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Abstract. The Delannoy numbers and the figurate numbers for n-dimensional cross poly-
topes are doubly-recursive sequences that satisfy the same recursion formula. Using the ex-
pression

∑n
j=0(−1)j

(
m−j
n+k

)(
n
j

)
, we present an infinite collection of doubly recursive sequences

that satisfy the same recursion formula. As a consequence, we prove some binomial iden-
tities. Some known integer sequences are subsequences of our sequences, and we give new
connections between these sequences.

1. Introduction

Henri-Auguste Delannoy introduced the Delannoy numbers in 1895 to count the number of
ways a queen can move from one square on a chessboard to another ([2]). Equivalently, the
Delannoy number D(m,n) counts the number of lattice paths from (0, 0) to (m,n) if the allowed
moves are one unit up, one unit right, or the diagonal from (k, j) to (k+1, j+1). Because there
is only one way to move and stay on an axis, D(m, 0) = D(0, n) = 1. Otherwise, for m,n ≥ 1,
a path that arrives at (m,n) comes from either (m− 1, n), (m,n− 1), or (m− 1, n− 1), so the
Delannoy numbers satisfy the recursion D(m,n) = D(m−1, n)+D(m,n−1)+D(m−1, n−1).
Delannoy observed that a move from (0, 0) to (m,n) with j diagonal steps corresponds to the
number of words with m− j letters A, n− j letters B, and j letters C, which is equal to

(m + n− j)!

(m− j)!(n− j)!j!
=

(
m + n− 2j

n− j

)(
m + n− j

j

)
=

(
m + n− j

n

)(
n

j

)
.

Thus, a formula for the Delannoy numbers comes from summing over the number of diagonal
moves:

D(m,n) =

n∑
j=0

(
m + n− j

n

)(
n

j

)
.

The Cross Polytope numbers T (m,n) satisfy the same recurrence but with different seeds:
T (m, 1) = 1, T (1, n) = n, and

T (m,n) = T (m− 1, n) + T (m,n− 1) + T (m− 1, n− 1)

for m,n ≥ 2 [1, 4, 6]. The standard formula is T (m,n) =
∑m−1

k=0

(
m−1
k

)(
n+k
m

)
. The Cross

Polytope numbers are the number of vertices in a cross polytope, which is a regular, convex
geometric figure. The two sets of numbers enjoy the relations T (m,n)+T (m,n+1) = D(m,n)
and

∑n
k=0D(m, k) = T (m + 1, n + 1). The primary goal of this paper is to introduce families

of doubly-recursive sequences that can be generated using the expression
∑n

j=0(−1)j
(
m−j
n+k

)(
n
j

)
.

The Delannoy and Cross Polytope numbers are members of the family. We will also establish
some relations among and within these sequences. Some binomial identities and new results
on known integer sequences follow as consequence.
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2. Doubly-Recursive Sequences

Given integers m, n, and k with m ≥ n ≥ k ≥ 1, consider the following types of words of
length m, where the allowed letters are D, V , and H. We allow j letters to be D, but D can
only be used in the first n letters. Of the remaining m − j letters, n − k are V , and the rest
are H. Denote the total number of such words, for 0 ≤ j ≤ n, by Sk(m,n). Then

Sk(m,n) =

n∑
j=0

(
m− j

n− k

)(
n

j

)
.

For any such word, if the first letter that is not V is changed from D to H or from H to D,
then the parity of the number of D’s will change, and the new word will also be an allowable
word. This shows that there is exactly the same number of words with an even number of D’s
as with an odd number of D’s. Let Ek(m,n) and Ok(m,n) represent these numbers. Then

Ek(m,n) =

bn2 c∑
j=0

(
m− 2j

n− k

)(
n

2j

)
and Ok(m,n) =

bn−1
2 c∑

j=0

(
m− (2j + 1)

n− k

)(
n

2j + 1

)
.

We have shown that Ek(m,n) = Ok(m,n), and in addition,

n∑
j=0

(−1)j
(
m− j

n− k

)(
n

j

)
= 0 for m ≥ n ≥ k ≥ 1,

since the sum of the even-indexed terms equals the sum of the odd-indexed terms.
Ek and Ok are defined when m < n and for negative values of m, although in these cases

the expressions involve binomial coefficients with negative numbers. We do not focus on these
values in this paper, but we need to establish that Ek(m,n) = Ok(m,n) for all values of m
and n where they are defined. To this end, we have a reflection formula.

E1(m,n) 1 2 3 4 5 6
1 1 0 3 -16 85 -356
2 1 2 1 -4 25 -146
3 1 4 3 0 5 -36
4 1 6 9 4 1 -6
5 1 8 19 16 5 0
6 1 10 33 44 25 6
7 1 12 51 96 85 36

E2(m,n) 2 3 4 5 6 7
1 2 -2 12 -60 310 -1648
2 2 2 4 -20 110 -602
3 2 6 4 -4 30 -182
4 2 10 12 4 6 -42
5 2 14 28 20 6 -6
6 2 18 52 60 30 6
7 2 22 84 140 110 42

E3(m,n) 3 4 5 6 7 8
1 4 -8 40 -200 1036 -5488
2 4 0 16 -80 420 -2240
3 4 8 8 -24 140 -784
4 4 16 16 0 36 -224
5 4 24 40 24 12 -48
6 4 32 80 80 36 0
7 4 40 136 200 140 48

E4(m,n) 4 5 6 7 8
1 8 -24 120 -616 3248
2 8 -8 56 -280 1456
3 8 8 24 -104 560
4 8 24 24 -24 176
5 8 40 56 24 48
6 8 56 120 104 48
7 8 72 216 280 176

Table 1. Values of E1, E2, E3, E4. m is row, n is column.
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Theorem 2.1 (Reflection Theorem).

Ek(m,n) = (−1)k+nEk(−m + 2n− k − 1, n).

Proof. We use the identity
(−p

r

)
= (−1)r

(
p+r−1

r

)
.

(−1)k+nEk(−m + 2n− k − 1, n) = (−1)k+n

bn2 c∑
j=0

(
−m + 2n− k − 1− 2j

n− k

)(
n

2j

)

= (−1)k+n(−1)n−k
bn2 c∑
j=0

(
(m− 2n + k + 1 + 2j) + (n− k)− 1

n− k

)(
n

2j

)

=

bn2 c∑
j=0

(
m− (n− 2j)

n− k

)(
n

n− 2j

)
=

bn2 c∑
i=0

(
m− 2i

n− k

)(
n

2i

)
= Ek(m,n).

�

Clearly, Ok(m,n) satisfies the same reflection formula as does Sk(m,n). A consequence of
this theorem is that in column n of Ek(m,n), the reflection is at row n− k+1

2 . When k is odd,
the reflection point is at an entry, but when k is even, the reflection point is between rows
n− k+2

2 and n− k
2 . We next prove that in the first non-zero column of Ek, every entry is 2k−1.

Lemma 2.2. For positive integers k, Ek(m, k) = 2k−1.

Proof.

Ek(m, k) =

b k2c∑
j=0

(
m− 2j

0

)(
k

2j

)
=

b k2c∑
j=0

(
k

2j

)
= 2k−1.

�

Theorem 2.3. For all integers m and for n ≥ k, we have recursion formulas

Ek(m,n) = Ek(m− 1, n) + Ek(m− 2, n− 1) + Ek(m− 1, n− 1), and

Ok(m,n) = Ok(m− 1, n) + Ok(m− 2, n− 1) + Ok(m− 1, n− 1).

Proof. Let n be even. Since Pascal’s identity,
(
p
r

)
=
(
p−1
r

)
+
(
p−1
r−1
)
, is valid for all integer values

of p,

Ek(m,n) =

n
2∑

i=0

(
m− 2i

n− k

)(
n

2i

)
=

n
2∑

i=0

[(
m− 2i− 1

n− k

)
+

(
m− 2i− 1

n− k − 1

)](
n

2i

)

=

n
2∑

i=0

(
(m− 1)− 2i

n− k

)(
n

2i

)
+

n
2∑

i=0

(
m− 2i− 1

n− k − 1

)(
n

2i

)

= Ek(m− 1, n) +

n
2∑

i=0

(
m− 2i− 1

n− k − 1

)[(
n− 1

2i− 1

)
+

(
n− 1

2i

)]

= Ek(m− 1, n) +

n
2∑

i=0

(
m− 2i− 1

n− k − 1

)(
n− 1

2i− 1

)
+

n
2∑

i=0

(
(m− 1)− 2i

n− k − 1

)(
n− 1

2i

)
.
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Re-index the first sum with j = i − 1, and note that the first term of the first sum and the
last term of the second are both zero, to get

Ek(m− 1, n)+

⌊
(n−1)−1

2

⌋∑
j=0

(
(m− 2)− (2j + 1)

(n− 1)− k

)(
n− 1

2j

)
+

bn−1
2 c∑

i=0

(
(m− 1)− 2i

(n− 1)− k

)(
n− 1

2i

)
= Ek(m− 1, n) + Ok(m− 2, n− 1) + Ek(m− 1, n− 1).

The cases for n odd and for Ok(m,n) are similar. The recursion for Ek follows because Ek = Ok

for small values of m. Specifically, for each n ≥ k, Ok(n, n) = Ek(n, n) = (−1)k+nEk(n− k −
1, n) = (−1)k+nOk(n− k − 1, n). �

The next corollary has already been shown for m ≥ n. The general result follows from the
reflection formula, the first column values, and the recursion formula.

Corollary 2.4. For all integers m and for all integers n ≥ k ≥ 1, Ek(m,n) = Ok(m,n), or
n∑

j=0

(−1)j
(
m− j

n− k

)(
n

j

)
= 0.

The numbers E1 and O1 were introduced in [3], where it was also shown that E1(m,n) =
T (m+1−n, n). So, E1 and O1 are the same numbers as the Cross Polytope numbers, and they
satisfy the same recurrence relation, after re-indexing, but E1 and O1 give different formulas
for the Cross Polytope numbers.

3. Basic Properties of Ek(m,n)

We next outline some basic structure of Ek to reach a major goal of this section, which is
to show that for all values of m and n, Ek(m,n) is divisible by 2k−1. Our first result is that in
the second column, for k odd, the reflection occurs at a value of 0, and for k even, the number
right below the reflection point is 2k−1.

Lemma 3.1. For i ≥ 0, E2i+1(i + 1, 2i + 2) = 0, and for i ≥ 1, E2i(i + 1, 2i + 1) = 22i−1.

Proof. If i+ 1 is even, then the term j = 1
2(i+ 1) in the summation for E2i+1 is 0, so we have

E2i+1(i + 1, 2i + 2) =
i+1∑
j=0

(
i + 1− 2j

1

)(
2i + 2

2j

)

=

i−1
2∑

j=0

(i + 1− 2j)

(
2i + 2

2j

)
+

i+1∑
j= i+3

2

(i + 1− 2j)

(
2i + 2

2j

)
.

If we reverse the order of summation for the second sum by letting s = i + 1− j, the second
sum becomes

i−1
2∑

s=0

(−i− 1 + 2s)

(
2i + 2

2i + 2− 2s

)
= −

i−1
2∑

s=0

(i + 1− 2s)

(
2i + 2

2s

)
.

It follows that E2i+1(i + 1, 2i + 2) = 0 in this case. The case for i + 1 odd is similar. Now for
E2i, we consider S2i = E2i + O2i. Here the j = i + 1 term is 0, so

S2i(i+1, 2i+1) =
2i+1∑
j=0

(
i + 1− j

1

)(
2i + 1

j

)
=

i∑
j=0

(i+1−j)
(

2i + 1

j

)
+

2i+1∑
j=i+2

(i+1−j)
(

2i + 1

j

)
.
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Pulling off the last term from the first sum, and re-indexing the second sum by replacing
2i + 1− j by j, this equals

i−1∑
j=0

(i + 1− j)

(
2i + 1

j

)
+

(
2i + 1

i

)
+

i−1∑
j=0

(j − i)

(
2i + 1

2i + 1− j

)

=
i−1∑
j=0

(i + 1− j)

(
2i + 1

j

)
+

i−1∑
j=0

(j − i)

(
2i + 1

j

)
+

(
2i + 1

i

)

=
i−1∑
j=0

(
2i + 1

j

)
+

(
2i + 1

i

)
=

i∑
j=0

(
2i + 1

j

)
= 22i.

It follows that E2i(i + 1, 2i + 1) = 22i−1. �

We next show that the second column of Ek is 2k−1 times consecutive even or odd integers,
as k is odd or even.

Theorem 3.2. For all integers m and for all positive integers k,

Ek(m, k + 1) = 2k−1[2m− (k + 1)].

Proof. The proof begins with induction on m, using the recurrence for Ek. We proved the
base case in the previous lemma.

Ek(m + 1, k + 1) = Ek(m, k + 1) + Ek(m− 1, k) + Ek(m, k)

= 2k−1(2m− (k + 1)) + 2k−1 + 2k−1 = 2k−1[2(m + 1)− (k + 1)].

The general result follows from the Reflection Theorem. �

We now show that the “main diagonal” numbers Ek(n, n) have a simple form.

Theorem 3.3. For positive integers k and n ≥ k, Ek(n, n) = 2k−1
(
n
k

)
.

Proof. For k even,

Ek(n, n) =

n/2∑
j=0

(
n− 2j

n− k

)(
n

2j

)
=

k/2∑
j=0

(
n− 2j

n− k

)(
n

2j

)
=

k/2∑
j=0

(
n− 2j

k − 2j

)(
n

2j

)
,

using
(
p
r

)
=
(

p
p−r
)
. Now using the identity

(
n−i
r

)(
n
i

)
=
(
r+i
r

)(
n

r+i

)
, this equals

k/2∑
j=0

(
k

k − 2j

)(
n

k

)
=

(
n

k

) k/2∑
j=0

(
k

2j

)
=

(
n

k

)
2k−1.

The proof for k odd is similar. �

Since Sk = 2Ek, we can state an equivalent result.

Corollary 3.4. For any positive integers n and k with n ≥ k,
n∑

j=0

(
n− j

n− k

)(
n

j

)
= 2k

(
n

k

)
.

When n = k, this is the well-known result that the sum of a row from Pascal’s triangle
is 2k. The theorems above, with the recursion formula and the Reflection Theorem, give the
following result.
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Corollary 3.5. For positive integers k and n ≥ k, Ek(m,n) is divisible by 2k−1.

We next give the values immediately below the “main diagonal”.

Theorem 3.6. For positive integers k, and m ≥ k+1, Ek(m,m−1) = 2k−1
((

m
k+1

)
+
(
m−1
k+1

))
.

Proof. We have

Ek(k + 1, k) =

b k2c∑
j=0

(
k + 1− 2j

0

)(
k

2j

)
=

b k2c∑
j=0

(
k

2j

)
= 2k−1 = 2k−1

[(
k + 1

k + 1

)
+

(
k

k + 1

)]
.

Proceeding by induction on m,

Ek(m + 1,m) = Ek(m,m) + Ek(m− 1,m− 1) + Ek(m,m− 1)

= 2k−1
((

m

k

)
+

(
m− 1

k

)
+

[(
m

k + 1

)
+

(
m− 1

k + 1

)])
= 2k−1

([(
m

k

)
+

(
m

k + 1

)]
+

[(
m− 1

k

)
+

(
m− 1

k + 1

)])
= 2k−1

((
m + 1

k + 1

)
+

(
m

k + 1

))
.

�

We next show that the third column of Ek consists of numbers that are a product of a power
of 2 with a number that is k + 1 larger than a square.

Theorem 3.7. For positive integers k,

Ek(m, k + 2) = 2k−2
(

[2m− (k + 3)]2 + (k + 1)
)
.

Proof. The proof begins with induction on m, using the recurrence for Ek. We use m = k + 2
as the base case. Using Theorem 3.3, we have

Ek(k + 2, k + 2) = 2k−1
(
k + 2

k

)
= 2k−1

(
k + 2

2

)
= 2k−2(k2 + 3k + 2) = 2k−2

[
(2(k + 2)− (k + 3))2 + (k + 1)

]
.

For the inductive step, we have

Ek(m + 1, k + 2) = Ek(m, k + 2) + Ek(m, k + 1) + Ek(m− 1, k + 1)

= 2k−2
(

[2m− (k + 3)]2 + (k + 1)
)

+ 2k−1 (2(m− 1)− (k + 1)) + 2k−1 (2m− (k + 1))

= 2k−2
(

[2m− (k + 3)]2 + (k + 1) + 2 (2(m− 1)− (k + 1)) + 2 (2m− (k + 1))
)

= 2k−2
(
4m2 − 4m(k + 3) + (k + 3)2 + (k + 1) + 8m− 4k − 8

)
= 2k−2

(
4m2 + 8m + 4− 4(m + 1)(k + 3) + (k + 3)2 + (k + 1)

)
= 2k−2

(
4(m + 1)2 − 4(m + 1)(k + 3) + (k + 3)2 + (k + 1)

)
= 2k−2

(
[2(m + 1)− (k + 3)]2 + (k + 1)

)
.

Once again, the Reflection Theorem completes the proof for all values of m. �
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The next theorem provides a relationship between any n consecutive entries in the nth
non-zero column of Ek.

Theorem 3.8.
n∑

i=0

(−1)i
(
n

i

)
Ek(m + i, n + k − 1) = 0.

Proof.

n∑
i=0

(−1)i
(
n

i

)
Ek(m + i, n + k − 1) =

n∑
i=0

(−1)i
(
n

i

) bn+k−1
2
c∑

j=0

(
m + i− 2j

n− 1

)(
n + k − 1

2j

)

=

n∑
i=0

bn+k−1
2
c∑

j=0

(−1)i
(
n

i

)(
m + i− 2j

n− 1

)(
n + k − 1

2j

)

=

bn+k−1
2
c∑

j=0

(
n + k − 1

2j

) n∑
i=0

(−1)i
(
m− 2j + i

n− 1

)(
n

i

)
.

But,
n∑

i=0

(−1)i
(
m− 2j + i

n− 1

)(
n

i

)
= 0

by Corollary 2.2. �

The final result of this section shows that for each positive k, the nth non-zero column of
Ek is a sequence of numbers that satisfy an nth-order recursion formula.

Corollary 3.9. Let am = Ek(m,n + k − 1). Then

am =
n∑

i=1

(−1)i+1

(
n

i

)
am−i.

1
2k−1Ek(m,n) n = k n = k + 1 n = k + 2 n = k + 3 n = k + 4 n = k + 5

m = k 1

m = k + 1 1
(
k+1
1

)
m = k + 2 1 k+3

(
k+2
2

)
m = k + 3 1 k+5

(
k+3
2

)
+
(
k+2
1

) (
k+3
3

)
m = k + 4 1 k+7 1

2 [(k + 5)2 + k + 1]
(
k+4
3

)
+
(
k+3
2

) (
k+4
4

)
m = k + 5 1 k+9 1

2 [(k + 7)2 + k + 1]
(
k+5
4

)
+
(
k+4
3

) (
k+5
5

)
Table 2. Basic structure of 1

2k−1Ek

4. Other Values of k

If we were going to use notation consistent with what’s above, then for k ≤ 1 the story is
that

n∑
j=0

(−1)j
(
m− j

n− k

)(
n

j

)
=

(
m− n

−k

)
.
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At this point, let’s replace k by −k in this formula. For consistency, we continue to use Ek

and Ok exactly as before. Then we have the following theorem.

Theorem 4.1. For any integer k, and for integers m ≥ n,

n∑
j=0

(−1)j
(
m− j

n + k

)(
n

j

)
=

(
m− n

k

)
.

Proof. We have already proved this for negative k, as the binomial coefficient on the right is 0
in this case. As before, consider words of length m made from the letters D, V , and H where
D is only allowed in the first n letters. Select j to be D. From the remaining m − j, select
n + k to be V , and make the rest H. Once again, match words by changing the first letter
that is not V from D to H or vice versa. This gives a correspondence between words with
even numbers of D’s and those with odd. But, unmatched are words with no D’s (j = 0) and
that also have no H in the first n spots. These words have m− (n + k) = m− n− k H’s, so
the number of unmatched words is

(
m−n

m−n−k
)

=
(
m−n
k

)
. �

We now define, for non-negative integers k,

Ek(m,n) =

bn2 c∑
j=0

(
m− 2j

n + k

)(
n

2j

)
and Ok(m,n) =

bn−1
2 c∑

j=0

(
m− (2j + 1)

n + k

)(
n

2j + 1

)
.

If we use negative values for k, these formulas agree with the previous definitions for Ek and Ok.
This time we see that Ek does not equal Ok, since Theorem 4.1 says that Ek(n,m)−Ok(n,m) =(
n−m
k

)
. This time, we have two different recursion formulas that depend on k.

Theorem 4.2. For k ≥ 0,

Ek(m,n) = Ek(m− 1, n) + Ek(m− 2, n− 1) + Ek(m− 1, n− 1)−
(
m− n− 1

k

)
and

Ok(m,n) = Ok(m− 1, n) + Ok(m− 2, n− 1) + Ok(m− 1, n− 1) +

(
m− n− 1

k

)
.

Proof. For Ek(m,n), we consider four types of words that can be denoted XXH, VXX, HXV,
and DXV. In the first type, the last letter is H. The number of potential D’s is still n, and
there are still n + k of the V ’s, which makes Ek(m− 1, n) words with the last letter H.

Consider next when the first letter is V . Then (n − 1) + k more V ’s are needed, and the
first V means only n− 1 of the D’s are possible. This gives Ek(m− 1, n− 1) words with the
first letter V .

We have now counted words where the first letter is V and the last letter is H twice, but
the number of such words is exactly the same as the number with the first letter H and the
last letter V .

Finally, when the first letter is D and the last is V , m− 2 letters remain, and of these n− 1
can be D, but the remaining number of D’s is odd, so this is counted by Ok(m − 2, n − 1).

Fortunately, Ok(m−2, n−1) = Ek(m−2, n−1)−
(m−2−(n−1)

k

)
= Ek(m−2, n−1)−

(
m−n−1

k

)
.

The proof for Ok(m,n) is similar. �
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Theorem 4.3. For positive integers k,

2k−1(Ek(m,n) + Ok(m,n)) = Ek(m,m− n) = Ok(m,m− n), or

2k−1
n∑

j=0

(
m− j

n + k

)(
n

j

)
=

bm−n
2 c∑

j=0

(
m− 2j

m− n− k

)(
m− n

2j

)
=

bm−n−1
2 c∑

j=0

(
m− (2j + 1)

m− n− k

)(
m− n

2j + 1

)
.

Proof. Let us define Sk = Ek + Ok. Then Sk satisfies the same recursion as Ek and Ok. By
Lemma 2.2,

2k−1Sk(m,m− k) = 2k−1
m−k∑
j=0

(
m− j

m

)(
m− k

j

)
= 2k−1

(
m

m

)(
m− k

0

)
= 2k−1 = Ek(m, k).

Also, by Theorem 3.6,

2k−1Sk(m, 1) = 2k−1
1∑

j=0

(
m− j

k + 1

)(
1

j

)
= 2k−1

[(
m

k + 1

)
+

(
m− 1

k + 1

)]
= Ek(m,m− 1).

The result now follows since Ek and Sk satisfy the same recursion. �

An equivalent result is

2k
n∑

j=0

(
m− j

n + k

)(
n

j

)
=

m−n∑
j=0

(
m− j

m− n− k

)(
m− n

j

)
.

5. Delannoy Numbers and Known Integer Sequences

Up to this point, we have neglected k = 0. We have

S0(m + n, n) =

n∑
j=0

(
m + n− j

n

)(
n

j

)
= D(m,n),

or S0(m,n) = D(m − n, n), so S0(m,n) counts the number of lattice paths from (0, 0) to
(m−n, n). We can now show that more generally Sk(m,n) counts the number of lattice paths
from (0, 0) to (m − (n + k), n + k), where the number of diagonal moves is restricted by the
rule that no diagonals are allowed after n vertical moves have been made. Ek and Ok then
count such paths with even or odd numbers of diagonals.

As before, consider words of length m made from the letters D, V , and H, where D is
allowed only in the first n letters. Select j letters to be D. From the remaining m− j, select
n + k to be V , and then the rest are H. We construct a lattice path from such a word as
follows. Each H is a horizontal step. If the ith letter is D, then the ith V is a diagonal step;
otherwise a V is a vertical step. Then, because the j diagonal steps produce the same result as
j vertical and j horizontal, a lattice path that starts at (0, 0) will end at (m− (n+ k), n+ k).

We conclude with a selection of subsequences of our numbers in the Online Encyclope-
dia of Integer Sequences (OEIS). For each k ≥ 1, a consequence of Theorem 3.7 is that

1
2k−2Ek(m, k+ 2), scaled entries in the third column of Ek, are numbers s such that s− (k+ 1)

is a perfect square. Among these, 1
8E4(m, 6) contains 3, 7, 15, 27, 43, 63, . . ., entry A097080,

which are the sum of the pairwise averages of five consecutive triangular numbers. Also,
1
16E5(m, 7) contains 3, 5, 11, 21, 35, 53, . . ., entry A093328, which count the number of 132-

avoiding two-stack sortable permutations that also avoid 4321. In addition, 1
32E4(m,m + 2)

contains 1, 3, 8, 16, 33, 50, 80, . . ., entry A002624, which count the number of partitions of n
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into parts with three kinds of 1 and two kinds of 2. As a final example, 1
16E5(m,m + 2)

contains 1, 2, 5, 8, 14, 20, 30, . . ., entry A006918, which count the maximum number of squares
that can be formed from n lines. All of these and more are unified as members of this family
of doubly recursive sequences.
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