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Abstract. We derive new convolution relations between Fibonacci, Lucas, Tribonacci and
Tribonacci-Lucas numbers.

1. Introduction

Let Fn, Ln, Tn, and Kn denote the Fibonacci, Lucas, Tribonacci, and Tribonacci-Lucas
numbers, respectively. The four sequences are defined by the recurrence equations

Fn = Fn−1 + Fn−2, F0 = 0, F1 = 1, (1.1)

Ln = Ln−1 + Ln−2, L0 = 2, L1 = 1, (1.2)

Tn = Tn−1 + Tn−2 + Tn−3, T0 = 0, T1 = T2 = 1, (1.3)

Kn = Kn−1 +Kn−2 +Kn−3, K0 = 3, K1 = 1,K2 = 3. (1.4)

The ordinary generating functions for these numbers are given by

f(x) =
x

1 − x− x2
=
∞∑
n=0

Fnx
n, (1.5)

g(x) =
2 − x

1 − x− x2
=
∞∑
n=0

Lnx
n, (1.6)

u(x) =
x

1 − x− x2 − x3
=

∞∑
n=0

Tnx
n, (1.7)

and

v(x) =
3 − 2x− x2

1 − x− x2 − x3
=

∞∑
n=0

Knx
n. (1.8)

See for instance [5], [6], [7], [8], and [1]. The mathematical literature contains many convolution
identities for a series of important numbers such as Bernoulli, Euler, Cauchy, Fibonacci, Lucas,
and Tribonacci numbers (see the references herein and those given in [6]). For Fibonacci
numbers, one classic example is the following identity:

n∑
k=0

FkFn−k =
1

5
((n+ 1)Ln − 2Fn+1) , n ≥ 1. (1.9)

This identity can be found in [4]. We will use this identity later in the proof of Theorem
3.1. More identities of this kind can by found in [4], [5], and [8]. Convolution identities for
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Tribonacci numbers have been derived recently in [6] and [7]. One example from [7] is

n−3∑
k=0

Tk(Tn−k + Tn−2−k + 2Tn−3−k) = (n− 2)Tn−1 − Tn−2, n ≥ 3. (1.10)

In this paper, we continue the search for convolution identities. We present new relations
between Fibonacci, Lucas, Tribonacci, and Tribonacci-Lucas numbers, respectively. More
precisely, we derive new convolution identities for the pairs (Fn, Tn), (Fn,Kn), (Ln, Tn), and
(Ln,Kn). To prove our results, we use some functional relations between the generating
functions for these numbers. At the end of the article, we also propose an open problem.

2. First Results

Throughout the paper, we use the convention that
∑n

k=0 ak = 0 for n < k. The first theorem
is an identity that relates Fibonacci numbers to Tribonacci numbers.

Theorem 2.1. Let n ≥ 1 be an integer. Then,

Tn = Fn +
n−2∑
k=0

FkTn−2−k. (2.1)

Proof. Let f(x) and u(x) denote the generating functions for Fn and Tn, respectively. We
have

x

f(x)
= 1 − x− x2.

Thus,

1 − x− x2 − x3 =
x− x3f(x)

f(x)
,

and

u(x) =
f(x)

1 − x2f(x)
,

or equivalently

u(x) − f(x) = x2f(x)u(x). (2.2)

From the last equation, we obtain

∞∑
n=0

(Tn − Fn)xn = x2
( ∞∑

n=0

Fnx
n
)( ∞∑

n=0

Tnx
n
)

=
∞∑
n=0

( n∑
k=0

FkTn−k

)
xn+2

=

∞∑
n=2

( n−2∑
k=0

FkTn−2−k

)
xn.

Comparing the coefficients of both sides of the equation gives the identity. �

Theorem 2.2. Let n ≥ 3 be an integer. Then,

Kn−1 = Ln−1 +

n−3∑
k=0

FkKn−3−k. (2.3)
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Proof. Let f(x) and v(x) denote the generating functions for Fn and Kn, respectively. Then

v(x) =
(3 − 2x− x2)f(x)

x− x3f(x)
,

or equivalently

xv(x) − (3 − 2x− x2)f(x) = x3f(x)v(x). (2.4)

The left side of the last equation is
∞∑
n=1

Kn−1x
n − 3

∞∑
n=0

Fnx
n + 2

∞∑
n=1

Fn−1x
n +

∞∑
n=2

Fn−2x
n, (2.5)

whereas the right side equals

x3f(x)v(x) =

∞∑
n=3

( n−3∑
k=0

FkKn−3−k

)
xn. (2.6)

Comparing the coefficients of both power series and using that

−3Fn + 2Fn−1 + Fn−2 = −(Fn−1 + 2Fn−2) = −Ln−1

completes the proof of the identity. �

Theorem 2.3. Let n ≥ 3 be an integer. Then,

2Tn = Tn−1 + Ln−1 +
n−3∑
k=0

LkTn−3−k. (2.7)

Proof. The formula is a consequence of

2u(x) − x(u(x) + g(x)) = x3g(x)u(x). (2.8)

Writing this equation in terms of power series and comparing the coefficients gives the desired
identity. �

We conclude this section with the following theorem.

Theorem 2.4. Let n ≥ 3 be an integer. Then,

2Kn = Kn−1 + Ln−1 + 2Ln−2 +

n−3∑
k=0

LkKn−3−k. (2.9)

Proof. The identity follows essentially from

(2 − x)v(x) − (3 − 2x− x2)g(x) = x3g(x)v(x). (2.10)

We omit the details. �

3. Higher-Order Identities with Three Factors

The functional relations between the generating functions for Fn, Ln, Tn, and Kn make it
possible to derive identities for sums of products of three factors.

Theorem 3.1. Let n ≥ 5 and k1, k2, k3 ≥ 1 be integers. Then,∑
k1+k2+k3=n−2

Tk1Fk2Fk3 = Tn+2 − Fn+2 −
1

5
((n+ 1)Ln − 2Fn+1) . (3.1)
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Proof. From (2.2), we have

u(x)f(x) − f2(x) = x2u(x)f2(x). (3.2)

In terms of power series, the relation becomes
∞∑
n=0

( n∑
k=0

(TkFn−k − FkFn−k

)
xn = x2

∞∑
n=0

( ∑
k1+k2+k3=n

Tk1Fk2Fk3

)
xn

=
∞∑
n=2

( ∑
k1+k2+k3=n−2

Tk1Fk2Fk3

)
xn.

Since F0 = T0 = 0, we can restrict all indices to be strictly positive. Comparing the coefficients
of both sides gives ∑

k1+k2+k3=n−2
Tk1Fk2Fk3 =

n∑
k=0

(Tk − Fk)Fn−k, n ≥ 2. (3.3)

From (1.9), it is known that
n∑

k=0

FkFn−k =
1

5
((n+ 1)Ln − 2Fn+1). (3.4)

Finally, from (2.1), we also know that
n∑

k=0

TkFn−k = Tn+2 − Fn+2. (3.5)

�

Corollary 3.2. Let N ≥ 5 be an integer. Then,

N∑
n=5

∑
k1+k2+k3=n−2

k1,k2,k3≥1

Tk1Fk2Fk3 =
1

2
(TN+4 + TN+2 − 1) − FN+4

−1

5
(4(N − 1)FN + (3N − 4)FN−1 − 11FN−2 − 6FN−3). (3.6)

Proof. First, we note that from Ln = Fn+1 +Fn−1, we easily deduce that (n+ 1)Ln−2Fn+1 =
(n− 1)Fn + 2nFn−1. Hence, we have

N∑
n=5

∑
k1+k2+k3=n−2

k1,k2,k3≥1

Tk1Fk2Fk3 =
N∑

n=1

∑
k1+k2+k3=n−2

k1,k2,k3≥1

Tk1Fk2Fk3

=

N∑
n=1

(Tn+2 − Fn+2) −
1

5

(N−1∑
n=0

nFn+1 + 2
N∑

n=1

nFn−1

)
=

N∑
n=1

(Tn+2 − Fn+2) −
1

5

(N−1∑
n=1

nFn + 3
N−1∑
n=1

nFn−1 + 2NFN−1

)
.

To finish the proof, use the identities

N∑
n=1

Fn = FN+2 − 1, (3.7)
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N∑
n=1

nFn = NFN+2 − 3FN − 2FN−1 + 2, (3.8)

N∑
n=1

nFn−1 = NFN+1 − 3FN−1 − 2FN−2 + 1, (3.9)

and
N∑

n=1

Tn =
1

2
(TN+2 + TN − 1). (3.10)

The three Fibonacci sums are discussed in [8] (see also [9]). The last sum for Tribonacci
numbers appears in [2] and [3]. �

Theorem 3.3. Let n ≥ 4, k1 ≥ 1, and k2, k3 ≥ 0 be integers. Then,∑
k1+k2+k3=n−3

Tk1Lk2Lk3 = 5Tn+1 + 4Tn − nLn−1 − 2Fn − 5Fn+1. (3.11)

Proof. Using (2.8), we start with

2u(x)g(x) − xu(x)g(x) − xg2(x) = x3u(x)g2(x). (3.12)

In terms of power series, the left side equals

∞∑
n=1

(
2

n∑
k=0

TkLn−k −
n−1∑
k=0

TkLn−1−k −
n−1∑
k=0

LkLn−1−k

)
xn, (3.13)

whereas the right side is given by

x3u(x)g2(x) =

∞∑
n=3

( ∑
k1+k2+k3=n−3

Tk1Lk2Lk3

)
xn, (3.14)

with k1 ≥ 1 and k2, k3 ≥ 0. To simplify the left side further, use

2
n∑

k=0

TkLn−k = 2
n−1∑
k=1

TkLn−k + 4Tn,

and
n−1∑
k=0

LkLn−1−k = 2Ln−1 +
n−1∑
k=1

LkLn−1−k.

Next, note that

2Ln−k − Ln−1−k = Ln−2−k + Ln−k = 5Fn−1−k.

Comparing the coefficients of both sides shows that∑
k1+k2+k3=n−3

Tk1Lk2Lk3 = 4Tn − 2Ln−1 +

n−1∑
k=1

(5Fn−1−kTk − LkLn−1−k). (3.15)

By (2.1), the first convolution equals

n−1∑
k=1

Fn−1−kTk =

n−1∑
k=0

FkTn−1−k = Tn+1 − Fn+1. (3.16)
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Finally, the convolution (see [4])

n∑
k=0

LkLn−k = (n+ 1)Ln + 2Fn+1, n ≥ 1, (3.17)

shows that
n−1∑
k=1

LkLn−1−k = nLn−1 + 2Fn − 2Ln−1. (3.18)

�

Corollary 3.4. Let N ≥ 4 be an integer. Then,

N∑
n=4

∑
k1+k2+k3=n−3
k1,≥1,k2,k3≥0

Tk1Lk2Lk3 =
9

2
(TN+2 + TN − 1) + 5TN+1 + 4 − (N + 7)FN+2

−5FN+1 − (N − 3)FN + 4FN−1 + FN−2. (3.19)

Proof. We have

N∑
n=4

∑
k1+k2+k3=n−3
k1≥1,k2,k3≥0

Tk1Lk2Lk3 =
N∑

n=1

∑
k1+k2+k3=n−3
k1≥1,k2,k3≥0

Tk1Lk2Lk3

=
N∑

n=1

(5Tn+1 + 4Tn) −
N∑

n=1

nLn−1 −
N∑

n=1

(2Fn + 5Fn+1).

The evaluation of the sums is straightforward but lengthy and is left as an exercise. �

Theorem 3.5. Let n ≥ 5, k1 ≥ 0, and k2, k3 ≥ 1 be integers. Then∑
k1+k2+k3=n−3

Kk1Fk2Fk3 = Kn+1 − Ln+1 − (n+ 1)Fn−1. (3.20)

Proof. Using (2.4), our starting point is the relation

xv(x)f(x) − 3f2(x) + 2xf2(x) + x2f2(x) = x3v(x)f2(x). (3.21)

The power series on the left side equals

∞∑
n=2

( n−1∑
k=0

KkFn−1−k − 3

n∑
k=0

FkFn−k + 2

n−1∑
k=0

FkFn−1−k +

n−2∑
k=0

FkFn−2−k

)
xn, (3.22)

whereas the right side is given by

x3v(x)f2(x) =

∞∑
n=3

( ∑
k1+k2+k3=n−3

Kk1Fk2Fk3

)
xn, (3.23)

with k1 ≥ 0 and k2, k3 ≥ 1. In the next step, we use

−3Fn−k + 2Fn−1−k + Fn−2−k = −(Fn−1−k + 2Fn−2−k) = −Ln−1−k.

This produces ∑
k1+k2+k3=n−3

Kk1Fk2Fk3 =

n−2∑
k=1

(KkFn−1−k − FkLn−1−k). (3.24)
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From (2.3), we see that

n−2∑
k=1

KkFn−1−k =

n−1∑
k=0

KkFn−1−k − 3Fn−1 = Kn+1 − Ln+1 − 3Fn−1. (3.25)

Finally, the convolution (see [4])

n∑
k=0

LkFn−k = (n+ 1)Fn, (3.26)

shows that
n−2∑
k=1

FkLn−1−k = (n− 2)Fn−1. (3.27)

�

Corollary 3.6. Let N ≥ 5 be an integer. Then,

N∑
n=5

∑
k1+k2+k3=n−3
k1,≥0,k2,k3≥1

Kk1Fk2Fk3 =
1

2
(KN+3 +KN+1) − LN+3

−(N + 1)FN+1 + 3FN−1 + 2FN−2. (3.28)

Proof. The statement follows from

N∑
n=5

∑
k1+k2+k3=n−3
k1≥0,k2,k3≥1

Kk1Fk2Fk3 =
N∑

n=1

Kn+1 −
N∑

n=1

Ln+1 −
N∑

n=1

(n+ 1)Fn−1, (3.29)

combined with (see [8])
N∑

n=1

Ln = LN+2 − 3, (3.30)

and (see [2])
N∑

n=1

Kn =
1

2
(KN+2 +KN − 6). (3.31)

�

Theorem 3.7. Let n ≥ 3 and k1, k2, k3 ≥ 0 be integers. Then,∑
k1+k2+k3=n−3

Kk1Lk2Lk3 = 5Kn+1 + 4Kn − 11Ln − 4Ln−1 − 5nFn−1. (3.32)

Proof. Using (2.10), we start with

2v(x)g(x) − xv(x)g(x) − 3g2(x) + 2xg2(x) + x2g2(x) = x3v(x)g2(x). (3.33)

The power series on the left side equals

∞∑
n=2

(
2

n∑
k=0

KkLn−k −
n−1∑
k=0

KkLn−1−k − 3

n∑
k=0

LkLn−k + 2

n−1∑
k=0

LkLn−1−k +

n−2∑
k=0

LkLn−2−k

)
xn,

(3.34)
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whereas the right side is given by

x3v(x)g2(x) =
∞∑
n=3

( ∑
k1+k2+k3=n−3

Kk1Lk2Lk3

)
xn, (3.35)

with k1, k2, k3 ≥ 0. The coefficient of xn on the left side can be written as

n−1∑
k=0

Kk(2Ln−k − Ln−1−k) + 4Kn + Ln−1 − 6Ln +

n−2∑
k=0

Lk(−3Ln−k + 2Ln−1−k + Ln−2−k).

Simplifying further and making use of the formula

2Ln−k − Ln−1−k = Ln−1−k + 2Ln−2−k = 5Fn−1−k.

allows us to write∑
k1+k2+k3=n−3

Kk1Lk2Lk3 = 4Kn + Ln−1 − 6Ln + 5

n−2∑
k=0

Fn−1−k(Kk − Lk). (3.36)

We complete the proof by noting that

n−2∑
k=0

Fn−1−kLk = nFn−1, (3.37)

and
n−2∑
k=0

KkFn−1−k = Kn+1 − Ln+1. (3.38)

�

Corollary 3.8. Let N ≥ 3 be an integer. Then,

N∑
n=3

∑
k1+k2+k3=n−3

k1,k2,k3≥0

Kk1Lk2Lk3 =
5

2
(KN+3 +KN+1) + 2(KN+2 +KN ) − 11LN+2 − 4LN+1

−5NFN+1 + 15FN−1 + 10FN−2. (3.39)

Proof. The identity follows from similar arguments as in the previous corollaries. To evaluate
the Tribonacci-Lucas sums, we again use (3.31). We have

N∑
n=3

∑
k1+k2+k3=n−3

k1,k2,k3≥0

Kk1Lk2Lk3 = 5
N+1∑
n=2

Kn + 4
N∑

n=1

Kn − 11
N∑

n=1

Ln − 4
N−1∑
n=0

Ln − 5
N∑

n=1

nFn−1

= 5
(1

2

(
KN+3 +KN+1 − 6

)
− 1
)

+ 4
(1

2

(
KN+2 +KN − 6

))
−11

(
LN+2 − 3

)
− 4
(
LN+1 − 1

)
−5
(
NFN+1 − 3FN−1 − 2FN−2 + 1

)
.

Gathering like terms establishes the result. �
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4. The General Case

In this section, we give some remarks on the general nature of the relations derived in this
paper.

Theorem 4.1. Let m ≥ 0 and n ≥ m+ 4 be integers. Then,∑
k1+k2+···+km+2=n−2

k1,k2,...,km+2≥1

Tk1Fk2 · · ·Fkm+2 =
∑

k1+k2+···+km+1=n
k1,k2,...,km+1≥1

Tk1Fk2 · · ·Fkm+1 −H(n,m), (4.1)

with H(n, 0) = Fn and for m ≥ 1,

H(n,m) =
∑

k1+k2+···+km+1=n
k1,k2,...,km+1≥1

Fk1Fk2 · · ·Fkm+1

=
Cm−1

(2m− 2)!22m−2

n−m∑
j=1

(n+ j +m− 2)!!(n− j +m− 2)!!

(n+ j −m)!!(n− j −m)!!
jFj cos

((n− j −m)π

2

)
,

(4.2)

where Cn is the nth Catalan number, and n!! = n(n − 2)(n − 4) · · · 1 if n is odd and n!! =
n(n− 2)(n− 4) · · · 2 if n is even.

Proof. From (2.2) (or (3.2)), it is clear that if m ≥ 0 is an arbitrary fixed integer, then

u(x)fm(x) − fm+1(x) = x2u(x)fm+1(x). (4.3)

From this identity, it follows that∑
k1+k2+···+km+2=n−2

k1,k2,...,km+2≥1

Tk1Fk2 · · ·Fkm+2 =
∑

k1+k2+···+km+1=n
k1,k2,...,km+1≥1

Tk1Fk2 · · ·Fkm+1

−
∑

k1+k2+···+km+1=n
k1,k2,...,km+1≥1

Fk1Fk2 · · ·Fkm+1 .

(4.4)

The second sum in (4.4) allows the stated closed-form expression as was shown by Komatsu,
et al. (2014) ([5], Theorem 4.2). �

According to Theorem 4.1, the convolution of Tk1Fk2 · · ·Fkm+2 can be specified in an iterative
manner, using the expression for the convolution for Fk1Fk2 · · ·Fkm+1 . When m = 0, Theorem
4.1 reduces to Theorem 2.1. When m = 1, Theorem 4.1 reduces to Theorem 3.1, since (see
[5], Proposition 6.1)

n−1∑
j=1

jFj cos
((n− j − 1)π

2

)
=

(n− 1)Fn + 2nFn−1
5

. (4.5)

When m = 2, we have the following identity.
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Theorem 4.2. Let n ≥ 6 be an integer. Then,∑
k1+k2+k3+k4=n−2

k1,k2,k3,k4≥1

Tk1Fk2Fk3Fk4 = Tn+4 − Fn+4 −
(n+ 1)Fn+2 + 2(n+ 2)Fn+1

5

−
n−2∑
j=1

(n+ j)(n− j)jFj

8
cos
((n− j − 2)π

2

)
.

(4.6)

An equivalent expression for the above four-factor sum was discovered by the author during
the study. The expression is stated in the following theorem.

Theorem 4.3. Let n ≥ 6 be an integer. Then,∑
k1+k2+k3+k4=n−2

k1,k2,k3,k4≥1

Tk1Fk2Fk3Fk4 = Tn+4 − Fn+4 −
(n+ 1)Fn+2 + 2(n+ 2)Fn+1

5

−(n− 1)(n− 2)

50
Fn − (n− 2)(2n+ 1)

25
Fn−1 −

2(n− 1)(n+ 1)

25
Fn−2. (4.7)

Proof. It remains to show that∑
k1+k2+k3=n
k1,k2,k3≥1

Fk1Fk2Fk3 =
(n− 1)(n− 2)

50
Fn +

(n− 2)(2n+ 1)

25
Fn−1 +

2(n− 1)(n+ 1)

25
Fn−2.

(4.8)
The equation holds for n ≥ 3. The proof of the last identity can be done as follows:∑

k1+k2+k3=n
k1,k2,k3≥1

Fk1Fk2Fk3 =
n∑

k3=0

k3∑
k2=0

Fk2Fk3−k2Fn−k3

=
1

5

n∑
k3=0

Fn−k3((k3 − 1)Fk3 + 2k3Fk3−1).

Since,
n∑

k3=0

k3Fk3Fn−k3 =

n∑
k3=0

(n− k3)Fk3Fn−k3 ,

it follows that
n∑

k3=0

k3Fk3Fn−k3 =
n

2

((n− 1)Fn + 2nFn−1
5

)
.

Next,
n∑

k3=0

k3Fk3−1Fn−k3 =

n−1∑
k3=0

k3Fk3Fn−1−k3 +

n−1∑
k3=0

Fk3Fn−1−k3 .

Gathering like terms, we obtain the following equation.∑
k1+k2+k3=n

Fk1Fk2Fk3 =
n(n− 1)

50
Fn +

n2

25
Fn−1 −

(n− 1)Fn + 2nFn−1
25

+
2(n− 1)(n− 2)

50
Fn−1

+
2(n− 1)2

25
Fn−2 +

2((n− 2)Fn−1 + 2(n− 1)Fn−2)

25
.
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Simplifying the equation completes the proof. �

For the pair (Kn, Fn), we also obtain an iterative relation in the next theorem.

Theorem 4.4. Let m ≥ 0 and n ≥ m+ 4 be integers. Then,∑
k1+k2+···+km+2=n−3
k1≥0,k2,...,km+2≥1

Kk1Fk2 · · ·Fkm+2 =
∑

k1+k2+···+km+1=n−1
k1≥0,k2,...,km+1≥1

Kk1Fk2 · · ·Fkm+1 − 3H(n,m)

+2H(n− 1,m) +H(n− 2,m), (4.9)

where H(n,m) is defined in (4.2).

Proof. The statement is a consequence of the general relation

xv(x)fm(x) − (3 − 2x− x2)fm+1(x) = x3v(x)fm+1(x), (4.10)

which follows from (2.4). �

When m = 0, Theorem 4.4 reduces to Theorem 2.2. Also, when m = 1, it is easily verified
that −3H(n, 1) + 2H(n− 1, 1) +H(n− 2, 1) = −(n+ 1)Fn−1. This shows that, when m = 1,
Theorem 4.4 reduces to Theorem 3.5. When m = 2, we have the following identity.

Theorem 4.5. Let n ≥ 6 be an integer. Then,∑
k1+k2+k3+k4=n−3
k1≥0,k2,k3,k4≥1

Kk1Fk2Fk3Fk4 = Kn+3 − Ln+3 − (n+ 3)Fn+1

−3
n−2∑
j=1

(n+ j)(n− j)jFj

8
cos
((n− j − 2)π

2

)

+2

n−3∑
j=1

(n− 1 + j)(n− 1 − j)jFj

8
cos
((n− j − 3)π

2

)

+
n−4∑
j=1

(n− 2 + j)(n− 2 − j)jFj

8
cos
((n− j − 4)π

2

)
. (4.11)

This result can be stated equivalently as∑
k1+k2+k3+k4=n−3
k1≥0,k2,k3,k4≥1

Kk1Fk2Fk3Fk4 = Kn+3 − Ln+3 − (n+ 3)Fn+1

−3(n− 1)(n− 2)

50
Fn − 2(n− 2)(n+ 9)

50
Fn−1 −

7n2 + 29n− 36

50
Fn−2. (4.12)

5. Final Remark

From
2u(x)gm(x) − xu(x)gm(x) − xgm+1(x) = x3u(x)gm+1(x) (5.1)

and
2v(x)gm(x) − xv(x)gm(x) − (3 − 2x− x2)gm+1(x) = x3v(x)gm+1(x), (5.2)

it is clear that a general solution for the pairs (Ln, Tn) and (Ln,Kn) will preserve its iterative
accessibility. However, a closed form requires an expression for the sum∑

k1+k2+···+km+1=n

Lk1Lk2 · · ·Lkm+1 .
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Such an expression is currently unknown. The expressions for two- and three-factor sums that
have been derived here are special cases of a more general identity that is to be found. The
author proposes this task as an open problem.
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