SOME GIBONACCI CONVOLUTIONS WITH DIVIDENDS

THOMAS KOSHY AND MARTIN GRIFFITHS

Abstract

We develop convolution formulas linking the Fibonacci, Lucas, Jacobsthal, and Jacobsthal-Lucas polynomials, and then deduce the corresponding ones for Pell-Jacobsthal polynomials, and their numeric counterparts. Using the numeric Fibonacci-Jacobsthal hybridity, we show how the corresponding Fibonacci-Jacobsthal-Lucas, Lucas-Jacobsthal, and Lucas-Jacobsthal-Lucas convolution formulas can be derived. We also construct combinatorial models for the Fibonacci-Jacobsthal, Fibonacci-Jacobsthal-Lucas, and Lucas-JacobsthalLucas convolutions.

1. Introduction

Generalized gibonacci polynomials $g_{n}(x)$ are defined by the second-order recurrence $g_{n+2}(x)=$ $a(x) g_{n+1}(x)+b(x) g_{n}(x)$, where x is an arbitrary complex variable; $a(x), b(x), g_{0}(x)$, and $g_{1}(x)$ are arbitrary complex polynomials; and $n \geq 0$.

Suppose $a(x)=x$ and $b(x)=1$. When $g_{0}(x)=0$ and $g_{1}(x)=1, g_{n}(x)=f_{n}(x)$, the nth Fibonacci polynomial; and when $g_{0}(x)=2$ and $g_{1}(x)=x, g_{n}(x)=l_{n}(x)$, the nth Lucas polynomial. Clearly, $f_{n}(1)=F_{n}$, the nth Fibonacci number; and $l_{n}(1)=L_{n}$, the nth Lucas number $[4,10]$.

Pell polynomials $p_{n}(x)$ and Pell-Lucas polynomials $q_{n}(x)$ are defined by $p_{n}(x)=f_{n}(2 x)$ and $q_{n}(x)=l_{n}(2 x)$, respectively. The Pell numbers P_{n} and Pell-Lucas numbers Q_{n} are given by $P_{n}=p_{n}(1)=f_{n}(2)$ and $2 Q_{n}=q_{n}(1)=l_{n}(2)$, respectively [9, 10].

On the other hand, let $a(x)=1$ and $b(x)=2 x$. When $g_{0}(x)=0$ and $g_{1}(x)=1, g_{n}(x)=$ $J_{n}(x)$, the nth Jacobsthal polynomial; and when $g_{0}(x)=2$ and $g_{1}(x)=1, g_{n}(x)=j_{n}(x)$, the nth Jacobsthal-Lucas polynomial [7, 8]. Correspondingly, $J_{n}=J_{n}(1)$ and $j_{n}=j_{n}(1)$ are the nth Jacobsthal and Jacobsthal-Lucas numbers, respectively. Clearly, $J_{n}(1 / 2)=F_{n}$; and $j_{n}(1 / 2)=L_{n}$.

Extending these definitions to negative integers n, it follows that $F_{-1}=1=-F_{-2}=-L_{-1}$ and $J_{-1}=1 / 2$; we need these values later.

In the interest of brevity and convenience, we omit the argument in the functional notation, when there is no ambiguity; so g_{n} will mean $g_{n}(x)$.
1.1. Binet-like Formulas. Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, and JacobsthalLucas polynomials can also be defined by Binet-like formulas:

$$
\begin{aligned}
f_{n} & =\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta} \quad \text { and } \quad l_{n}=\alpha^{n}+\beta^{n} ; \\
p_{n} & =\frac{\gamma^{n}-\delta^{n}}{\gamma-\delta} \quad \text { and } \quad q_{n}=\gamma^{n}+\delta^{n} ; \\
J_{n}(x) & =\frac{u^{n}-v^{n}}{u-v} \quad \text { and } \quad j_{n}(x)=u^{n}+v^{n},
\end{aligned}
$$

where $2 \alpha=x+\sqrt{x^{2}+4}, 2 \beta=x-\sqrt{x^{2}+4}, \gamma=x+\sqrt{x^{2}+1}, \delta=x-\sqrt{x^{2}+1}, 2 u=1+\sqrt{8 x+1}$, and $2 v=1-\sqrt{8 x+1}$. In the interest of conciseness, we let $\Delta=\alpha-\beta=\sqrt{x^{2}+4}$, and $\omega=u-v=\sqrt{8 x+1}$.

THE FIBONACCI QUARTERLY

Using the Binet-like formulas and the respective recurrences, we can extract a multitude of identities. For example, $f_{n+1}+f_{n-1}=l_{n}, l_{n+1}+l_{n-1}=\Delta^{2} f_{n}, l_{n}+x f_{n}=2 f_{n+1}, J_{n+1}(x)+$ $2 x J_{n-1}(x)=j_{n}(x)$, and $j_{n+1}(x)+2 x j_{n-1}(x)=\omega^{2} J_{n}(x)$.

2. Generating Functions

Generating functions also play an important role in the development of identities:

$$
\begin{aligned}
f(t) & =\sum_{n=0}^{\infty} f_{n} t^{n}=\frac{t}{1-x t-t^{2}}=\frac{1}{\Delta}\left(\frac{1}{1-\alpha t}-\frac{1}{1-\beta t}\right) ; \\
l(t) & =\sum_{n=0}^{\infty} l_{n} t^{n}=\frac{2-x t}{1-x t-t^{2}}=\frac{1}{1-\alpha t}+\frac{1}{1-\beta t} ; \\
J(t) & =\sum_{n=0}^{\infty} J_{n}(x) t^{n}=\frac{t}{1-t-2 x t^{2}}=\frac{1}{\omega}\left(\frac{1}{1-u t}-\frac{1}{1-v t}\right) ; \\
j(t) & =\sum_{n=0}^{\infty} j_{n}(x) t^{n}=\frac{2-t}{1-t-2 x t^{2}}=\frac{1}{1-u t}+\frac{1}{1-v t} .
\end{aligned}
$$

2.1. Applications. One application of generating functions is in finding convolution formulas. The following theorem gives one such formula. The proof involves plenty of algebraic manipulation; so in the interest of brevity, we give only the key steps.

Theorem 2.1.

$$
\begin{equation*}
\sum_{k=0}^{n} f_{k} J_{n-k}(x)=\frac{\left[(1-2 x) J_{n+1}(x)-2 x(x-1) J_{n}(x)\right]+\left(2 x f_{n+1}-f_{n}-f_{n-1}\right)}{2 x^{3}-6 x^{2}+3 x} . \tag{2.1}
\end{equation*}
$$

Proof. Let S_{n} denote the sum. Then,

$$
\begin{aligned}
& \Delta \omega f(t) J(t)=\left(\frac{1}{1-\alpha t}-\frac{1}{1-\beta t}\right)\left(\frac{1}{1-u t}-\frac{1}{1-v t}\right) \\
& =\frac{1}{(1-\alpha t)(1-u t)}-\frac{1}{(1-\alpha t)(1-v t)}-\frac{1}{(1-\beta t)(1-u t)}+\frac{1}{(1-\beta t)(1-v t)} \\
& =\left[\frac{\alpha}{(\alpha-u)(1-\alpha t)}-\frac{u}{(\alpha-u)(1-u t)}\right]-\left[\frac{\alpha}{(\alpha-v)(1-\alpha t)}-\frac{v}{(\alpha-v)(1-v t)}\right] \\
& \quad-\left[\frac{\beta}{(\beta-u)(1-\beta t)}-\frac{u}{(\beta-u)(1-u t)}\right]+\left[\frac{\beta}{(\beta-v)(1-\beta t)}-\frac{v}{(\beta-v)(1-v t)}\right] \\
& =\frac{\alpha \omega}{(1-\alpha t)\left(\alpha^{2}-\alpha-2 x\right)}-\frac{\beta \omega}{(1-\beta t)\left(\beta^{2}-\beta-2 x\right)} \\
& -\frac{u \Delta}{(1-u t)\left(1+x u-u^{2}\right)}+\frac{v \Delta}{(1-v t)\left(1+x v-v^{2}\right)} .
\end{aligned}
$$

Equating the coefficients of t^{n} from both sides, we get

$$
\begin{aligned}
\Delta \omega S_{n} & =\omega\left(\frac{\alpha^{n+1}}{\alpha^{2}-\alpha-2 x}-\frac{\beta^{n+1}}{\beta^{2}-\beta-2 x}\right)-\Delta\left(\frac{u^{n+1}}{1+x u-u^{2}}-\frac{v^{n+1}}{1+x v-v^{2}}\right) \\
S_{n} & =\frac{2 x f_{n+1}-f_{n}-f_{n-1}}{2 x^{3}-6 x^{2}+3 x}+\frac{J_{n+1}(x)-2 x^{2} J_{n}(x)-4 x^{2} J_{n-1}(x)}{2 x^{3}-6 x^{2}+3 x} .
\end{aligned}
$$

This yields the desired result.

In particular, formula (2.1) yields

$$
\begin{equation*}
\sum_{k=0}^{n} F_{k} J_{n-k}=J_{n+1}-F_{n+1} \tag{2.2}
\end{equation*}
$$

The next theorem gives three additional convolution formulas. Their proofs follow similar steps; again, in the interest of brevity, we omit them.

Theorem 2.2. Let $A=(1-2 x) j_{n+1}(x)-2 x(x-1) j_{n}(x), B=\left(x^{2}-5 x+2\right) J_{n+2}(x)-x(3 x-$ 4) $J_{n+1}(x)$, and $C=\left(x^{2}-5 x+2\right) j_{n+2}(x)-x(3 x-4) j_{n+1}(x)$. Then,

$$
\begin{align*}
& \sum_{k=0}^{n} f_{k} j_{n-k}(x)=\frac{A+(4 x-1) f_{n+2}-(x+1) f_{n+1}-x f_{n}}{2 x^{3}-6 x^{2}+3 x} ; \tag{2.3}\\
& \sum_{k=0}^{n} l_{k} J_{n-k}(x)=\frac{B+2 x l_{n+1}-l_{n}-l_{n-1}}{2 x^{3}-6 x^{2}+3 x} ; \tag{2.4}\\
& \sum_{k=0}^{n} l_{k} j_{n-k}(x)=\frac{C+(4 x-1) l_{n+2}-(x+1) l_{n+1}-x l_{n}}{2 x^{3}-6 x^{2}+3 x} . \tag{2.5}
\end{align*}
$$

It follows from Theorem 2.2 that

$$
\begin{align*}
& \sum_{k=0}^{n} F_{k} j_{n-k}=j_{n+1}-L_{n+1} \tag{2.6}\\
& \sum_{k=0}^{n} L_{k} J_{n-k}=j_{n+1}-L_{n+1} \tag{2.7}\\
& \sum_{k=0}^{n} L_{k} j_{n-k}=9 J_{n+1}-5 F_{n+1} . \tag{2.8}
\end{align*}
$$

Griffiths and Bramham discovered formula (2.7) [6] and gave a nice combinatorial interpretation later [5].

Next, we present combinatorial interpretations of formulas (2.2), (2.6), and (2.8).

3. Combinatorial Models

The number of n-tilings of a $1 \times n$ board with 1×1 white tiles and 1×2 white tiles (dominoes) is $F_{n+1}[2,5,11]$. Likewise, a circular board with n cells can be tiled with (flexible) square tiles and (flexible) dominoes in L_{n} different ways [2,5,11]; such a tiling is called an n-bracelet. An n-bracelet is out-of-phase if a domino occupies cells n and 1 ; otherwise, it is in-phase.
3.1. A Model for Formula (2.2). A $1 \times n$ board can be tiled with white squares, and black and white dominoes in J_{n+1} different ways $[2,5,11]$. Consequently, the number of n-tilings with white squares, and black and white dominoes such that each tiling contains at least one black domino equals $J_{n+1}-F_{n+1}$, where $n \geq 0$. With this tool at hand, we can combinatorially establish formula (2.2).

The proof hinges on the well known Fubini's principle [1], named after the Italian mathematician Guido Fubini (1879-1943): Counting the elements of a set in two different ways yields the same result.
Proof. The number of n-tilings T_{n} with white squares, and black and white dominoes such that each tiling contains at least one black domino equals $J_{n+1}-F_{n+1}$. We will now count such tilings in a different way.

THE FIBONACCI QUARTERLY

Suppose the first such black domino B occurs in cells k and $k+1$, where $1 \leq k \leq n-1$. Then, B partitions T_{n} into subtilings T_{k-1}, B, and T_{n-k-1}, where T_{k-1} contains only white squares and white dominoes, and T_{n-k-1} may contain white squares, and black and white dominoes: $\underbrace{\text { subtiling }}_{T_{k-1}} \underbrace{\text { Tubtiling }}_{k^{\prime} k+1}$.

There are F_{k} tilings T_{k-1} and J_{n-k} tilings T_{n-k-1}, so there are $F_{k} J_{n-k}$ such tilings T_{n} for every k. Consequently, there are

$$
\sum_{k=1}^{n-1} F_{k} J_{n-k}=\sum_{k=0}^{n} F_{k} J_{n-k}
$$

n-tilings T_{n} such that every tiling contains at least one black domino.
This result, coupled with the earlier count, gives the desired result.
3.2. A Model for Formula (2.6). A circular board with n-cells can be tiled with 1×1 white tiles, and 1×2 white dominoes, and 1×2 black dominoes in j_{n} ways [2,5]. It can be tiled with 1×1 white tiles, and 1×2 white dominoes in L_{n} ways. So there are $S=j_{n}-L_{n}$ such n-bracelets, each containing at least one black domino.

To compute this sum S in a different way, consider an arbitrary n-bracelet B.
Case 1. Assume B is in-phase. Suppose the first black domino D occurs in cells k and $k+1$, where $1 \leq k \leq n-1$; see Figure 1. There are $F_{k} J_{n-k}$ such n-bracelets. Consequently, the total number of in-phase bracelets B equals $\sum_{k=1}^{n-1} F_{k} J_{n-k}=\sum_{k=1}^{n} F_{k} J_{n-k}$.

Figure 1
Case 2. Suppose B is out-of-phase. Assume a white domino W occupies cells n and 1 ; see Figure 2. It follows by Case 1 that the number of such n-bracelets, where each contains at least one black domino, is $\sum_{k=1}^{n-2} F_{k} J_{n-k-2}$.

Figure 2

Figure 3

On the other hand, suppose a black domino D occupies cells n and 1 ; see Figure 3. Clearly, there are J_{n-1} such bracelets, with each containing at least one black domino.

Since $J_{n+2}+2 J_{n}=j_{n+1}$, it follows that the total number of n-bracelets S with the desired property, is given by

$$
\begin{aligned}
S & =\sum_{k=1}^{n-1} F_{k} J_{n-k}+\sum_{k=1}^{n-2} F_{k} J_{n-k-2}+J_{n-1} \\
& =\sum_{k=1}^{n-1} F_{k}\left(J_{n-k}+2 J_{n-k-2}\right)-2 F_{n-1} J_{-1}-\sum_{k=1}^{n-2} F_{k} J_{n-k-2}+J_{n-1} \\
& =\sum_{k=1}^{n-1} F_{k} j_{n-k-1}-F_{n-1}-\left(J_{n-1}-F_{n-1}\right)+J_{n-1} \\
& =\sum_{k=1}^{n-1} F_{k} j_{n-k-1} .
\end{aligned}
$$

The desired formula now follows by combining the two counts.
3.3. A Model for Formula (2.8). A combinatorial proof of convolution identity (2.8) is more complicated than it is for (2.2) or (2.6). So, first, we prepare the needed ground work by gathering several facts.

Proof. A combinatorial argument in [3] involving boards, bracelets, and uncolored squares and dominoes shows that $L_{n+2}+L_{n}=5 F_{n+1}$. We can rewrite this identity as

$$
\begin{equation*}
5 F_{n+1}=L_{n+2}+L_{n}=L_{n+2}+\left(L_{n+2}-L_{n+1}\right)=2 L_{n+2}-L_{n+1} \tag{3.1}
\end{equation*}
$$

Using elements from the set $\mathcal{D}=\left\{d_{1}, \ldots, d_{r}, s\right\}$ comprising $r 1 \times 2$ dominoes of different colors (denoted d_{1} to d_{r}) and uncolored 1×1 squares (denoted s), it is reasonably straightforward to extend the aforementioned argument to obtain the following general identity:

$$
r m_{n, r}+m_{n+2, r}=(4 r+1) M_{n, r}
$$

where $M_{n, r}$ and $m_{n, r}$ enumerate the tilings of an $(n-1)$-board and an n-bracelet, respectively, using elements from \mathcal{D}.

When $r=2$, we have $2 j_{n}+j_{n+2}=9 J_{n+1}$. By the Jacobsthal recurrence, this yields

$$
9 J_{n+1}=j_{n+2}+2 j_{n}=j_{n+2}+\left(j_{n+2}-j_{n+1}\right)=2 j_{n+2}-j_{n+1} .
$$

In [5], it is shown via combinatorial means that

$$
\begin{equation*}
\sum_{k=0}^{n} L_{k} J_{n-k}=j_{n+1}-L_{n+1} \tag{3.2}
\end{equation*}
$$

Next, we establish combinatorially that

$$
\begin{equation*}
j_{n}+J_{n}=2 J_{n+1} \tag{3.3}
\end{equation*}
$$

To this end, notice that the expression $j_{n}-J_{n+1}$ gives the number of out-of-phase tilings of an n-bracelet using white squares, and black and white dominoes, which is equal to $2 J_{n-1}$. From the Jacobsthal recurrence, we have $J_{n+1}-J_{n}=2 J_{n-1}$. Consequently, $j_{n}-J_{n+1}=J_{n+1}-J_{n}$. This yields the desired identity.

THE FIBONACCI QUARTERLY

Using identities (5.3) through (3.3), we now have

$$
\begin{aligned}
9 J_{n+1}-5 F_{n+1} & =\left(2 j_{n+2}-j_{n+1}\right)-\left(2 L_{n+2}-L_{n+1}\right)=2\left(j_{n+2}-L_{n+2}\right)-\left(j_{n+1}-L_{n+1}\right) \\
& =2 \sum_{k=0}^{n+1} L_{k} J_{n+1-k}-\sum_{k=0}^{n} L_{k} J_{n-k}=2 \sum_{k=0}^{n} L_{k} J_{n+1-k}+L_{n+1} J_{0}-\sum_{k=0}^{n} L_{k} J_{n-k} \\
& =\sum_{k=0}^{n}\left(2 L_{k} J_{n+1-k}-L_{k} J_{n-k}\right)=\sum_{k=0}^{n} L_{k}\left(2 J_{n+1-k}-J_{n-k}\right) \\
& =\sum_{k=0}^{n} L_{k} j_{n-k},
\end{aligned}
$$

as required.

4. Convolutions Revisited

Using convolution formula (2.2), we can establish algebraically formulas (2.6), (2.7), and (2.8). To this end, we need the following identities: $F_{n+1}+F_{n-1}=L_{n}, J_{n+1}+2 J_{n-1}=j_{n}$, and $L_{n+1}+L_{n-1}=5 F_{n}$. We give only the key steps involved in each case.

Proof of Formula (2.6).

$$
\begin{aligned}
\sum_{k=0}^{n} F_{k} j_{n-k} & =\sum_{k=0}^{n} F_{k} J_{n-k+1}+2 \sum_{k=0}^{n} F_{k} J_{n-k-1}=\sum_{k=0}^{n+1} F_{k} J_{n-k+1}+2 \sum_{k=0}^{n-1} F_{k} J_{n-k-1}+F_{n} \\
& =\left(J_{n+2}-F_{n+2}\right)+2\left(J_{n}-F_{n}\right)+F_{n}=j_{n+1}-L_{n+1},
\end{aligned}
$$

as desired.
Formula (2.7) follows similarly.
Proof of Formula (2.8).

$$
\begin{aligned}
\sum_{k=0}^{n} L_{k} j_{n-k} & =\sum_{k=0}^{n} L_{k} J_{n-k+1}+2 \sum_{k=0}^{n} L_{k} J_{n-k-1} \\
& =\sum_{k=-1}^{n-1} L_{k+1} J_{n-k}+2 \sum_{k=1}^{n+1} L_{k-1} J_{n-k} \\
& =\sum_{k=0}^{n} L_{k+1} J_{n-k}+2 \sum_{k=0}^{n} L_{k-1} J_{n-k}+L_{n}+2 J_{n+1}+2 J_{n} \\
& =\sum_{k=0}^{n}\left(L_{k+1}+L_{k-1}\right) J_{n-k}+\sum_{k=0}^{n}\left(F_{k}+F_{k-2}\right) J_{n-k}+L_{n}+2 J_{n+1}+2 J_{n} \\
& =6 \sum_{k=0}^{n} F_{k} J_{n-k}+\sum_{k=0}^{n} F_{k-2} J_{n-k}+L_{n}+2 J_{n+1}+2 J_{n} \\
& =6\left(J_{n+1}-F_{n+1}\right)+\left(\sum_{k=0}^{n-2} F_{k} J_{n-k-2}-J_{n}+J_{n-1}\right)+L_{n}+2 J_{n+1}+2 J_{n} \\
& =8 J_{n+1}-6 F_{n+1}+\left(J_{n-1}-F_{n-1}\right)+J_{n}+J_{n-1}+\left(F_{n+1}+F_{n-1}\right) \\
& =8 J_{n+1}-5 F_{n+1}+\left(J_{n}+2 J_{n-1}\right) .
\end{aligned}
$$

GIBONACCI CONVOLUTIONS

This gives the desired result.

We add that by invoking the identity $j_{n+2}+2 j_{n}=9 J_{n+1}$ and the summation formula (2.7), we can confirm formula (2.8) in fewer steps.
4.1. Pell Dividends. Since $p_{n}=f_{n}(2 x)$ and $q_{n}=l_{n}(2 x)$, it follows that Theorems 2.1 and 2.2 yield interesting Pell byproducts. For brevity, we let $D=(1-4 x) J_{n+1}(2 x)-4 x(2 x-1) J_{n}(2 x)$, $E=(1-4 x) j_{n+1}(2 x)-4 x(2 x-1) j_{n}(2 x), F=\left(4 x^{2}-10 x+2\right) J_{n+2}(2 x)-4 x(3 x-2) J_{n+1}(2 x)$, and $G=\left(4 x^{2}-10 x+2\right) j_{n+2}(2 x)-4 x(3 x-2) j_{n+1}(2 x)$. Then,

$$
\begin{aligned}
\sum_{k=0}^{n} p_{k} J_{n-k}(2 x) & =\frac{D+4 x p_{n+1}-p_{n}-p_{n-1}}{16 x^{3}-24 x^{2}+6 x} ; \\
\sum_{k=0}^{n} p_{k} j_{n-k}(2 x) & =\frac{E+(8 x-1) p_{n+2}-(2 x+1) p_{n+1}-2 x p_{n}}{16 x^{3}-24 x^{2}+6 x} ; \\
\sum_{k=0}^{n} q_{k} J_{n-k}(2 x) & =\frac{F+4 x q_{n+1}-q_{n}-q_{n-1}}{16 x^{3}-24 x^{2}+6 x} ; \\
\sum_{k=0}^{n} q_{k} j_{n-k}(2 x) & =\frac{G+(8 x-1) q_{n+2}-(2 x+1) q_{n+1}-2 x q_{n}}{16 x^{3}-24 x^{2}+6 x} .
\end{aligned}
$$

It follows from these hybrid formulas that

$$
\begin{aligned}
& \sum_{k=0}^{n} P_{k} J_{n-k}(2)=2 J_{n}(2)-P_{n+1}+\frac{3 J_{n+1}(2)-Q_{n+1}}{2} \\
& \sum_{k=0}^{n} P_{k} j_{n-k}(2)=2 j_{n}(2)-3 P_{n+2}+\frac{3 j_{n+1}(2)+Q_{n+1}}{2} ; \\
& \sum_{k=0}^{n} Q_{k} J_{n-k}(2)=J_{n+2}(2)+J_{n+1}(2)-2 Q_{n+1}+P_{n} \\
& \sum_{k=0}^{n} Q_{k} j_{n-k}(2)=j_{n+2}(2)+j_{n+1}(2)-3 Q_{n+2}+P_{n+1}
\end{aligned}
$$

Note that $3 J_{n+1}(2)-Q_{n+1}$ and $3 j_{n+1}(2)+Q_{n+1}$ are even integers.

5. Additional Convolutions

The next theorem gives five additional convolution formulas. They can be confirmed using the property $2 J_{n+1}(x)=J_{n}(x)+j_{n}(x)$, and generating functions (or Binet-like formulas); again, for the sake of brevity, we omit them.

THE FIBONACCI QUARTERLY

Theorem 5.1. Let n be a nonnegative integer. Then,

$$
\begin{align*}
\left(x^{2}+4\right) \sum_{k=0}^{n} f_{k} f_{n-k} & =n l_{n}-x f_{n} ; \tag{5.1}\\
\sum_{k=0}^{n} l_{k} l_{n-k} & =(n+2) l_{n}+x f_{n} ; \tag{5.2}\\
(8 x+1) \sum_{k=0}^{n} J_{k}(x) J_{n-k}(x) & =n j_{n}(x)-J_{n}(x) ; \\
\sum_{k=0}^{n} J_{k}(x) j_{n-k}(x) & =(n+1) J_{n}(x) ; \\
\sum_{k=0}^{n} j_{k}(x) j_{n-k}(x) & =(n+2) j_{n}(x)+J_{n}(x) .
\end{align*}
$$

It then follows that

$$
\begin{align*}
5 \sum_{k=0}^{n} F_{k} F_{n-k} & =n L_{n}-F_{n} \tag{5.3}\\
\sum_{k=0}^{n} L_{k} L_{n-k} & =(n+2) L_{n}+F_{n} ; \tag{5.4}\\
9 \sum_{k=0}^{n} J_{k} J_{n-k} & =n j_{n}-J_{n} \tag{5.5}\\
\sum_{k=0}^{n} J_{k} j_{n-k} & =(n+1) J_{n} \\
\sum_{k=0}^{n} j_{k} j_{n-k} & =(n+2) j_{n}+J_{n}
\end{align*}
$$

respectively.
It follows from formulas (5.3) and (5.5) that $n L_{n} \equiv F_{n}(\bmod 5)$ and $n j_{n} \equiv J_{n}(\bmod 9)$, respectively.
5.1. Pell Consequences. Clearly, formulas (5.1) and (5.2) have Pell consequences:

$$
\begin{aligned}
4\left(x^{2}+1\right) \sum_{k=0}^{n} p_{k} p_{n-k} & =n q_{n}-2 x p_{n} \\
\sum_{k=0}^{n} q_{k} q_{n-k} & =(n+2) q_{n}+2 x p_{n}
\end{aligned}
$$

respectively.

GIBONACCI CONVOLUTIONS

Consequently, we have

$$
\begin{aligned}
4 \sum_{k=0}^{n} P_{k} P_{n-k} & =n Q_{n}-P_{n} \\
2 \sum_{k=0}^{n} Q_{k} Q_{n-k} & =(n+2) Q_{n}+P_{n}
\end{aligned}
$$

respectively. It then follows that $n Q_{n} \equiv P_{n}(\bmod 4)$.

References

[1] C. Alsina and R. B. Nelsen, Charming Proofs: A Journey into Elegant Proofs, MAA, Washington, D.C., 2010.
[2] A. T. Benjamin and J. J. Quinn, Proofs That Really Count, MAA, Washington, D.C., 2003.
[3] A. T. Benjamin and J. J. Quinn, Recounting Fibonacci and Lucas identities, The College Mathematics Journal, 30 (1999), 359-366.
[4] M. Bicknell, A primer for the Fibonacci numbers: Part VII, The Fibonacci Quarterly, 8.4 (1970), 407-420.
[5] A. Bramham and M. Griffiths, Combinatorial interpretations of some convolution identities, The Fibonacci Quarterly, 54.4 (2016), 335-339.
[6] M. Griffiths and A. Bramham, The Jacobsthal numbers: Two results and two questions, The Fibonacci Quarterly, 53.2 (2015), 147-151.
[7] A. F. Horadam, Jacobsthal representation numbers, The Fibonacci Quarterly, 34.1 (1996), 40-54.
[8] A. F. Horadam, Jacobsthal representation polynomials, The Fibonacci Quarterly, 35.2 (1997), 137-148.
[9] A. F. Horadam and Bro. J. M. Mahon, Pell and Pell-Lucas polynomials, The Fibonacci Quarterly, 23.1 (1985), 7-20.
[10] T. Koshy, Pell and Pell-Lucas Numbers with Applications, Springer, New York, 2014.
[11] T. Koshy, Fibonacci and Lucas Numbers with Applications, Vol. 1, Second Edition, Wiley, New York, 2018.
MSC2010: 11B37, 11B39
Department of Mathematics, Framingham State University, Framingham, MA 01701, USA
E-mail address: tkoshy@emeriti.framingham.edu
Department of Mathematical Sciences, University of Essex, Colchester, CO4 3SQ, United Kingdom

E-mail address: griffm@essex.ac.uk

