SOME FIBONACCI-LUCAS-TRIBONACCI-LUCAS IDENTITIES

ROBERT FRONTCZAK

Abstract

We derive new convolution relations between Fibonacci, Lucas, Tribonacci and Tribonacci-Lucas numbers.

1. Introduction

Let F_{n}, L_{n}, T_{n}, and K_{n} denote the Fibonacci, Lucas, Tribonacci, and Tribonacci-Lucas numbers, respectively. The four sequences are defined by the recurrence equations

$$
\begin{align*}
& F_{n}=F_{n-1}+F_{n-2}, \quad F_{0}=0, F_{1}=1 \tag{1.1}\\
& L_{n}=L_{n-1}+L_{n-2}, \quad L_{0}=2, L_{1}=1, \tag{1.2}\\
& T_{n}=T_{n-1}+T_{n-2}+T_{n-3}, \quad T_{0}=0, T_{1}=T_{2}=1, \tag{1.3}\\
& K_{n}=K_{n-1}+K_{n-2}+K_{n-3}, \quad K_{0}=3, K_{1}=1, K_{2}=3 . \tag{1.4}
\end{align*}
$$

The ordinary generating functions for these numbers are given by

$$
\begin{gather*}
f(x)=\frac{x}{1-x-x^{2}}=\sum_{n=0}^{\infty} F_{n} x^{n}, \tag{1.5}\\
g(x)=\frac{2-x}{1-x-x^{2}}=\sum_{n=0}^{\infty} L_{n} x^{n}, \tag{1.6}\\
u(x)=\frac{x}{1-x-x^{2}-x^{3}}=\sum_{n=0}^{\infty} T_{n} x^{n}, \tag{1.7}
\end{gather*}
$$

and

$$
\begin{equation*}
v(x)=\frac{3-2 x-x^{2}}{1-x-x^{2}-x^{3}}=\sum_{n=0}^{\infty} K_{n} x^{n} . \tag{1.8}
\end{equation*}
$$

See for instance [5], [6], [7], [8], and [1]. The mathematical literature contains many convolution identities for a series of important numbers such as Bernoulli, Euler, Cauchy, Fibonacci, Lucas, and Tribonacci numbers (see the references herein and those given in [6]). For Fibonacci numbers, one classic example is the following identity:

$$
\begin{equation*}
\sum_{k=0}^{n} F_{k} F_{n-k}=\frac{1}{5}\left((n+1) L_{n}-2 F_{n+1}\right), \quad n \geq 1 \tag{1.9}
\end{equation*}
$$

This identity can be found in [4]. We will use this identity later in the proof of Theorem 3.1. More identities of this kind can by found in [4], [5], and [8]. Convolution identities for

[^0]
THE FIBONACCI QUARTERLY

Tribonacci numbers have been derived recently in [6] and [7]. One example from [7] is

$$
\begin{equation*}
\sum_{k=0}^{n-3} T_{k}\left(T_{n-k}+T_{n-2-k}+2 T_{n-3-k}\right)=(n-2) T_{n-1}-T_{n-2}, \quad n \geq 3 \tag{1.10}
\end{equation*}
$$

In this paper, we continue the search for convolution identities. We present new relations between Fibonacci, Lucas, Tribonacci, and Tribonacci-Lucas numbers, respectively. More precisely, we derive new convolution identities for the pairs $\left(F_{n}, T_{n}\right),\left(F_{n}, K_{n}\right),\left(L_{n}, T_{n}\right)$, and $\left(L_{n}, K_{n}\right)$. To prove our results, we use some functional relations between the generating functions for these numbers. At the end of the article, we also propose an open problem.

2. First Results

Throughout the paper, we use the convention that $\sum_{k=0}^{n} a_{k}=0$ for $n<k$. The first theorem is an identity that relates Fibonacci numbers to Tribonacci numbers.

Theorem 2.1. Let $n \geq 1$ be an integer. Then,

$$
\begin{equation*}
T_{n}=F_{n}+\sum_{k=0}^{n-2} F_{k} T_{n-2-k} \tag{2.1}
\end{equation*}
$$

Proof. Let $f(x)$ and $u(x)$ denote the generating functions for F_{n} and T_{n}, respectively. We have

$$
\frac{x}{f(x)}=1-x-x^{2} .
$$

Thus,

$$
1-x-x^{2}-x^{3}=\frac{x-x^{3} f(x)}{f(x)}
$$

and

$$
u(x)=\frac{f(x)}{1-x^{2} f(x)}
$$

or equivalently

$$
\begin{equation*}
u(x)-f(x)=x^{2} f(x) u(x) . \tag{2.2}
\end{equation*}
$$

From the last equation, we obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(T_{n}-F_{n}\right) x^{n} & =x^{2}\left(\sum_{n=0}^{\infty} F_{n} x^{n}\right)\left(\sum_{n=0}^{\infty} T_{n} x^{n}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n} F_{k} T_{n-k}\right) x^{n+2} \\
& =\sum_{n=2}^{\infty}\left(\sum_{k=0}^{n-2} F_{k} T_{n-2-k}\right) x^{n} .
\end{aligned}
$$

Comparing the coefficients of both sides of the equation gives the identity.
Theorem 2.2. Let $n \geq 3$ be an integer. Then,

$$
\begin{equation*}
K_{n-1}=L_{n-1}+\sum_{k=0}^{n-3} F_{k} K_{n-3-k} . \tag{2.3}
\end{equation*}
$$

Proof. Let $f(x)$ and $v(x)$ denote the generating functions for F_{n} and K_{n}, respectively. Then

$$
v(x)=\frac{\left(3-2 x-x^{2}\right) f(x)}{x-x^{3} f(x)},
$$

or equivalently

$$
\begin{equation*}
x v(x)-\left(3-2 x-x^{2}\right) f(x)=x^{3} f(x) v(x) . \tag{2.4}
\end{equation*}
$$

The left side of the last equation is

$$
\begin{equation*}
\sum_{n=1}^{\infty} K_{n-1} x^{n}-3 \sum_{n=0}^{\infty} F_{n} x^{n}+2 \sum_{n=1}^{\infty} F_{n-1} x^{n}+\sum_{n=2}^{\infty} F_{n-2} x^{n}, \tag{2.5}
\end{equation*}
$$

whereas the right side equals

$$
\begin{equation*}
x^{3} f(x) v(x)=\sum_{n=3}^{\infty}\left(\sum_{k=0}^{n-3} F_{k} K_{n-3-k}\right) x^{n} . \tag{2.6}
\end{equation*}
$$

Comparing the coefficients of both power series and using that

$$
-3 F_{n}+2 F_{n-1}+F_{n-2}=-\left(F_{n-1}+2 F_{n-2}\right)=-L_{n-1}
$$

completes the proof of the identity.
Theorem 2.3. Let $n \geq 3$ be an integer. Then,

$$
\begin{equation*}
2 T_{n}=T_{n-1}+L_{n-1}+\sum_{k=0}^{n-3} L_{k} T_{n-3-k} . \tag{2.7}
\end{equation*}
$$

Proof. The formula is a consequence of

$$
\begin{equation*}
2 u(x)-x(u(x)+g(x))=x^{3} g(x) u(x) . \tag{2.8}
\end{equation*}
$$

Writing this equation in terms of power series and comparing the coefficients gives the desired identity.

We conclude this section with the following theorem.
Theorem 2.4. Let $n \geq 3$ be an integer. Then,

$$
\begin{equation*}
2 K_{n}=K_{n-1}+L_{n-1}+2 L_{n-2}+\sum_{k=0}^{n-3} L_{k} K_{n-3-k} . \tag{2.9}
\end{equation*}
$$

Proof. The identity follows essentially from

$$
\begin{equation*}
(2-x) v(x)-\left(3-2 x-x^{2}\right) g(x)=x^{3} g(x) v(x) \tag{2.10}
\end{equation*}
$$

We omit the details.

3. Higher-Order Identities with Three Factors

The functional relations between the generating functions for F_{n}, L_{n}, T_{n}, and K_{n} make it possible to derive identities for sums of products of three factors.

Theorem 3.1. Let $n \geq 5$ and $k_{1}, k_{2}, k_{3} \geq 1$ be integers. Then,

$$
\begin{equation*}
\sum_{k_{1}+k_{2}+k_{3}=n-2} T_{k_{1}} F_{k_{2}} F_{k_{3}}=T_{n+2}-F_{n+2}-\frac{1}{5}\left((n+1) L_{n}-2 F_{n+1}\right) . \tag{3.1}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

Proof. From (2.2), we have

$$
\begin{equation*}
u(x) f(x)-f^{2}(x)=x^{2} u(x) f^{2}(x) \tag{3.2}
\end{equation*}
$$

In terms of power series, the relation becomes

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\left(T_{k} F_{n-k}-F_{k} F_{n-k}\right) x^{n}\right. & =x^{2} \sum_{n=0}^{\infty}\left(\sum_{k_{1}+k_{2}+k_{3}=n} T_{k_{1}} F_{k_{2}} F_{k_{3}}\right) x^{n} \\
& =\sum_{n=2}^{\infty}\left(\sum_{k_{1}+k_{2}+k_{3}=n-2} T_{k_{1}} F_{k_{2}} F_{k_{3}}\right) x^{n} .
\end{aligned}
$$

Since $F_{0}=T_{0}=0$, we can restrict all indices to be strictly positive. Comparing the coefficients of both sides gives

$$
\begin{equation*}
\sum_{k_{1}+k_{2}+k_{3}=n-2} T_{k_{1}} F_{k_{2}} F_{k_{3}}=\sum_{k=0}^{n}\left(T_{k}-F_{k}\right) F_{n-k}, \quad n \geq 2 \tag{3.3}
\end{equation*}
$$

From (1.9), it is known that

$$
\begin{equation*}
\sum_{k=0}^{n} F_{k} F_{n-k}=\frac{1}{5}\left((n+1) L_{n}-2 F_{n+1}\right) . \tag{3.4}
\end{equation*}
$$

Finally, from (2.1), we also know that

$$
\begin{equation*}
\sum_{k=0}^{n} T_{k} F_{n-k}=T_{n+2}-F_{n+2} \tag{3.5}
\end{equation*}
$$

Corollary 3.2. Let $N \geq 5$ be an integer. Then,

$$
\begin{align*}
& \sum_{n=5}^{N} \sum_{\substack{k_{1}+k_{2}+k_{3}=n-2 \\
k_{1}, k_{2}, k_{3} \geq 1}} T_{k_{1}} F_{k_{2}} F_{k_{3}}=\frac{1}{2}\left(T_{N+4}+T_{N+2}-1\right)-F_{N+4} \\
& -\frac{1}{5}\left(4(N-1) F_{N}+(3 N-4) F_{N-1}-11 F_{N-2}-6 F_{N-3}\right) . \tag{3.6}
\end{align*}
$$

Proof. First, we note that from $L_{n}=F_{n+1}+F_{n-1}$, we easily deduce that $(n+1) L_{n}-2 F_{n+1}=$ $(n-1) F_{n}+2 n F_{n-1}$. Hence, we have

$$
\begin{aligned}
\sum_{n=5}^{N} \sum_{\substack{k_{1}+k_{2}+k_{3}=n-2 \\
k_{1}, k_{2}, k_{3} \geq 1}} T_{k_{1}} F_{k_{2}} F_{k_{3}} & =\sum_{n=1}^{N} \sum_{\substack{k_{1}+k_{2}+k_{3}=n-2 \\
k_{1}, k_{2}, k_{3} \geq 1}} T_{k_{1}} F_{k_{2}} F_{k_{3}} \\
& =\sum_{n=1}^{N}\left(T_{n+2}-F_{n+2}\right)-\frac{1}{5}\left(\sum_{n=0}^{N-1} n F_{n+1}+2 \sum_{n=1}^{N} n F_{n-1}\right) \\
& =\sum_{n=1}^{N}\left(T_{n+2}-F_{n+2}\right)-\frac{1}{5}\left(\sum_{n=1}^{N-1} n F_{n}+3 \sum_{n=1}^{N-1} n F_{n-1}+2 N F_{N-1}\right) .
\end{aligned}
$$

To finish the proof, use the identities

$$
\begin{equation*}
\sum_{n=1}^{N} F_{n}=F_{N+2}-1, \tag{3.7}
\end{equation*}
$$

$$
\begin{align*}
\sum_{n=1}^{N} n F_{n} & =N F_{N+2}-3 F_{N}-2 F_{N-1}+2, \tag{3.8}\\
\sum_{n=1}^{N} n F_{n-1} & =N F_{N+1}-3 F_{N-1}-2 F_{N-2}+1, \tag{3.9}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{N} T_{n}=\frac{1}{2}\left(T_{N+2}+T_{N}-1\right) \tag{3.10}
\end{equation*}
$$

The three Fibonacci sums are discussed in [8] (see also [9]). The last sum for Tribonacci numbers appears in [2] and [3].

Theorem 3.3. Let $n \geq 4, k_{1} \geq 1$, and $k_{2}, k_{3} \geq 0$ be integers. Then,

$$
\begin{equation*}
\sum_{k_{1}+k_{2}+k_{3}=n-3} T_{k_{1}} L_{k_{2}} L_{k_{3}}=5 T_{n+1}+4 T_{n}-n L_{n-1}-2 F_{n}-5 F_{n+1} . \tag{3.11}
\end{equation*}
$$

Proof. Using (2.8), we start with

$$
\begin{equation*}
2 u(x) g(x)-x u(x) g(x)-x g^{2}(x)=x^{3} u(x) g^{2}(x) . \tag{3.12}
\end{equation*}
$$

In terms of power series, the left side equals

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(2 \sum_{k=0}^{n} T_{k} L_{n-k}-\sum_{k=0}^{n-1} T_{k} L_{n-1-k}-\sum_{k=0}^{n-1} L_{k} L_{n-1-k}\right) x^{n} \tag{3.13}
\end{equation*}
$$

whereas the right side is given by

$$
\begin{equation*}
x^{3} u(x) g^{2}(x)=\sum_{n=3}^{\infty}\left(\sum_{k_{1}+k_{2}+k_{3}=n-3} T_{k_{1}} L_{k_{2}} L_{k_{3}}\right) x^{n} \tag{3.14}
\end{equation*}
$$

with $k_{1} \geq 1$ and $k_{2}, k_{3} \geq 0$. To simplify the left side further, use

$$
2 \sum_{k=0}^{n} T_{k} L_{n-k}=2 \sum_{k=1}^{n-1} T_{k} L_{n-k}+4 T_{n}
$$

and

$$
\sum_{k=0}^{n-1} L_{k} L_{n-1-k}=2 L_{n-1}+\sum_{k=1}^{n-1} L_{k} L_{n-1-k}
$$

Next, note that

$$
2 L_{n-k}-L_{n-1-k}=L_{n-2-k}+L_{n-k}=5 F_{n-1-k}
$$

Comparing the coefficients of both sides shows that

$$
\begin{equation*}
\sum_{k_{1}+k_{2}+k_{3}=n-3} T_{k_{1}} L_{k_{2}} L_{k_{3}}=4 T_{n}-2 L_{n-1}+\sum_{k=1}^{n-1}\left(5 F_{n-1-k} T_{k}-L_{k} L_{n-1-k}\right) . \tag{3.15}
\end{equation*}
$$

By (2.1), the first convolution equals

$$
\begin{equation*}
\sum_{k=1}^{n-1} F_{n-1-k} T_{k}=\sum_{k=0}^{n-1} F_{k} T_{n-1-k}=T_{n+1}-F_{n+1} \tag{3.16}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

Finally, the convolution (see [4])

$$
\begin{equation*}
\sum_{k=0}^{n} L_{k} L_{n-k}=(n+1) L_{n}+2 F_{n+1}, \quad n \geq 1 \tag{3.17}
\end{equation*}
$$

shows that

$$
\begin{equation*}
\sum_{k=1}^{n-1} L_{k} L_{n-1-k}=n L_{n-1}+2 F_{n}-2 L_{n-1} . \tag{3.18}
\end{equation*}
$$

Corollary 3.4. Let $N \geq 4$ be an integer. Then,

$$
\begin{align*}
\sum_{\substack{n=4}}^{N} \sum_{\substack{k_{1}+k_{2}+k_{3}=n-3 \\
k_{1}, \geq 1, k_{2}, k_{3} \geq 0}} T_{k_{1}} L_{k_{2}} L_{k_{3}}= & \frac{9}{2}\left(T_{N+2}+T_{N}-1\right)+5 T_{N+1}+4-(N+7) F_{N+2} \\
& -5 F_{N+1}-(N-3) F_{N}+4 F_{N-1}+F_{N-2} . \tag{3.19}
\end{align*}
$$

Proof. We have

$$
\begin{aligned}
\sum_{\substack{n=4}}^{N} \sum_{\substack{k_{1}+k_{2}+k_{3}=n-3 \\
k_{1} \geq 1, k_{2}, k_{3} \geq 0}} T_{k_{1}} L_{k_{2}} L_{k_{3}} & =\sum_{n=1}^{N} \sum_{\substack{k_{1}+k_{2}+k_{3}=n-3 \\
k_{1} \geq 1, k_{2}, k_{3} \geq 0}} T_{k_{1}} L_{k_{2}} L_{k_{3}} \\
& =\sum_{n=1}^{N}\left(5 T_{n+1}+4 T_{n}\right)-\sum_{n=1}^{N} n L_{n-1}-\sum_{n=1}^{N}\left(2 F_{n}+5 F_{n+1}\right) .
\end{aligned}
$$

The evaluation of the sums is straightforward but lengthy and is left as an exercise.
Theorem 3.5. Let $n \geq 5, k_{1} \geq 0$, and $k_{2}, k_{3} \geq 1$ be integers. Then

$$
\begin{equation*}
\sum_{k_{1}+k_{2}+k_{3}=n-3} K_{k_{1}} F_{k_{2}} F_{k_{3}}=K_{n+1}-L_{n+1}-(n+1) F_{n-1} . \tag{3.20}
\end{equation*}
$$

Proof. Using (2.4), our starting point is the relation

$$
\begin{equation*}
x v(x) f(x)-3 f^{2}(x)+2 x f^{2}(x)+x^{2} f^{2}(x)=x^{3} v(x) f^{2}(x) . \tag{3.21}
\end{equation*}
$$

The power series on the left side equals

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(\sum_{k=0}^{n-1} K_{k} F_{n-1-k}-3 \sum_{k=0}^{n} F_{k} F_{n-k}+2 \sum_{k=0}^{n-1} F_{k} F_{n-1-k}+\sum_{k=0}^{n-2} F_{k} F_{n-2-k}\right) x^{n} \tag{3.22}
\end{equation*}
$$

whereas the right side is given by

$$
\begin{equation*}
x^{3} v(x) f^{2}(x)=\sum_{n=3}^{\infty}\left(\sum_{k_{1}+k_{2}+k_{3}=n-3} K_{k_{1}} F_{k_{2}} F_{k_{3}}\right) x^{n} \tag{3.23}
\end{equation*}
$$

with $k_{1} \geq 0$ and $k_{2}, k_{3} \geq 1$. In the next step, we use

$$
-3 F_{n-k}+2 F_{n-1-k}+F_{n-2-k}=-\left(F_{n-1-k}+2 F_{n-2-k}\right)=-L_{n-1-k} .
$$

This produces

$$
\begin{equation*}
\sum_{k_{1}+k_{2}+k_{3}=n-3} K_{k_{1}} F_{k_{2}} F_{k_{3}}=\sum_{k=1}^{n-2}\left(K_{k} F_{n-1-k}-F_{k} L_{n-1-k}\right) . \tag{3.24}
\end{equation*}
$$

From (2.3), we see that

$$
\begin{equation*}
\sum_{k=1}^{n-2} K_{k} F_{n-1-k}=\sum_{k=0}^{n-1} K_{k} F_{n-1-k}-3 F_{n-1}=K_{n+1}-L_{n+1}-3 F_{n-1} \tag{3.25}
\end{equation*}
$$

Finally, the convolution (see [4])

$$
\begin{equation*}
\sum_{k=0}^{n} L_{k} F_{n-k}=(n+1) F_{n} \tag{3.26}
\end{equation*}
$$

shows that

$$
\begin{equation*}
\sum_{k=1}^{n-2} F_{k} L_{n-1-k}=(n-2) F_{n-1} . \tag{3.27}
\end{equation*}
$$

Corollary 3.6. Let $N \geq 5$ be an integer. Then,

$$
\begin{align*}
\sum_{n=5}^{N} \sum_{\substack{k_{1}+k_{2}+k_{3}=n-3 \\
k_{1} \geq 0, k_{2}, k_{3} \geq 1}} K_{k_{1}} F_{k_{2}} F_{k_{3}}= & \frac{1}{2}\left(K_{N+3}+K_{N+1}\right)-L_{N+3} \\
& -(N+1) F_{N+1}+3 F_{N-1}+2 F_{N-2} . \tag{3.28}
\end{align*}
$$

Proof. The statement follows from

$$
\begin{equation*}
\sum_{n=5}^{N} \sum_{\substack{k_{1}+k_{2}+k_{3}=n-3 \\ k_{1} \geq 0, k_{2}, k_{3} \geq 1}} K_{k_{1}} F_{k_{2}} F_{k_{3}}=\sum_{n=1}^{N} K_{n+1}-\sum_{n=1}^{N} L_{n+1}-\sum_{n=1}^{N}(n+1) F_{n-1} \tag{3.29}
\end{equation*}
$$

combined with (see [8])

$$
\begin{equation*}
\sum_{n=1}^{N} L_{n}=L_{N+2}-3 \tag{3.30}
\end{equation*}
$$

and (see [2])

$$
\begin{equation*}
\sum_{n=1}^{N} K_{n}=\frac{1}{2}\left(K_{N+2}+K_{N}-6\right) \tag{3.31}
\end{equation*}
$$

Theorem 3.7. Let $n \geq 3$ and $k_{1}, k_{2}, k_{3} \geq 0$ be integers. Then,

$$
\begin{equation*}
\sum_{k_{1}+k_{2}+k_{3}=n-3} K_{k_{1}} L_{k_{2}} L_{k_{3}}=5 K_{n+1}+4 K_{n}-11 L_{n}-4 L_{n-1}-5 n F_{n-1} . \tag{3.32}
\end{equation*}
$$

Proof. Using (2.10), we start with

$$
\begin{equation*}
2 v(x) g(x)-x v(x) g(x)-3 g^{2}(x)+2 x g^{2}(x)+x^{2} g^{2}(x)=x^{3} v(x) g^{2}(x) \tag{3.33}
\end{equation*}
$$

The power series on the left side equals

$$
\begin{equation*}
\sum_{n=2}^{\infty}\left(2 \sum_{k=0}^{n} K_{k} L_{n-k}-\sum_{k=0}^{n-1} K_{k} L_{n-1-k}-3 \sum_{k=0}^{n} L_{k} L_{n-k}+2 \sum_{k=0}^{n-1} L_{k} L_{n-1-k}+\sum_{k=0}^{n-2} L_{k} L_{n-2-k}\right) x^{n} \tag{3.34}
\end{equation*}
$$

THE FIBONACCI QUARTERLY

whereas the right side is given by

$$
\begin{equation*}
x^{3} v(x) g^{2}(x)=\sum_{n=3}^{\infty}\left(\sum_{k_{1}+k_{2}+k_{3}=n-3} K_{k_{1}} L_{k_{2}} L_{k_{3}}\right) x^{n} \tag{3.35}
\end{equation*}
$$

with $k_{1}, k_{2}, k_{3} \geq 0$. The coefficient of x^{n} on the left side can be written as

$$
\sum_{k=0}^{n-1} K_{k}\left(2 L_{n-k}-L_{n-1-k}\right)+4 K_{n}+L_{n-1}-6 L_{n}+\sum_{k=0}^{n-2} L_{k}\left(-3 L_{n-k}+2 L_{n-1-k}+L_{n-2-k}\right) .
$$

Simplifying further and making use of the formula

$$
2 L_{n-k}-L_{n-1-k}=L_{n-1-k}+2 L_{n-2-k}=5 F_{n-1-k} .
$$

allows us to write

$$
\begin{equation*}
\sum_{k_{1}+k_{2}+k_{3}=n-3} K_{k_{1}} L_{k_{2}} L_{k_{3}}=4 K_{n}+L_{n-1}-6 L_{n}+5 \sum_{k=0}^{n-2} F_{n-1-k}\left(K_{k}-L_{k}\right) . \tag{3.36}
\end{equation*}
$$

We complete the proof by noting that

$$
\begin{equation*}
\sum_{k=0}^{n-2} F_{n-1-k} L_{k}=n F_{n-1} \tag{3.37}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=0}^{n-2} K_{k} F_{n-1-k}=K_{n+1}-L_{n+1} \tag{3.38}
\end{equation*}
$$

Corollary 3.8. Let $N \geq 3$ be an integer. Then,

$$
\begin{align*}
\sum_{n=3}^{N} \sum_{\substack{k_{1}+k_{2}+k_{3}=n-3 \\
k_{1}, k_{2}, k_{3} \geq 0}} K_{k_{1}} L_{k_{2}} L_{k_{3}}= & \frac{5}{2}\left(K_{N+3}+K_{N+1}\right)+2\left(K_{N+2}+K_{N}\right)-11 L_{N+2}-4 L_{N+1} \\
& -5 N F_{N+1}+15 F_{N-1}+10 F_{N-2} . \tag{3.39}
\end{align*}
$$

Proof. The identity follows from similar arguments as in the previous corollaries. To evaluate the Tribonacci-Lucas sums, we again use (3.31). We have

$$
\begin{aligned}
\sum_{n=3}^{N} \sum_{\substack{k_{1}+k_{2}+k_{3}=n-3 \\
k_{1}, k_{2}, k_{3} \geq 0}} K_{k_{1}} L_{k_{2}} L_{k_{3}}= & 5 \sum_{n=2}^{N+1} K_{n}+4 \sum_{n=1}^{N} K_{n}-11 \sum_{n=1}^{N} L_{n}-4 \sum_{n=0}^{N-1} L_{n}-5 \sum_{n=1}^{N} n F_{n-1} \\
= & 5\left(\frac{1}{2}\left(K_{N+3}+K_{N+1}-6\right)-1\right)+4\left(\frac{1}{2}\left(K_{N+2}+K_{N}-6\right)\right) \\
& -11\left(L_{N+2}-3\right)-4\left(L_{N+1}-1\right) \\
& -5\left(N F_{N+1}-3 F_{N-1}-2 F_{N-2}+1\right) .
\end{aligned}
$$

Gathering like terms establishes the result.

SOME FIBONACCI-LUCAS-TRIBONACCI-LUCAS IDENTITIES

4. The General Case

In this section, we give some remarks on the general nature of the relations derived in this paper.

Theorem 4.1. Let $m \geq 0$ and $n \geq m+4$ be integers. Then,

$$
\begin{equation*}
\sum_{\substack{k_{1}+k_{2}+\ldots+k_{m+2}=n-2 \\ k_{1}, k_{2}, \ldots, k_{m+2} \geq 1}} T_{k_{1}} F_{k_{2}} \cdots F_{k_{m+2}}=\sum_{\substack{k_{1}+k_{2}+\cdots+k_{m+1}=n \\ k_{1}, k_{2}, \ldots, k_{m+1} \geq 1}} T_{k_{1}} F_{k_{2}} \cdots F_{k_{m+1}}-H(n, m) \tag{4.1}
\end{equation*}
$$

with $H(n, 0)=F_{n}$ and for $m \geq 1$,

$$
\begin{align*}
& H(n, m)=\sum_{\substack{k_{1}+k_{2}+\cdots+k_{m+1}=n \\
k_{1}, k_{2}, \ldots, k_{m+1} \geq 1}} F_{k_{1}} F_{k_{2}} \cdots F_{k_{m+1}} \\
& =\frac{C_{m-1}}{(2 m-2)!2^{2 m-2}} \sum_{j=1}^{n-m} \frac{(n+j+m-2)!!(n-j+m-2)!!}{(n+j-m)!!(n-j-m)!!} j F_{j} \cos \left(\frac{(n-j-m) \pi}{2}\right), \tag{4.2}
\end{align*}
$$

where C_{n} is the nth Catalan number, and $n!!=n(n-2)(n-4) \cdots 1$ if n is odd and $n!!=$ $n(n-2)(n-4) \cdots 2$ if n is even.

Proof. From (2.2) (or (3.2)), it is clear that if $m \geq 0$ is an arbitrary fixed integer, then

$$
\begin{equation*}
u(x) f^{m}(x)-f^{m+1}(x)=x^{2} u(x) f^{m+1}(x) \tag{4.3}
\end{equation*}
$$

From this identity, it follows that

$$
\sum_{\substack{k_{1}+k_{2}+\cdots+k_{m+2}=n-2 \\ k_{1}, k_{2}, \ldots, k_{m+2} \geq 1}} T_{k_{1}} F_{k_{2}} \cdots F_{k_{m+2}}=\sum_{\substack{k_{1}+k_{2}+\cdots+k_{m+1}=n \\ k_{1}, k_{2}, \ldots, k_{m+1} \geq 1}} T_{k_{1}} F_{k_{2}} \cdots F_{k_{m+1}} F_{k_{1},} F_{k_{2}} \cdots F_{k_{m+1}} .
$$

The second sum in (4.4) allows the stated closed-form expression as was shown by Komatsu, et al. (2014) ([5], Theorem 4.2).

According to Theorem 4.1, the convolution of $T_{k_{1}} F_{k_{2}} \cdots F_{k_{m+2}}$ can be specified in an iterative manner, using the expression for the convolution for $F_{k_{1}} F_{k_{2}} \cdots F_{k_{m+1}}$. When $m=0$, Theorem 4.1 reduces to Theorem 2.1. When $m=1$, Theorem 4.1 reduces to Theorem 3.1, since (see [5], Proposition 6.1)

$$
\begin{equation*}
\sum_{j=1}^{n-1} j F_{j} \cos \left(\frac{(n-j-1) \pi}{2}\right)=\frac{(n-1) F_{n}+2 n F_{n-1}}{5} \tag{4.5}
\end{equation*}
$$

When $m=2$, we have the following identity.

THE FIBONACCI QUARTERLY

Theorem 4.2. Let $n \geq 6$ be an integer. Then,

$$
\begin{align*}
\sum_{\substack{k_{1}+k_{2}+k_{3}+k_{4}=n-2 \\
k_{1}, k_{2}, k_{3}, k_{4} \geq 1}} T_{k_{1}} F_{k_{2}} F_{k_{3}} F_{k_{4}}= & T_{n+4}-F_{n+4}-\frac{(n+1) F_{n+2}+2(n+2) F_{n+1}}{5} \\
& -\sum_{j=1}^{n-2} \frac{(n+j)(n-j) j F_{j}}{8} \cos \left(\frac{(n-j-2) \pi}{2}\right) . \tag{4.6}
\end{align*}
$$

An equivalent expression for the above four-factor sum was discovered by the author during the study. The expression is stated in the following theorem.
Theorem 4.3. Let $n \geq 6$ be an integer. Then,

$$
\begin{align*}
& \sum_{\substack{k_{1}+k_{2}+k_{3}+k_{4}=n-2 \\
k_{1}, k_{2}, k_{3}, k_{4} \geq 1}} T_{k_{1}} F_{k_{2}} F_{k_{3}} F_{k_{4}}=T_{n+4}-F_{n+4}-\frac{(n+1) F_{n+2}+2(n+2) F_{n+1}}{5} \\
& -\frac{(n-1)(n-2)}{50} F_{n}-\frac{(n-2)(2 n+1)}{25} F_{n-1}-\frac{2(n-1)(n+1)}{25} F_{n-2} . \tag{4.7}
\end{align*}
$$

Proof. It remains to show that

$$
\begin{equation*}
\sum_{\substack{k_{1}+k_{2}+k_{3}=n \\ k_{1}, k_{2}, k_{3} \geq 1}} F_{k_{1}} F_{k_{2}} F_{k_{3}}=\frac{(n-1)(n-2)}{50} F_{n}+\frac{(n-2)(2 n+1)}{25} F_{n-1}+\frac{2(n-1)(n+1)}{25} F_{n-2} . \tag{4.8}
\end{equation*}
$$

The equation holds for $n \geq 3$. The proof of the last identity can be done as follows:

$$
\begin{aligned}
\sum_{\substack{k_{1}+k_{2}+k_{3}=n \\
k_{1}, k_{2}, k_{3} \geq 1}} F_{k_{1}} F_{k_{2}} F_{k_{3}} & =\sum_{k_{3}=0}^{n} \sum_{k_{2}=0}^{k_{3}} F_{k_{2}} F_{k_{3}-k_{2}} F_{n-k_{3}} \\
& =\frac{1}{5} \sum_{k_{3}=0}^{n} F_{n-k_{3}}\left(\left(k_{3}-1\right) F_{k_{3}}+2 k_{3} F_{k_{3}-1}\right) .
\end{aligned}
$$

Since,

$$
\sum_{k_{3}=0}^{n} k_{3} F_{k_{3}} F_{n-k_{3}}=\sum_{k_{3}=0}^{n}\left(n-k_{3}\right) F_{k_{3}} F_{n-k_{3}},
$$

it follows that

$$
\sum_{k_{3}=0}^{n} k_{3} F_{k_{3}} F_{n-k_{3}}=\frac{n}{2}\left(\frac{(n-1) F_{n}+2 n F_{n-1}}{5}\right) .
$$

Next,

$$
\sum_{k_{3}=0}^{n} k_{3} F_{k_{3}-1} F_{n-k_{3}}=\sum_{k_{3}=0}^{n-1} k_{3} F_{k_{3}} F_{n-1-k_{3}}+\sum_{k_{3}=0}^{n-1} F_{k_{3}} F_{n-1-k_{3}} .
$$

Gathering like terms, we obtain the following equation.

$$
\begin{aligned}
& \sum_{k_{1}+k_{2}+k_{3}=n} F_{k_{1}} F_{k_{2}} F_{k_{3}}=\frac{n(n-1)}{50} F_{n}+\frac{n^{2}}{25} F_{n-1}-\frac{(n-1) F_{n}+2 n F_{n-1}}{25}+\frac{2(n-1)(n-2)}{50} F_{n-1} \\
& +\frac{2(n-1)^{2}}{25} F_{n-2}+\frac{2\left((n-2) F_{n-1}+2(n-1) F_{n-2}\right)}{25} .
\end{aligned}
$$

SOME FIBONACCI-LUCAS-TRIBONACCI-LUCAS IDENTITIES

Simplifying the equation completes the proof.
For the pair $\left(K_{n}, F_{n}\right)$, we also obtain an iterative relation in the next theorem.
Theorem 4.4. Let $m \geq 0$ and $n \geq m+4$ be integers. Then,

$$
\left.\sum_{\substack{k_{1}+k_{2}+\cdots+k_{m+2}=n-3 \\ k_{1} \geq 0, k_{2}, \ldots, k_{m+2} \geq 1}} K_{k_{1}} F_{k_{2}} \cdots F_{k_{m+2}}=\sum_{\substack{k_{1}+k_{2}+\cdots+k_{m+1}=n-1 \\ k_{1} \geq 0, k_{2}, \ldots, k_{m+1} \geq 1}} K_{k_{1}} F_{k_{2}} \cdots F_{k_{m+1}}-3 H(n, m)\right)
$$

where $H(n, m)$ is defined in (4.2).
Proof. The statement is a consequence of the general relation

$$
\begin{equation*}
x v(x) f^{m}(x)-\left(3-2 x-x^{2}\right) f^{m+1}(x)=x^{3} v(x) f^{m+1}(x), \tag{4.10}
\end{equation*}
$$

which follows from (2.4).
When $m=0$, Theorem 4.4 reduces to Theorem 2.2 . Also, when $m=1$, it is easily verified that $-3 H(n, 1)+2 H(n-1,1)+H(n-2,1)=-(n+1) F_{n-1}$. This shows that, when $m=1$, Theorem 4.4 reduces to Theorem 3.5. When $m=2$, we have the following identity.
Theorem 4.5. Let $n \geq 6$ be an integer. Then,

$$
\begin{array}{ll}
\sum_{\substack{k_{1}+k_{2}+k_{3}+k_{4}=n-3 \\
k_{1} \geq 0, k_{2}, k_{3}, k_{4} \geq 1}} & K_{k_{1}} F_{k_{2}} F_{k_{3}} F_{k_{4}}=K_{n+3}-L_{n+3}-(n+3) F_{n+1} \\
& -3 \sum_{j=1}^{n-2} \frac{(n+j)(n-j) j F_{j}}{8} \cos \left(\frac{(n-j-2) \pi}{2}\right) \\
& +2 \sum_{j=1}^{n-3} \frac{(n-1+j)(n-1-j) j F_{j}}{8} \cos \left(\frac{(n-j-3) \pi}{2}\right) \\
& +\sum_{j=1}^{n-4} \frac{(n-2+j)(n-2-j) j F_{j}}{8} \cos \left(\frac{(n-j-4) \pi}{2}\right) . \tag{4.11}
\end{array}
$$

This result can be stated equivalently as

$$
\sum_{\substack{k_{1}+k_{2}+k_{3}+k_{4}=n-3 \\ k_{1} \geq 0, k_{2}, k_{3}, k_{4} \geq 1}} K_{k_{1}} F_{k_{2}} F_{k_{3}} F_{k_{4}}=K_{n+3}-L_{n+3}-(n+3) F_{n+1} .
$$

5. Final Remark

From

$$
\begin{equation*}
2 u(x) g^{m}(x)-x u(x) g^{m}(x)-x g^{m+1}(x)=x^{3} u(x) g^{m+1}(x) \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
2 v(x) g^{m}(x)-x v(x) g^{m}(x)-\left(3-2 x-x^{2}\right) g^{m+1}(x)=x^{3} v(x) g^{m+1}(x), \tag{5.2}
\end{equation*}
$$

it is clear that a general solution for the pairs $\left(L_{n}, T_{n}\right)$ and (L_{n}, K_{n}) will preserve its iterative accessibility. However, a closed form requires an expression for the sum

$$
\sum_{k_{1}+k_{2}+\cdots+k_{m+1}=n} L_{k_{1}} L_{k_{2}} \cdots L_{k_{m+1}} .
$$

THE FIBONACCI QUARTERLY

Such an expression is currently unknown. The expressions for two- and three-factor sums that have been derived here are special cases of a more general identity that is to be found. The author proposes this task as an open problem.

6. ACKNOWLEDGMENTS

The author thanks the anonymous referee for the careful reading and detailed comments, which significantly helped improve the presentation of the paper.

References

[1] M. Catalani, Identities for Tribonacci-related sequences, Cornell University Library, (2002), avaliable at https://arxiv.org/pdf/math/0209179.pdf.
[2] R. Frontczak, Sums of Tribonacci and Tribonacci-Lucas numbers, International Journal of Mathematical Analysis, 12 (1) (2018), 19-24.
[3] E. Kilic, Tribonacci sequences with certain indices and their sums, Ars Combinatoria, 86 (2008), 13-22.
[4] A. Kim, Convolution sums related to Fibonacci numbers and Lucas numbers, Asian Research Journal of Mathematics, 1 (1) (2016), 1-17.
[5] T. Komatsu, Z. Masáková, and E. Pelantová, Higher-order identities for Fibonacci numbers, The Fibonacci Quarterly, 52.5 (2014), 150-163.
[6] T. Komatsu and R. Li, Convolution identities for Tribonacci numbers with symmetric formulae, arXiv:1610.02559v2 [math.NT] 5 Jan 2017.
[7] T. Komatsu, Convolution identities for Tribonacci numbers, Ars Combinatoria, CXXXVI (2018), 199210.
[8] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley, New York, 2001.
[9] J. Seibert and P. Trojovský, On sums of certain products of Lucas numbers, The Fibonacci Quarterly, 44.2 (2006), 172-180.

MSC2010: 11B37, 11B39.
Landesbank Baden-Wuerttemberg (LBBW), Am Hauptbahnhof 2, 70173 Stuttgart, Germany
E-mail address: robert.frontczak@lbbw.de

[^0]: Disclaimer: Statements and conclusions made in this article are entirely those of the author. They do not necessarily reflect the views of LBBW.

