) is

Jn = An+1 − 1 + n0, or either An = Jn−1 + n0, (JA.1)

and

Jn+1 = 2An+1 − 1. (JA.2)

To see this, put J̃n = An+1 − 1 + n0; then, using (L.3bis),

J̃0 = A1 − 1 = 0, J̃n+1 = An+2 − n0 = 2An+1 − 1 = 2J̃n + (−1)n,

such that (JA.1) and implicitly (JA.2) follow from (J.3).
The analogue of Proposition 5.1 is

Proposition 7.1.

Jn =

⌈
1

3
Mn

⌉
=

1

3
(Mn + 2n0) =

⌊
1

3
(Dn + 1)

⌋
. (J.5)

Proof. By virtue of (J.0) we put α = −1, a = J and b = M in Lemma 1.1 and use Corollary 1.2. The
rest is as in the proof of Proposition 5.1. �

For the sequence of differences we have from (JL.1)

J0 = 0, J1 = 1, Jn+2 = 2Jn.

There is an interesting feature in Jacobsthal’s paper, namely [9, formula (9)]

fn(x) =

⌊n

2
⌋∑

k=0

(
n− k

k

)
xk, (f)

which for x = 2 yields

Jn+1 =

⌊n

2
⌋∑

k=0

(
n− k

k

)
Dk. (J.6)

The latter identity can be proved directly by recourse to the Lichtenberg sequence. We define

ℓ̃n−1 =

⌊n

2
⌋∑

k=1

(
n− k

k

)
Dk−1;
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then

ℓ̃n + 2ℓ̃n−1 + 1 =

⌊n+1

2
⌋∑

k=1

(
n+ 1− k

k

)
Dk−1 +

⌊n

2
⌋∑

k=0

(
n− k

k

)
Dk

=

⌊n

2
⌋+1∑

k=1

{(
n+ 1− k

k

)
+

(
n+ 1− k

k − 1

)}
Dk−1

=

⌊n+2

2
⌋∑

k=1

(
n+ 2− k

k

)
Dk−1 = ℓ̃n+1.

Hence, from (L.1),

ℓn−1 =

⌊n

2
⌋∑

k=1

(
n− k

k

)
Dk−1 (L.6)

and (J.6) follows by virtue of (JL.1).
From (J.6) and (JA.2) we obtain

An+1 =

⌊n

2
⌋∑

k=0

(
n− k

k

)
Dk. (A.2)

Putting x = 1 in (f), we can make the connection to the beautiful formula

Fn+1 =

⌊n

2
⌋∑

k=0

(
n− k

k

)
, (F)

which has been known implicitly in Indian prosody for ages (cf. [7, p. 14]). Note that this implies

An+1 − Fn+1 =

⌊n

2
⌋∑

k=0

(
n− k

k

)
Mk−1 = 0, 0, 0, 0, 1, 3, 9, 22, 52, . . . . (AF)

Let us finally mention another beautiful connection between the Fibonacci and the Jacobsthal num-
bers via Stern’s diatomic sequence s = 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, . . . (cf. [15]). The latter is named for
Moritz Abraham Stern (1807–1894) and defined, e.g., by the recurrence

s0 = 0, s1 = 1, ∀n ∈ N : (s2n = sn) ∧ (s2n+1 = sn + sn+1). (S)

We then have

F = s ◦ J = s ◦ ℓ . (FSJ)

This remarkable relation can be deduced from the theory of another famous mathematical game, namely
the Tower of Hanoi. For details, see [6] and [7, Section 2.4].

As we have shown, the Arima, Purkiss, and Jacobsthal sequences and their derivates can be traced
back to Lichtenberg’s sequence which therefore can be considered to be the most fundamental among
all of them, originating in the Chinese rings and summarized in Table 1.

Acknowledgements

Part of this work was done during my visit at the University of Maribor (Slovenia) in 2014/15. I am
grateful to my colleagues there, in particular to my co-authors of [7], for their hospitality and support.
Since March 2016 my research on the topic has been supported by the Slovenian Research Agency
(research core funding No. J1-7110).

Thanks go to the Fibonacci Association for allowing me to present this work at the Seventeenth
International Conference on Fibonacci Numbers and Their Applications in Caen (France), in particular
to Christian Ballot.

10 VOLUME 55, NUMBER 1



THE LICHTENBERG SEQUENCE

Last but not least I am grateful for the sensible suggestions made by an anonymous reviewer which
helped to improve the presentation.

References

[1] P. Barry, Triangle geometry and Jacobsthal numbers, Irish Math. Soc. Bull., 51 (2003), 45–57.
[2] G. S. Carr, Question 3575, in: W. J. C. Miller (ed.), Mathematical Questions with their Solutions from the

“Educational Times”, Vol. XVIII, C. F. Hodgson & Sons, London, 1873, 31–32.
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name symbol definition OEIS R© initial entries for n =

identity id (id) A001477 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

id A057427 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

triangular ∆ Σ id A000217 0 1 3 6 10 15 21 28 36 45 55 66 78 91 105

dyadic D (D) A000079 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

Mersenne M D − 1 A000225 0 1 3 7 15 31 63 127 255 511 1023 2047 4095 8191 16383

M A131577 0 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

D A011782 1 1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Eulerian E ΣM (A000295) 0 1 4 11 26 57 120 247 502 1013 2036 4083 8178 16369 32752

Lichtenberg ℓ (L.0) A000975 0 1 2 5 10 21 42 85 170 341 682 1365 2730 5461 10922

Σℓ (A178420) 0 1 3 8 18 39 81 166 336 677 1359 2724 5454 10915 21837

Arima A (L.3bis) (A005578) 0 1 1 2 3 6 11 22 43 86 171 342 683 1366 2731

ΣA (A086445) 0 1 2 4 7 13 24 46 89 175 346 688 1371 2737 5468

Purkiss p (P.0) (A051049) 0 1 1 4 7 16 31 64 127 256 511 1024 2047 4096 8191

Σp (A173009) 0 1 2 6 13 29 60 124 251 507 1018 2042 4089 8185 16376

p (A062510) 0 1 0 3 3 9 15 33 63 129 255 513 1023 2049 4095

Jacobsthal J ℓ A001045 0 1 1 3 5 11 21 43 85 171 341 683 1365 2731 5461

Fibonacci F (IFJ) A000045 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377

Table 1. Important integer sequences addressed in the text (An OEIS R© entry in brackets means that the offset is shifted.)
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