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Abstract. For b ≤ −2 and e ≥ 2, let Se,b : Z → Z≥0 be the function taking an integer
to the sum of the e-powers of the digits of its base b expansion. An integer a is a b-happy
number if there exists k ∈ Z+ such that Sk

2,b(a) = 1. We prove that an integer is −2-happy
if and only if it is congruent to 1 modulo 3 and that it is −3-happy if and only if it is odd.
Defining a d-sequence to be an arithmetic sequence with constant difference d and setting
d = gcd(2, b − 1), we prove that for odd b ≤ −3 and for b ∈ {−4,−6,−8,−10}, there exist
arbitrarily long finite sequences of d-consecutive b-happy numbers.

1. Introduction

As is standard, a positive integer a can be uniquely expanded in the base b ≥ 2 as a =∑n
i=0 aib

i, where 0 ≤ ai ≤ b − 1 and an 6= 0. This definition can be extended to negative
bases b ≤ −2 in an analogous manner, with 0 ≤ ai ≤ |b| − 1. The study of negative bases
was introduced in the 1885 work of Vittorio Grünwald [4]. It is known that for any base
b > 0, each nonnegative integer has a unique base b representation. Similarly, for any base
b′ < 0, every nonzero integer has a unique base b′ representation (with no need for a leading
negative sign). Note that any integer written in a negative base with an odd number of
digits is necessarily positive, whereas any written with an even number of digits is necessarily
negative. For example, converting between base 10 and base −10, we have 2018 = (18198)(−10)
and −2018 = (2022)(−10).

We begin by adapting the definition of generalized happy numbers and the corresponding
function given in [3] to include the case of negative bases. It is natural, in this case, to extend
the domain of the function to include all integers.

Definition 1. Let b ≤ −2 and e ≥ 2 be integers, and let a ∈ Z−{0} be given by a =
∑n

i=0 aib
i

where 0 ≤ ai ≤ |b| − 1, for each 0 ≤ i ≤ n. Define the function Se,b : Z→ Z≥0 by Se,b(0) = 0
and, for a 6= 0,

Se,b(a) =

n∑
i=0

aei .

Further, let S0
e,b(a) = a and for each k ∈ Z+, Sk

e,b(a) = Se,b(S
k−1
e,b (a)).

Definition 2. An integer a is an e-power b-happy number if, for some k ∈ Z+, Sk
e,b(a) = 1. A

b-happy number is a 2-power b-happy number.

For example, if b = −8, then 554 = 17132(−8) is a−8-happy number since S2
2,−8(17132(−8)) =

S2,−8(100(−8)) = 1; 46 = 136(−8) is a fixed point since S2,−8(46) = S2,−8(136(−8)) = 46; and
the integers 11 and 59 form a cycle since S2,−8(11) = S2,−8(173(−8)) = 59 and S2,−8(59) =
S2,−8(113(−8)) = 11.

The following definition is from [2].
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Definition 3. A d-consecutive sequence is defined to be an arithmetic sequence with constant
difference d.

In Section 2, we determine the fixed points and cycles of the functions S2,b for −10 ≤ b ≤ −2.
In Section 3, we generalize the work of El-Sedy and Siksek [1] and the work of Grundman and
Teeple [2] on sequences of consecutive b-happy numbers. In particular, Grundman and Teeple
showed that there exist arbitrarily long finite d-consecutive sequences of b-happy numbers,
where b ≥ 2 and d = gcd(2, b− 1) [2, Corollary 2]. We prove that this result does not hold for
b = −2, but does hold for all odd negative bases and for even negative bases −10 ≤ b ≤ −4.

2. Cycles and Fixed Points

In this section, we first determine a bound, dependent on the given base b ≤ −2, such that
each fixed point and at least one point in every cycle is less than this bound. We then use this
result to compute all cycles and fixed points of S2,b for −10 ≤ b ≤ −2. Note that if b ≤ −2

and k > 0, for each a 6= 0, Sk
2,b(a) > 0. Hence, there are no negative fixed points.

For larger values of a, we have the following result.

Theorem 1. Let b ≤ −2. If a > (|b| − 1)(|b|2 − |b|+ 1), then 0 < S2,b(a) < a.

Proof. Let a and b be as in the hypothesis. Then a =
∑n

i=0 aib
i with n even, 0 ≤ ai ≤ |b| − 1,

an 6= 0. Observe that

a− S2,b(a) =
n∑

i=0

aib
i −

n∑
i=0

a2i =
n∑

i=0

ai(b
i − ai)

=

n
2∑

j=1

a2j(|b|2j − a2j)−

n
2∑

j=1

a2j−1
(
|b|2j−1 + a2j−1

)
+ a0(|b|0 − a0). (2.1)

Case n ≥ 4. Since, an ≥ 1 and, for each i, 0 ≤ ai ≤ |b| − 1, minimizing each term in (2.1)
yields

a− S2,b(a) ≥ 1(bn − 1)−

n
2∑

j=1

(|b| − 1)
(
|b|2j−1 + (|b| − 1)

)
+ (|b| − 1)(1− (|b| − 1)).

Noting that
n
2∑

j=1

|b|2j−1 =
|b|

|b|2 − 1
(|b|n − 1) ,

we have

a− S2,b(a) ≥ (bn − 1)− (|b| − 1)

(
|b|

|b|2 − 1
(|b|n − 1) +

n

2
(|b| − 1)

)
− (|b| − 1)(|b| − 2)

=
bn − 1

|b|+ 1
− n

2
(|b| − 1)2 − (|b| − 1)(|b| − 2)

=
1

|b|+ 1

(
|b|n − n

2
(|b|2 − 1)(|b| − 1)− (|b|2 − 1)(|b| − 2)− 1

)
(2.2)

>
1

|b|+ 1

(
|b|n − n

2
|b|3 − |b|3

)
(2.3)

>
1

|b|+ 1

(
|b|n−3 − n

2
− 1
)
. (2.4)
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Note that the function f(x) = 2x−3 − x/2− 1 is an increasing function for x ≥ 5 and that
f(5) > 0. Thus, for n ≥ 5, since b ≤ −2,

|b|n−3 − n/2− 1 ≥ 2n−3 − n/2− 1 > 0,

and so, by inequality (2.4), a−S2,b(a) > 0. Now, for n = 4 and b < −2, using inequality (2.3),

a − S2,b(a) > 1
|b|+1

(
|b|4 − 3|b|3

)
≥ 0, and for n = 4 and b = −2, using inequality (2.2),

a− S2,b(a) > 0.
Case n < 4. In this case, (|b|−1)(|b|2−|b|+1) < a ≤ (|b|−1)(|b|2+1). So, a = a2b

2+a1b+a0
with a2 = |b| − 1, 0 ≤ a1 ≤ |b| − 2, and 0 ≤ a0 ≤ |b| − 1. Thus,

a− S2,b(a) = a2(|b|2 − a2)− a1 (|b|+ a1) + a0(1− a0)

≥ (|b| − 1)(|b|2 − (|b| − 1))− (|b| − 2)(|b|+ (|b| − 2)) + (|b| − 1)(1− (|b| − 1))

= |b|3 − 5|b|2 + 11|b| − 7 > 0,

since b ≤ −2. �

Note that when b = −2, the bound in Theorem 1 is 4. Since 3 is a fixed point of S2,−2, the
given bound is best possible.

The following corollary is immediate.

Corollary 2. Let b ≤ −2. Every fixed point of S2,b is less than or equal to (|b|−1)(|b|2−|b|+1)
and every cycle of S2,b contains a number that is less than or equal to (|b| − 1)(|b|2 − |b|+ 1).

Using Corollary 2 and a direct computer search, we determine all fixed points and cycles in
the bases −10 ≤ b ≤ −2. The results are given in Table 1.

Base Fixed
points

Cycles Smallest
happy
number
> 1

Largest
happy
number
< −1

−2 1,2,3 None 4 −2
−3 1 (2,4,6) 3 −1
−4 1 (6,14) 16 −4
−5 1,10,11 (2,4,16,6,18,14,26), (9,33,29,17) 25 −5
−6 1 (2,4,16,33,11,51,29,30) 36 −6
−7 1,41 (2,4,16,30,14,26,42), (5,25,33,35), (6,36) 49 −7
−8 1,46 (11,59), (30,62,38,53) 64 −8
−9 1 (6,36,26,114,76,18,50,42,62,74), (9,65), (27,37) 5 −5
−10 1 (19,163,29,146,76,46,73), (35,75) 100 −10

Table 1. Base 10 representation of fixed points and cycles of S2,b for −10 ≤ b ≤ −2.

Definition 4. For e ≥ 2 and b ≤ −2, let

Ue,b = {a ∈ Z+| for some m ∈ Z+, Sm
e,b(a) = a}.

The following straightforward lemmas are used throughout this work.

Lemma 3. Fix b ≤ −2. For each a 6= 0, there exists some k ∈ Z+ such that Sk
2,b(a) ∈ U2,b.

Lemma 4. Fix b ≤ −2, a ∈ Z, and k ∈ Z+. If b is odd, then

Sk
2,b(a) ≡ a (mod 2).
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Proof. Fix a, b, and k as in the lemma. Noting that the result is trivial if a = 0. Let
a =

∑n
i=0 aib

i. Then,

a =

n∑
i=0

aib
i ≡

n∑
i=0

ai ≡
n∑

i=0

a2i ≡ S2,b(a) (mod 2).

A simple induction argument completes the proof. �

3. Consecutive b-Happy Numbers

In this section, we consider sequences of consecutive b-happy numbers for negative b. Grund-
man and Teeple [2] proved, for each base b ≥ 2, that, letting d = gcd(2, b − 1), there exist
arbitrarily long finite sequences of d-consecutive b-happy numbers. We prove the following
theorem using ideas from [1, 2]. Note that part (1) of the theorem demonstrates that the
results in [2] do not generalize directly to negative bases.

Theorem 5. Let b ≤ −2.

(1) There exist infinitely long sequences of 3-consecutive −2-happy numbers. In particular,
a ∈ Z is −2-happy if and only if a ≡ 1 (mod 3).

(2) There exist infinitely long sequences of 2-consecutive −3-happy numbers. In particular,
a ∈ Z is −3-happy if and only if a ≡ 1 (mod 2).

(3) For b ∈ {−4,−6,−8,−10}, there exist arbitrarily long finite sequences of consecutive
b-happy numbers.

(4) For b odd, there exist arbitrarily long finite sequences of 2-consecutive b-happy numbers.

The smaller even negative bases not covered by Theorem 5 are addressed in the following
conjecture, a proof for which would extend Pan’s theorem [5] to all integral bases for e = 2.

Conjecture 6. For b ≤ −12 and even, there exist arbitrarily long finite sequences of consec-
utive b-happy numbers.

We begin by proving the first two cases of Theorem 5. The other two cases follow immedi-
ately from Corollary 13 and are stated and proved at the end of this section.

Lemma 7. An integer a is −2-happy if and only if a ≡ 1 (mod 3) and is −3-happy if and
only if a is odd.

Proof. If a =
∑n

i=0 ai(−2)i with ai ∈ {0, 1} for all 0 ≤ i ≤ n, then

S2,−2(a) =
n∑

i=0

a2i =
n∑

i=0

ai ≡
n∑

i=0

ai(−2)i ≡ a (mod 3).

Thus, if a is −2-happy, a ≡ 1 (mod 3). Now, suppose that a ≡ 1 (mod 3). By Lemma 3,
there exists a k ∈ Z+ such that Sk

2,−2(a) ∈ U2,−2 = {1, 2, 3}. Since Sk
2,−2(a) ≡ a ≡ 1 (mod 3),

Sk
2,−2(a) = 1 and so a is a −2-happy number.

By Lemma 4, if a is a −3-happy number, then a is odd. Since U2,−3 = {1, 2, 4, 6}, Lemmas 3
and 4 together imply that if a ≡ 1 (mod 2), then a is a −3-happy number. �

The following definitions are from [2].

Definition 5. Let e ≥ 2 and b ≤ −2. A finite set T is (e, b)-good if, for each u ∈ Ue,b, there

exist n, k ∈ Z+ such that for each t ∈ T , Sk
e,b(t + n) = u.

Definition 6. Let I : Z+ → Z+ be defined by I(t) = t + 1.
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We will prove that for each odd b ≤ −5 and for b ∈ {−4,−6,−8,−10}, a finite set T of
positive integers is (2, b)-good if and only if all of the elements of T are congruent modulo
d = gcd(2, b− 1). Lemma 8 and its proof are analogous to [2, Lemma 4 and proof].

Lemma 8. Fix e ≥ 2 and b ≤ −2. Let T ⊆ Z+ be finite. Let F : Z+ → Z+ be the composition
of a finite sequence of the functions Se,b and I. If F (T ) is (e, b)-good, then T is (e, b)-good.

Proof. Fix e ≥ 2, b ≤ −2, and a finite set of positive integers, T . Clearly, if I(T ) is (e, b)-good,
then T is (e, b)-good. Using a simple induction argument, it suffices to show that if Se,b(T ) is
(e, b)-good, then T is (e, b)-good.

Let Se,b(T ) be (e, b)-good and u ∈ Ue,b. Then, by the definition of (e, b)-good, there exist

n′ and k′ such that for each s ∈ Se,b(T ), Sk′
e,b(s+ n′) = u. Let ` be the number of base b digits

of the largest element of T and let `′ = ` or ` + 1 such that n′ + `′ is odd. Let

n =
n′+`′−1∑
i=`′

bi = 11 · · · 11︸ ︷︷ ︸
n′

00 · · · 00︸ ︷︷ ︸
`′

∈ Z+.

Then, Se,b(n) = n′ and for each t ∈ T , Se,b(t + n) = Se,b(t) + n′. Let k = k′ + 1. Then, for
each t ∈ T ,

Sk
e,b(t + n) = Sk′

e,b(Se,b(t + n)) = Sk′
e,b(Se,b(t) + n′) = u.

So, T is (e, b)-good. �

Lemma 9. Let b ∈ {−4,−6,−8,−10}, and let 0 < t2 < t1 be integers. Then, there exists a
function F of the type described in Lemma 8 with e = 2 such that F (t1) = F (t2).

Proof. Let k ∈ Z+ such that Sk
2,b(t1), S

k
2,b(t2) ∈ U2,b, and let F1 = Sk

2,b. If F1(t1) = F1(t2), we
are done, and so we assume otherwise. From Table 1, we have

U2,−4 = {1, 6, 14},
U2,−6 = {1, 2, 4, 11, 16, 29, 30, 33, 51},
U2,−8 = {1, 11, 30, 38, 46, 53, 59, 62},
U2,−10 = {1, 19, 29, 35, 46, 73, 75, 76, 146, 163}.

Case b = −4. Let F2 = S2
2,−4I and F3 = S5

2,−4I
3. Note that

F2(6) = S2
2,−4(7) = S2

2,−4(133(−4)) = S2,−4(19) = S2,−4(103(−4)) = 10 and

F2(1) = S2
2,−4(2) = S2,−4(4) = S2,−4(130(−4)) = 10.

Thus, if {F1(t1), F1(t2)} = {1, 6}, then let F = F2F1, so that F (t1) = F (t2). And if
{F1(t1), F1(t2)} = {1, 14}, then, noting that S2,−4(14) = 6, let F = F2F1S2,−4.

Finally, observe that

F3(6) = S5
2,−4(9) = S5

2,−4(121(−4)) = S4
2,−4(6) = S4

2,−4(132(−4)) = S3
2,−4(14) = S2

2,−4(6) = 6 and

F3(14) = S5
2,−4(17) = S5

2,−4(101(−4)) = S4
2,−4(2) = S3

2,−4(4) = S2
2,−4(10) = S2,−4(9) = 6.

Hence, if {F1(t1), F1(t2)} = {6, 14}, let F = F3F1.

Case b = −6. Let F2 = S`
2,−6I

64−F1(t1), where ` ∈ Z+ such that F2F1(t2) ∈ U2,−6. Note

that F2F1(t1) = S`
2,−6(6

4) = 1, regardless of the choice of `. If F2F1(t2) = 1, we are done. If

not, since (2, 4, 16, 33, 11, 51, 29, 30) is a cycle, we can modify our choice of ` (making it larger,
if necessary) to guarantee that F2F1(t2) = 2.

Now, let F3 = S6
2,−6I

7. Noting that F3(1) = F3(2), we set F = F3F2F1.
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Case b = −8. Let F2 = S`
2,−8I

64−F1(t1), where ` ∈ Z+ such that F2F1(t2) ∈ U2,−8. Since

F2F1(t1) = S`
2,−8(64) = 1, if F2F1(t2) = 1, we are done. Otherwise, using Table 1, we can

choose a possibly larger value of ` so that F2F1(t2) ∈ {30, 59, 46}. If F2F1(t2) ∈ {30, 59},
let F3 = S8

2,−8I
2. Noting that F3(1) = F3(30) = F3(59), we set F = F3F2F1. If instead

F2F1(t2) = 46, then let F4 = S9
2,−8I

7. Since F4(1) = F4(46), setting F = F4F2F1 completes
this case.

Case b = −10. Let F2 = S`
2,−10I

10000−F1(t1), where ` ∈ Z+ such that F2F1(t2) ∈ U2,−10.

Since F2F1(t1) = 1, if F2F1(t2) = 1, we are done. If not, we can choose ` so that F2F1(t2) ∈
{19, 35}. If F2F1(t2) = 19, let F3 = S3

2,−10I
22 and set F = F3F2F1. If instead F2F1(t2) = 35,

let F4 = S16
2,−10I and set F = F4F2F1, completing the proof. �

We now apply the methods in [2] to odd negative bases, noting that the original proof does
not carry over, since, for b negative, b− 1 6= |b| − 1.

Lemma 10. Fix b ≤ −5 odd, v′ ∈ 2Z+, and r′ ∈ Z+ such that b2r
′
> v′. There exists

0 ≤ c < |b| − 1 such that

2c ≡ 4r′ − S2,b

(
(|b| − 1)

r′−1∑
i=0

b2i+1 + v′ − 1

)
− 1 (mod b− 1). (3.1)

Proof. Since b is odd and v′ is even, the input to S2,b in (3.1) is odd. Thus, by Lemma 4, the
output is also odd. Hence, we can choose

c ≡ 2r′ − 1

2

(
S2,b

(
(|b| − 1)

r′−1∑
i=0

b2i+1 + v′ − 1

)
+ 1

) (
mod

b− 1

2

)
,

with 0 ≤ c < | b−12 | < |b| − 1, since b ≤ −5. �

Lemma 11. Fix b ≤ −5 odd and let t1, t2 ∈ Z+ be congruent modulo 2 with t2 < t1. Then,
there exists a function F of the type described in Lemma 8 with e = 2 such that F (t1) = F (t2).

Proof. First note that if t1 and t2 have the same non-zero digits, then S2,b(t1) = S2,b(t2), and
so F = S2,b suffices.

Next, if t1 ≡ t2 (mod b− 1), let v ∈ Z+ such that t2− t1 = (b− 1)v. Choose r ∈ Z+ so that
b2r > b2v + t1, and let m = b2r + v − t1 > 0. Then,

Im(t1) = t1 + b2r + v − t1 = b2r + v

and
Im(t2) = t2 + b2r + v − t1 = b2r + v + (b− 1)v = b2r + bv.

Since b2r > b2v, it follows that Im(t1) and Im(t2) have the same non-zero digits. Thus, it
suffices to let F = S2,bI

m.

Finally, if t1 6≡ t2 (mod b− 1), let v′ = t1− t2 ∈ 2Z+. Choose r′ ∈ Z+ such that b2r
′
> b2t1.

By Lemma 10, since b2t1 > v′, there exists 0 ≤ c < |b| − 1 such that congruence (3.1) holds.
Let

m′ = cb2r
′
+

r′−1∑
i=0

(|b| − 1)b2i − t2 ≥ 0.

Then,

S2,b(t2 + m′) = S2,b

(
cb2r

′
+

r′−1∑
i=0

(|b| − 1)b2i

)
= c2 + r′(|b| − 1)2.
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And

S2,b

(
t1 + m′

)
= S2,b

(
cb2r

′
+

r′−1∑
i=0

(|b| − 1)b2i + v′

)

= S2,b

(
(c + 1)b2r

′
+

r′−1∑
i=0

(|b| − 1)b2i+1 + v′ − 1

)

= (c + 1)2 + S2,b

(
r′−1∑
i=0

(|b| − 1)b2i+1 + v′ − 1

)
.

It follows that

S2,b(t1 + m′)− S2,b(t2 + m′) = 2c + 1 + S2,b

(
r′−1∑
i=0

(|b| − 1)b2i+1 + v′ − 1

)
− r′(b + 1)2.

Using congruence (3.1), this yields

S2,b(t1 + m′)− S2,b(t2 + m′) ≡ 4r′ − r′(b + 1)2 ≡ 0 (mod b− 1).

Therefore, S2,b(I
m′(t1)) ≡ S2,b(I

m′(t2)) (mod b − 1). Applying the earlier argument to

these two numbers, we obtain an appropriate value of m ∈ Z+ and let F = S2,bI
mS2,bI

m′ . �

Theorem 12. Fix b ≤ −5 odd or b ∈ {−4,−6,−8,−10}. Let d = gcd(2, b− 1). A finite set T
of positive integers is (2, b)-good if and only if all of the elements of T are congruent modulo d.

Proof. Fix a finite set of positive integers, T . First, assume that T is (2, b)-good. If b is even,
then d = 1, and the congruence result is trivial. If b is odd, fix u ∈ U2,b. Then there exists

n, k ∈ Z+ such that for each t ∈ T , Sk
2,b(t + n) = u. It follows from Lemma 4 that, for each

t ∈ T , t + n ≡ u (mod 2). Hence, the elements of T are congruent modulo d = 2.
For the converse, assume that the elements of T are congruent modulo d. If T is empty,

then vacuously it is (2, b)-good. If T = {t}, then given u ∈ U2,b, by definition, there exist
x ∈ Z+ such that S2,b(x) = u. Fix some r ∈ 2Z+ such that t ≤ brx. Then, letting n = brx− t

and k = 1, since Sk
2,b(t + n) = S2,b(t + (brx− t)) = S2,b(x) = u, T is (2, b)-good.

Now assume that |T | = N > 1 and assume, by induction, that any set of fewer than N
elements all of which are congruent modulo d is (2, b)-good. Let t1 > t2 ∈ T . By Lemmas 9
and 11, there exists a function F as in Lemma 8 with e = 2 such that F (t1) = F (t2). This
implies that F (T ) has fewer than N elements. Further, since the elements of T are congruent
modulo d, the same holds for I(T ) and, by Lemma 4, for S2,b(T ), implying that the same
holds for F (T ). Thus, by the induction hypothesis, F (T ) is (2, b)-good and so, by Lemma 8,
T is (2, b)-good. �

Corollary 13. For b ≤ −3 odd or b ∈ {−4,−6,−8,−10} and d = gcd(2, b − 1), there exist
arbitrarily long finite sequences of d-consecutive b-happy numbers.

Proof. By Lemma 7, every odd integer is −3-happy. So the corollary holds for b = −3. For
b < −3, given N ∈ Z+, let T = {1 + dt | 0 ≤ t ≤ N − 1}. By Theorem 12, T is (2, b)-good.
By Definition 5, there exist n, k ∈ Z+ such that for each t ∈ T , Sk

2,b(t + n) = 1. Thus,

{1+n+dt | 0 ≤ t ≤ N −1} is a sequence of N d-consecutive b-happy numbers, as desired. �

Finally, we prove that for b ≤ −3 we can choose the arbitrarily long finite sequence of
d-consecutive b-happy numbers to consist entirely of negative numbers.
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Corollary 14. For b ≤ −3 odd or b ∈ {−4,−6,−8,−10} and d = gcd(2, b − 1), there exist
arbitrarily long finite sequences of d-consecutive b-happy numbers all less than zero.

Proof. By Lemma 7, every odd integer is −3-happy. So the corollary holds for b = −3. For
b < −3, given N ∈ Z+, set r ≥ 2 such that b2r > 4N . Let T = {b2r + 1 +ds | 0 ≤ s ≤ 2N −2}.
By Theorem 12, T is (2, b)-good. By Definition 5, there exist n, k ∈ Z+ such that for each
t ∈ T , Sk

2,b(t + n) = 1. Thus,

S = {b2r + 1 + n + ds | 0 ≤ s ≤ 2N − 2}
is a sequence of 2N − 1 d-consecutive b-happy numbers.

Now, (b2r + 1 + n + (2N − 2)d) − (b2r + 1 + n) = (2N − 2)d < 4N < b2r. Thus, there
is at most one number between b2r + 1 + n and b2r + 1 + n + (2N − 2)d, inclusive, that is

congruent to (|b| − 1)
∑r−1

i=0 b
2i (mod b2r). If b2r + 1 + n + i ≡ (|b| − 1)

∑r−1
0 b2i (mod b2r) for

some 0 ≤ i < dN , then let C = b2r + 1 + n + dN . Otherwise, let C = b2r + 1 + n. Then, in
either case, no integer in the closed interval [C,C +d(N −1)] is congruent to (|b|−1)

∑r−1
i=0 b

2i

(mod b2r). Since C > b2r, it follows that all of integers in the subsequence

S ′ = {C + ds | 0 ≤ s ≤ N − 1}
have the same leading digit.

Let a be the leading digit of C and fix m such that C = ab2m + R, with 0 < a ≤ |b| − 1
and −b2m < R < b2m. Since all of the numbers of S ′ have the same leading digit, for each
0 ≤ s ≤ N − 1, −b2m < R + ds < b2m.

Define C− = ab2m+1 + R, which is negative, since C is positive. Then, S2,b(C
− + ds) =

S2,b(ab
2m+1 + R + ds) = a2 + S2,b(R + ds) = S2,b(ab

2m + R + ds) = S2,b(C + ds). Hence, the
sequence

{C− + ds | 0 ≤ s ≤ N − 1}
is a sequence of N d-consecutive b-happy numbers, each of which is negative. �

References

[1] E. El-Sedy and S. Siksek, On Happy Numbers, Rocky Mountain Journal of Mathematics, 30 (2000), no. 2,
565–570.

[2] H. G. Grundman and E. A. Teeple, Sequences of consecutive happy numbers, Rocky Mountain Journal of
Mathematics, 37 (2007), no. 6, 1905–1916.

[3] H. G. Grundman and E. A. Teeple, Generalized happy numbers, The Fibonacci Quarterly, 39.5 (2001),
462–466.

[4] V. Grünwald, Giornale di matematiche di Battaglini, Vol. 23, 1885, 203–221, 367.
[5] H. Pan, On consecutive happy numbers, Journal of Number Theory, 128 (2008), 1646–1654.

MSC2010: 11A63

Department of Mathematics, Bryn Mawr College, 101 North Merion Ave, Bryn Mawr, PA
19010, USA

E-mail address: grundman@brynmawr.edu

Department of Mathematics and Statistics, Williams College, 33 Stetson Court, Williamstown,
MA 01267, USA

E-mail address: pamela.e.harris@williams.edu

228 VOLUME 56, NUMBER 3


