
A PROBLEM ON GENERATION SETS CONTAINING

FIBONACCI NUMBERS

DANIELLE COX AND KARYN MCLELLAN

Abstract. At the Sixteenth International Conference on Fibonacci Numbers and Their Ap-
plications the following problem was posed by Clark Kimberling:

Let S be the set generated by these rules: Let 1 ∈ S and if x ∈ S, then 2x ∈ S and
1− x ∈ S, so that S grows in generations:

G1 = {1}, G2 = {0, 2}, G3 = {−1, 4},

Prove or disprove that each generation contains at least one Fibonacci number or its negative.
In this paper we generalize the problem as follows. Let S be the set described above, S

be a sequence and P the property that a generation contains a term of S or the negative of a
term of S . We will show that when S is the Fibonacci sequence there are many generations
that fail to have property P . Other sequences S will also be considered and shown to have
at least one generation failing to have property P . The proportion of generations failing to
have property P is also investigated.

1. Introduction

The following problem was posed by Clark Kimberling at the Sixteenth International Con-
ference on Fibonacci Numbers and Their Applications [1].

Problem 1.1. Let S be the set generated by these rules: Let 1 ∈ S and if x ∈ S, then 2x ∈ S
(Operation 1) and 1− x ∈ S (Operation 2), so that S grows in generations:

G1 = {1}, G2 = {0, 2}, G3 = {−1, 4},

Prove or disprove that each generation contains at least one Fibonacci number or its negative.

In this paper, we will generalize this problem as follows. Let S be the set described in
Problem 1.1, S be a sequence and P the property that a generation contains a term of S or
the negative of a term of S. We will show that when S is the Fibonacci sequence, there are
many generations that fail to have property P.

First, we introduce the necessary definitions and notation. We will slightly modify the
generations given in the original problem to include a zeroth generation.

Definition 1.2. Let S be the set generated by Operation 1 and Operation 2. Start with
G0 = {0}, and for i ≥ 1 let Gi denote the set of new elements added to S at the ith iteration
of its creation. We call this generation i and refer to i as the generation index.

Note that by this definition, the sets Gi are pairwise disjoint, because they consist only of
new elements added to S. In other words, an integer can belong to only one generation.

Example 1.3. Here are the first several generations of S:

• G0 = {0}
• G1 = {1}
• G2 = {2}
• G3 = {-1, 4}

MAY 2017 105

THE FIBONACCI QUARTERLY

• G4 = {-3, -2, 8}
• G5 = {-7, -6, -4, 3, 16}
• G6 = {-15, -14, -12, -8, 5, 6, 7, 32}
• G7 = {-31, -30, -28, -24, -16, -5, 9, 10, 12, 13, 14, 15, 64}

The Fibonacci numbers and their negatives are seen in bold and as the example demon-
strates, property P holds true for these generations. We will show that every integer can be
found in some Gi, and knowing that all integers appear in S, we will disprove the proposition
in Problem 1.1 by finding an expression that, given any integer z, will compute the generation
index for the generation containing z.

2. Generations Containing a Particular Integer

In order to find an expression for the generation index we need a better understanding of
how the generations are computed. The following result outlines the recursive structure of the
generations.

Theorem 2.1. For i ≥ 3, the elements of Gi come from doubling all terms of Gi−1 and
subtracting the double of all terms of Gi−2 from 1, i.e., Gi = {2x | x ∈ Gi−1} ∪ {1 − 2x | x ∈
Gi−2}.

Proof. Consider an element x ∈ Gi, for i ≥ 3. We will determine the sequence of applications
of Operation 1 and Operation 2 that produce x. This sequence of operations is dependent on
the parity of x, so we break our proof into two cases.
Case 1. x is even. Let x = 2ℓ, where ℓ ∈ Z. Based on the operations for generating S, there
are two possible scenarios for the creation of x.

The first is that x comes from Operation 1, so ℓ is in Gi−1.
The other is that x comes from Operation 2; that is, the number 1 − 2ℓ is found in Gi−1.

Notice that 1− 2ℓ is odd, thus it could not have been obtained from implementing Operation
1 on an element of Gi−2. It had to come from applying Operation 2 to some y in Gi−2, so
1− 2ℓ = 1− y. This implies that y = 2ℓ = x, contradicting that x is in Gi. Therefore, all even
integers in Gi must have come from doubling elements in Gi−1.
Case 2. x is odd. Since x is odd it could not have come from Operation 1, so we must have
x = 1 − y for some y ∈ Gi−1. Since y is even, it came from applying Operation 1 to some
integer ℓ in Gi−2. Therefore, all odd numbers in Gi must be of the form 1− 2ℓ, for ℓ ∈ Gi−2.
Notice that Operation 2 is applied only to even numbers in Gi−1 and produces no new elements
when applied to odd numbers in Gi−1.

The converse, that all terms in Gi−1 and Gi−2 produce terms in Gi according to the rules
of the theorem, must hold. If not, we can suppose there exists an ℓ ∈ Gi−1, such that 2ℓ 6∈ Gi.
The only reason 2ℓ would not be found in Gi, according to the rules of the problem, would be
if it already appeared in an earlier generation. If this is the case, then ℓ would appear in the
generation previous to that, which contradicts the fact that it belongs to Gi−1. Similarly, this
argument holds for elements of the form 1− 2ℓ, coming from Gi−2. �

The following result about the sizes of generations is now immediate.

Corollary 2.2. The size of the set Gi is the Fibonacci number Fi, for i ≥ 1.

Proof. This follows from a simple induction, because |G1| = 1, |G2| = 1, and by Theorem 2.1,
|Gi| = |Gi−1|+ |Gi−2|. �

106 VOLUME 55, NUMBER 2

A PROBLEM ON GENERATING SETS CONTAINING FIBONACCI NUMBERS

0

1

2

4-1

-2

3 -4

-3

-6

8

-7 16

Figure 1. Binary Tree

An easy way to understand the structure and size of the generations is to use a binary tree,
as seen in Figure 1. Generations 0, 1, and 2 each have one node, generation 3 has two nodes,
namely -1 and 4, and so on, as Example 1.3 demonstrates. Theorem 2.1 tells us that each
element in Gi−1 has its double in Gi, for i ≥ 3. We structure the tree so that these doubles are
the right children. We also know that Operation 2 is applied only to even elements in Gi−1,
and we let these be the left children of these elements. This means that even labeled nodes
in the tree have two children, whereas odd labeled nodes only have a right child, as the left
child of an odd labeled node would be precisely its parent, so is not included. We can easily
visualize the fact that every node in the tree has a unique path (i.e., a unique sequence of
operations) back to 0.

We can now state the following important result.

Theorem 2.3. All integers belong to the set S.

Proof. We have already seen that 0, 1, 2 ∈ S. Let z ∈ Z and suppose that z 6∈ S. Recall from
Theorem 2.1 that any even element 2ℓ ∈ Gi comes from ℓ ∈ Gi−1, for i ≥ 3. Also, any odd
element, 1 − 2ℓ ∈ Gi comes from ℓ ∈ Gi−2. With one exception, ℓ is less than both 2ℓ and
1− 2ℓ in absolute value, and so applying these operations to z gives a decreasing sequence (in
absolute value) back to either 1 or 2 (see Figure 1). The exception is z = −1, which gives a
non-increasing sequence to 1. Therefore, if z 6∈ S, it follows that 1 or 2 is not in S either, by
the rules given in Problem 1.1. This is a contradiction, and so z ∈ S for all z ∈ Z. �

Table 1. The generation indices for the first 7 whole numbers and their negatives.

k i k i k i k i
2 2 4 3 6 6

0 0 -2 4 -4 5 -6 5
1 1 3 5 5 6 7 6
-1 3 -3 4 -5 7 -7 5

We now turn our attention to investigating the generation index for each integer; see Ta-
ble 1. The next five theorems completely characterize the patterns found in Table 1, and are
dependent on the parity of the numbers involved.

MAY 2017 107

THE FIBONACCI QUARTERLY

`

2`

1 − 2`

Gi − 1

Gi

Gi + 1

Figure 2. Patterns in the binary tree.

Theorem 2.4. When moving from a negative odd number to a positive even number in Table 1,
that is from (1− 2ℓ) to 2ℓ, ℓ ≥ 1, the generation index decreases by 1.

Proof. Consider a positive even number k = 2ℓ with ℓ ≥ 1. If 2ℓ appears in Gi, by Theorem 2.1
it came from ℓ in Gi−1. Let 1 − 2ℓ be the negative odd number appearing just before 2ℓ in
Table 1. By Theorem 2.1, 1 − 2ℓ comes from ℓ, but appears two generations later, so 1 − 2ℓ
is in Gi+1. Therefore, moving from a negative odd number to a positive even number the
generation index decreases by 1 (see Figure 2). �

Theorem 2.5. When moving from a negative even number to a positive odd number in Table 1,
that is from −2ℓ to 2ℓ+ 1, ℓ ≥ 1, the generation index increases by 1.

Proof. Let x = −2ℓ, where ℓ ≥ 1, be an negative even number. If −2ℓ appears in Gi, by
Theorem 2.1 it came from −ℓ in Gi−1. Let 2ℓ+1 be the positive odd number appearing after
−2ℓ in Table 1. By Theorem 2.1, 2ℓ+1 comes from −ℓ, but appears two generations later, so
2ℓ + 1 is in Gi+1. Therefore, moving from a negative even number to a positive odd number
the generation index increases by 1. (See Figure 2 with ℓ replaced by −ℓ.) �

We now consider moving from odd to odd or even to even.

Theorem 2.6. When moving from a positive odd number 2ℓ − 1, where ℓ ≥ 3, to a negative
odd number 1 − 2ℓ in Table 1, the generation index increases by 1 if 2ℓ − 1 ≡ 1 (mod 4) and
decreases by 1 if 2ℓ− 1 ≡ 3 (mod 4).

Proof. Let 2ℓ − 1, where ℓ ≥ 3, be a positive odd number, and 1 − 2ℓ, be the negative odd
number appearing after it in Table 1. By Theorem 2.1, 2ℓ−1 comes from 1−ℓ two generations
back, and 1− 2ℓ comes from ℓ two generations back.
Case 1. If 2ℓ − 1 ≡ 3 (mod 4), then ℓ is even, and positive. This makes 1− ℓ a negative odd
number. We have shifted our problem back by two steps (i.e., generations) for each number in
question, and we are now moving from a negative odd number 1− ℓ to a positive even number
ℓ. By Theorem 2.4, the generation index decreases by 1. Therefore by moving from a positive
odd number 2ℓ− 1 to a negative odd number 1− 2ℓ, the generation index also decreases by 1.
Case 2. If 2ℓ − 1 ≡ 1 (mod 4), then ℓ is odd, and positive. This makes 1− ℓ a negative even
number. We have shifted our problem back by two steps (i.e., generations) for each number in
question, and we are now moving from a negative even number 1− ℓ to a positive odd number
ℓ. By Theorem 2.5, the generation index increases by 1. Therefore by moving from a positive
odd number 2ℓ − 1 to a negative odd number 1 − 2ℓ, the generation index also increases by
1. �

Theorem 2.7. When moving from a positive even number 2jm, where j ≥ 1 and m ≥ 3 is
an odd number, to the negative even number −2jm in Table 1, the generation index increases
by 1 if m ≡ 1 (mod 4) and decreases by 1 if m ≡ 3 (mod 4).

108 VOLUME 55, NUMBER 2

A PROBLEM ON GENERATING SETS CONTAINING FIBONACCI NUMBERS

Proof. By Theorem 2.1, 2jm comes from 2j−1m one generation back, and similarly −2jm
comes from −2j−1m one generation back. Therefore the difference in generation indices when
we move from 2j−1m to −2j−1m is the same as that when we move from 2jm to −2jm. We
can continue dividing each term by 2, and moving back one generation, without changing the
difference in generation indices between the two numbers. We do this j times until we reach
the odd numbers m and −m. This is a familiar situation; by Theorem 2.6, the generation
index increases by 1 if m ≡ 1 (mod 4) and decreases by 1 if m ≡ 3 (mod 4). Therefore, this
is also the difference in indices we see when moving from 2jm to −2jm. �

We come to the last remaining scenario when dealing with the numbers in Table 1.

Theorem 2.8. When moving from a positive power of two, 2j , where j ≥ 0, to the negative
number −2j in Table 1, the generation index increases by 2.

Proof. We prove this using a simple induction. For the initial case, j = 0, we see that in Table 1,
the number 1 first occurs in G1 and the number −1 first occurs in G3. The generation index
increases by 2, as required. Now assume this result is true when we move from 2j−1 to −2j−1.
By Theorem 2.1, 2j and −2j occur one generation after 2j−1 and −2j−1, respectively, because
we are doubling. This preserves the difference in generation indices between 2j−1 and −2j−1,
and so moving from 2j to −2j means the generation index increases by 2 as well, completing
the induction. �

3. An Expression for the Generation Index

Now that we have established the patterns found in Table 1, we will use them to achieve our
goal of finding an expression for the generation index for any integer. Recall the sequence of
generation indices found in Table 1, namely i = 0, 1, 3, 2, 4, 5, 4, 3, 5, 6, 7, 6, We will denote
this sequence by f(n) for n ≥ 0. Let k ∈ Z, as found in columns 1, 3, 5, 7 of Table 1. Then
n = 2k − 1 if k > 0 and n = −2k if k ≤ 0, so that an integer k is found in the f(n)th
generation.

Let us now consider the difference sequence of f(n), which we will denote fd(n) for n ≥ 1:

fd(n) = f(n)− f(n− 1). (3.1)

This sequence is given in Table 2, and is read column-wise. Of course, taking partial sums of
fd(n) will get us back to f(n).

Example 3.1. From Table 1 we see that k = −5 appears in G7. For k = −5, n = −2k = 10
so f(10) = 7, and as expected, the tenth partial sum of fd(n) is 7.

Table 2. fd(n): the difference sequence of f(n).

0 2 2 -1 2 1 -1 -1
1 1 1 1 1 1 1 1
2 -1 1 -1 1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1

Recall that our goal is to find an expression for the sequence f(n). Neither this sequence,
nor the difference sequence fd(n) is found in the Online Encyclopedia of Integer Sequences

MAY 2017 109

THE FIBONACCI QUARTERLY

(OEIS); however, similar sequences are. If the powers of two are divided out of fd(n), we
obtain the sequence in Table 3, which we will denote ad(n) for n ≥ 1:

ad(n) =







fd(n)

2
, n = 2k, k ≥ 1

fd(n), n 6= 2k, k ≥ 1.

We are ultimately interested in the partial sums of this sequence, so we define it as a difference
sequence, analogous to fd(n).

Table 3. ad(n): fd(n) with powers of 2 divided out.

0 1 1 -1 1 1 -1 -1
1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
-1 -1 -1 -1 -1 -1 -1 -1

The sequence ad(n) matches [2, A034947], which is the Jacobi symbol (-1/n). To be sure of
this, consider the recursion given in [2, A034947]:

α(4n + 3) = −1, n ≥ 0; (3.2)

α(4n + 1) = 1, n ≥ 0; (3.3)

α(2n) = α(n), n ≥ 1. (3.4)

Theorem 3.2. The sequences ad(n) and fd(n) follow the recursion given in equations (3.2),
(3.3), and (3.4), with the exception that equation (3.4) holds for fd(n) for n ≥ 2.

Proof. Equations (3.2) and (3.3) follow from Theorems 2.4 and 2.5, respectively. Theorem
2.4 tells us that when moving from a negative odd number −k, for k ≥ 1, to a positive even
number k+1, the generation index decreases by 1. In terms of n, this means moving from 2k
to 2k+1. The change in generation indices here is denoted by fd(2k+1), as given by equation
(3.1). Because k is odd, n = 2k + 1 ≡ 3 (mod 4), and so fd(n) = −1, for n ≡ 3 (mod 4),
matching equation (3.2). We can similarly obtain equation (3.3) from Theorem 2.5, except
now k is even, implying n = 2k + 1 ≡ 1 (mod 4), and the generation index increases by 1.

Equation (3.4) is the result of Theorems 2.6, 2.7, and 2.8. To start, Theorem 2.8 implies
that for n a power of 2, fd(n) = 2, and ad(n) = 1, both in adherence to equation (3.4). Note
that this is the only case of the proof where fd(n) and ad(n) differ, so we need not consider
both sequences again.

The proof of Theorem 2.7 tells us that for positive even values of k (which are not powers of
2), we can divide out powers of 2 without changing the difference in generation indices between
k and −k. In terms of n, this means moving from 2k − 1 to 2k, and so fd(n) = fd(n/2), as
required. In this case n ≡ 0 (mod 4) because k is even.

Lastly, the proof of Theorem 2.6 tells us something similar; for positive odd values of k,
k ≥ 3, the difference in generation indices between k and −k doesn’t change when we move
back two steps in the tree. The term −k comes from (1 + k)/2, two generations back. In
terms of n, this means 2k comes from k two generations back, (since, (1 + k)/2 is positive, its
corresponding n value is 2[(1+k)/2]−1 = k) and so fd(n) = fd(n/2), as given in equation (3.4).
In this case n ≡ 2 (mod 4) because k is odd. Finally, for n = 1, we have fd(2) 6= fd(1) = 1. �

If we replace −1 by 0 in ad(n), we obtain [2, A014577], the regular paper-folding sequence,
also known as the dragon curve sequence. This sequence is fractal in nature, and the fractal
properties also exist in fd(n), as demonstrated by the previous recurrence.

110 VOLUME 55, NUMBER 2

A PROBLEM ON GENERATING SETS CONTAINING FIBONACCI NUMBERS

Let the partial sums of sequence ad(n) be denoted by a(n) for n ≥ 1, and let a(0) = 0; see
Table 4. In other words ad(n) is the difference sequence of a(n):

ad(n) = a(n)− a(n− 1).

The sequence a(n) is [2, A005811], and is the number of runs in the binary expansion of n,
which is the number of 1’s in the Gray code of n. This was a critical observation, as this
allowed us to define an expression for f(n), the function that will output the generation index
for an integer k.

Table 4. a(n): The number of 1’s in the Gray code of n.

k n a(n)
0 0 0
1 1 1
-1 2 2
2 3 1
-2 4 2
3 5 3
-3 6 2
4 7 1
-4 8 2
5 9 3
-5 10 4

The sequence a(n) almost gives us f(n). Recall, we removed the powers of 2 from fd(n) to
get ad(n), so we need to add those powers of 2 back in by adding ⌊log2(n)⌋. This gives the
following result about f(n); see also Table 5.

Theorem 3.3. Let k be an integer,

n =

{

2k − 1, k > 0;

−2k, k ≤ 0,

and a(n) represent the number of 1’s in the Gray code of n. Then f(0) = 0, and for n ≥ 1,

f(n) = a(n) + ⌊log2(n)⌋, (3.5)

where f(n) is the generation index for k.

We conclude this section with a complete recurrence for f(n).

Theorem 3.4. For n ≥ 1, the sequence f(n) can be expressed recursively as follows:

f(2n) = f(n) +

{

1, n even;

2, n odd.

f(2n+ 1) = f(n) +

{

1, n odd;

2, n even.

Proof. Let us start with the even-indexed case. Consider f(2n), where n is even. Here,
k = −n/2 appears in generation f(n), and −n appears in generation f(2n). To get from
−n/2 to −n in the binary tree, we apply Operation 1, doubling. Therefore f(2n) = f(n) + 1.

MAY 2017 111

THE FIBONACCI QUARTERLY

Table 5. f(n): The generation index for k.

k n f(n)
0 0 0
1 1 1
-1 2 3
2 3 2
-2 4 4
3 5 5
-3 6 4
4 7 3
-4 8 5
5 9 6
-5 10 7

Consider f(2n), where n is odd. Here, n = 2k − 1 so k = (n + 1)/2 appears in generation
f(n), and −n appears in generation f(2n). To get from (n + 1)/2 to −n in the binary tree,
we apply Operation 1, then Operation 2. Therefore, f(2n) = f(n) + 2.

Now, let us consider the odd-indexed case. Consider f(2n + 1), where n is even. Here,
k = −n/2 appears in generation f(n), and n + 1 appears in generation f(2n + 1). To get
from −n/2 to n + 1 in the binary tree, we apply Operation 1, then Operation 2. Therefore,
f(2n+1) = f(n)+2. Consider f(2n+1), where n is odd. Here n = 2k−1 and so k = (n+1)/2
appears in generation f(n), and n+1 appears in generation f(2n+1). To get from (n+1)/2
to n+ 1 in the binary tree, we apply Operation 1. Therefore, f(2n+ 1) = f(n) + 1. �

In theory, we could have used this recurrence to generate our sequence f(n), instead of
using equation (3.5). Keep in mind however, that we are ultimately only interested in terms
f(n) for which k is a Fibonacci number or its negative. Using the recurrence would require us
to calculate f(n) for every value of n up to the point required by our counterexample, which
would be extensive, as will be seen in the next section.

4. The Counterexample

We are now able to provide a counterexample for the proposition Problem 1.1. We wrote a
procedure in Maple using equation (3.5) to determine that the first generation which does not
have property P for the Fibonacci sequence is 43. In fact, the first several generations which
do not have property P are as follows: 43, 47, 53, 61, 66, 67, 73, 82, 107, 108, 124, 143, 150,
Some details of the calculation follow.

The sequence a(n) is neither increasing nor decreasing, although ⌊log2(n)⌋ is non-decreasing
so it can be used as a lower bound for f(n). If we let k be F63, i.e., k = 6, 557, 470, 319, 842,
the corresponding n is n = 13, 114, 940, 639, 683. Then ⌊log2(n)⌋ = 43 and a(n) = 19. We
computed the generation indices f(n) for the first 63 Fibonacci numbers and their negatives
and found that none of these occur in G43. If we let k = F64 then ⌊log2(n)⌋ = 44. This means
that no other Fibonacci number is in G43 since they must occur in a generation with index
at least 44. This is proof that property P does not hold for G43, for the Fibonacci sequence.
The generation indices of the first 64 Fibonacci numbers and their negatives can be found in
Table 6 (read horizontally).

112 VOLUME 55, NUMBER 2

A PROBLEM ON GENERATING SETS CONTAINING FIBONACCI NUMBERS

Table 6. The generation indices for the first 64 Fibonacci numbers and their negatives.

1 3 1 3 2 4 5 4 6 7 4 6
7 8 10 11 9 10 11 10 12 13 11 12
13 14 14 15 15 16 17 16 16 17 19 18
22 23 22 23 23 24 26 25 20 21 25 26
28 29 26 27 25 26 32 31 30 31 31 32
36 37 33 34 31 32 36 35 37 38 35 34
36 37 41 42 39 40 42 41 45 46 35 34
48 49 49 50 44 45 50 49 49 50 48 49
48 49 51 52 54 55 52 51 55 56 58 59
57 58 63 64 64 65 65 64 59 60 62 63
69 70 63 64 62 63 68 69

G43 contains 1, 836, 311, 903 integers, so to find this counterexample using brute force, or
the recurrence in Theorem 3.4, would have been computationally difficult, whereas using the
Maple procedure based on the patterns described in this paper, it took seconds to compute.

5. Conclusions

We saw that the proposition in Problem 1.1 is false, with generation 43 as a counterexample.
A natural question to then ask is: how often do generations fail to have property P?

We computed the generation indices for the first 5000 Fibonacci numbers and their nega-
tives. These Fibonacci numbers occur within the first 3471 generations. Maple computations
show that approximately 14.66% (509) of the first 3741 generations fail to have property P.
Looking at the first 4161 generations, we see that 610 of them do not have property P, which
is again approximately 14.66%. Extending this to the first 4865 generations, 718 of them, or
about 14.79%, do not have property P. This is surprising, as we anticipated the failure rate
to approach zero as the generations grow larger in size.

We also looked at generalizing S to a Fibonacci-like sequence, with starting terms 1, a, where
a > 1. Clearly if a is large enough, property P will fail to hold true for early generations.
With various values of a, ranging from 1 to 12, we found that between approximately 13% and
15% of the generations failed to have property P. The failure rate of these sequences warrant
further investigation.

References

[1] C. Kimberling, Problem proposals, Proceedings of the Sixteenth International Conference on Fibonacci
Numbers and Their Applications, P. Anderson, C. Ballot, and W. Webb, eds., The Fibonacci Quarterly,
52.5 (2014), 5–14.

[2] OEIS Foundation Inc. (2011), The On-Line Encyclopedia of Integer Sequences, http://oeis.org.

MSC2010: 11B39, 05C05, 11Y99

Department of Mathematics, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6,

Canada

E-mail address: danielle.cox@msvu.ca

Department of Mathematics, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6,

Canada

E-mail address: karyn.mclellan@msvu.ca

MAY 2017 113

