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Abstract. In this paper, we give closed forms for 12 two-parameter families of finite sums.
In each of the aforementioned 12 families of finite sums, the denominator of the summand
consists of a product of the sine or cosine functions, and the length of this product can be
made as large as we please.

1. Introduction

In this paper, we present closed forms for 12 families of finite reciprocal sums of products
that involve the sine or cosine functions. Each of the 12 sums that we consider is parametrized
by an integer j ≥ 0, and a rational number k 6= 0. The number of factors in the denominator
of each summand increases with j, and is therefore arbitrarily large. In this regard, we refer
the interested reader to [1], which is the only reference of which we are aware that presents
closed forms for families of finite reciprocal sums of arbitrarily long products of the sine or
cosine functions. In [1], each of the finite sums that we consider has a so-called weight term.

Throughout this paper, we take the running variable i to be the dummy variable, so that,
for instance, [cos(ki+ 1)]n0 is taken to mean cos(kn+ 1)− cos 1.

The following is an example of the kinds of sums that arise from the main results in the
present paper. For n ≥ 1, we have

n∑
i=1

sin(i+ j + 1)

cos i cos(i+ 1) · · · cos(i+ 2j + 2)
=

1

2 sin(j + 1)

[
1

cos(i+ 1) · · · cos(i+ 2j + 2)

]n
0

, (1.1)

in which j ≥ 0 is an integer. In (1.1), which is a special case of (3.1), the product in the
denominator of the summand has 2j + 3 factors, and so can be arbitrarily long. For j = 2,
(1.1) becomes

n∑
i=1

sin(i+ 3)

cos i cos(i+ 1) cos(i+ 2) · · · cos(i+ 6)
=

1

2 sin 3

[
1

cos(i+ 1) · · · cos(i+ 6)

]n
0

.

In Section 2, we define the 12 (families of finite reciprocal) sums that we consider in this
paper. In Section 3, we give the closed form for each of the 12 sums in question. In Section
4, we demonstrate a sample proof, and in Section 5 we give special cases of a selection of our
main results.

2. The Finite Sums

Throughout this paper, the upper limit of summation is an integer n ≥ 1. Furthermore, in
each of the sums that we define, the parameter j ≥ 0 is taken to be an integer, and k 6= 0 is a
rational number. We now define the 12 sums whose closed forms we give in the next section.

The first four sums S1, S2, S2, and S4 are defined as
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S1(n, j, k) =

n∑
i=1

sin(k(i+ j + 1))

cos(ki) cos(k(i+ 1)) · · · cos(k(i+ 2j + 2))
,

S2(n, j, k) =

n∑
i=1

cos(k(i+ j + 1))

sin(ki) sin(k(i+ 1)) · · · sin(k(i+ 2j + 2))
,

S3(n, j, k) =

n∑
i=1

sin(k(2i+ 2j + 1))

cos(2ki) cos(2k(i+ 1)) · · · cos(2k(i+ 2j + 1))
,

S4(n, j, k) =
n∑

i=1

cos(k(2i+ 2j + 1))

sin(2ki) sin(2k(i+ 1)) · · · sin(2k(i+ 2j + 1))
.

The sums S5, S6, S7, and S8 are alternating, and are defined as

S5(n, j, k) =
n∑

i=1

(−1)i sin(k(i+ j + 1))

sin(ki) sin(k(i+ 1)) · · · sin(k(i+ 2j + 2))
,

S6(n, j, k) =
n∑

i=1

(−1)i cos(k(i+ j + 1))

cos(ki) cos(k(i+ 1)) · · · cos(k(i+ 2j + 2))
,

S7(n, j, k) =
n∑

i=1

(−1)i sin(k(2i+ 2j + 1))

sin(2ki) sin(2k(i+ 1)) · · · sin(2k(i+ 2j + 1))
,

S8(n, j, k) =
n∑

i=1

(−1)i cos(k(2i+ 2j + 1))

cos(2ki) cos(2k(i+ 1)) · · · cos(2k(i+ 2j + 1))
.

Finally for this section, we define the sums S9, S10, S11, and S12, each of which contains a
run of squared terms in the denominator of the summand.

S9(n, j, k) =
n∑

i=1

sin(2k(i+ j + 1))

sin2(ki) sin2(k(i+ 1)) · · · sin2(k(i+ 2j + 2))
,

S10(n, j, k) =
n∑

i=1

sin(2k(i+ j + 1))

cos2(ki) cos2(k(i+ 1)) · · · cos2(k(i+ 2j + 2))
,

S11(n, j, k) =
n∑

i=1

sin(2k(2i+ 2j + 1))

sin2(2ki) sin2(2k(i+ 1)) · · · sin2(2k(i+ 2j + 1))
,

S12(n, j, k) =

n∑
i=1

sin(2k(2i+ 2j + 1))

cos2(2ki) cos2(2k(i+ 1)) · · · cos2(2k(i+ 2j + 1))
.

3. The Closed Forms

In this section, we give the closed form for each of the 12 sums defined in Section 2. We
present these closed forms in three theorems. Our first theorem gives the closed forms for S1,
S2, S3, and S4.
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Theorem 3.1. The closed forms for S1, S2, S3, and S4 are

S1(n, j, k) =
1

2 sin(k(j + 1))

[
1

cos(k(i+ 1)) · · · cos(k(i+ 2j + 2))

]n
0

, (3.1)

S2(n, j, k) =
−1

2 sin(k(j + 1))

[
1

sin(k(i+ 1)) · · · sin(k(i+ 2j + 2))

]n
0

, (3.2)

S3(n, j, k) =
1

2 sin(k(2j + 1))

[
1

cos(2k(i+ 1)) · · · cos(2k(i+ 2j + 1))

]n
0

, (3.3)

S4(n, j, k) =
−1

2 sin(k(2j + 1))

[
1

sin(2k(i+ 1)) · · · sin(2k(i+ 2j + 1))

]n
0

. (3.4)

Our second theorem gives the closed forms for S5, S6, S7, and S8.

Theorem 3.2. The closed forms for S5, S6, S7, and S8 are

S5(n, j, k) =
1

2 cos(k(j + 1))

[
(−1)i

sin(k(i+ 1)) · · · sin(k(i+ 2j + 2))

]n
0

, (3.5)

S6(n, j, k) =
1

2 cos(k(j + 1))

[
(−1)i

cos(k(i+ 1)) · · · cos(k(i+ 2j + 2))

]n
0

, (3.6)

S7(n, j, k) =
1

2 cos(k(2j + 1))

[
(−1)i

sin(2k(i+ 1)) · · · sin(2k(i+ 2j + 1))

]n
0

, (3.7)

S8(n, j, k) =
1

2 cos(k(2j + 1))

[
(−1)i

cos(2k(i+ 1)) · · · cos(2k(i+ 2j + 1))

]n
0

. (3.8)

Our final theorem gives the closed forms for S9, S10, S11, and S12.

Theorem 3.3. The closed forms for S9, S10, S11, and S12 are

S9(n, j, k) =
−1

sin(2k(j + 1))

[
1

sin2(k(i+ 1)) · · · sin2(k(i+ 2j + 2))

]n
0

, (3.9)

S10(n, j, k) =
1

sin(2k(j + 1))

[
1

cos2(k(i+ 1)) · · · cos2(k(i+ 2j + 2))

]n
0

, (3.10)

S11(n, j, k) =
−1

sin(2k(2j + 1))

[
1

sin2(2k(i+ 1)) · · · sin2(2k(i+ 2j + 1))

]n
0

, (3.11)

S12(n, j, k) =
1

sin(2k(2j + 1))

[
1

cos2(2k(i+ 1)) · · · cos2(2k(i+ 2j + 1))

]n
0

. (3.12)

To conclude this section, we note that due to the parameter k, (3.9) and (3.10) generalize
two results that appear in the first paragraph in Section 5 of [1].

4. A Sample Proof

We require some familiar identities from elementary trigonometry. First, we have

sinα− sinβ = 2 cos

(
α+ β

2

)
sin

(
α− β

2

)
,

sinα+ sinβ = 2 sin

(
α+ β

2

)
cos

(
α− β

2

)
,

(4.1)
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in which α and β are arbitrary real numbers. From the two identities in (4.1), it follows
immediately that

sin2 α− sin2 β = sin(α+ β) sin(α− β). (4.2)

Each of the 12 results stated in Theorem 3.1, Theorem 3.2, and Theorem 3.3 can be proved
in the same manner. To illustrate the method, we now give a proof of (3.9).

Proof. Denote the right side of (3.9) by r(n, j, k). Then, the difference r(n+ 1, j, k)− r(n, j, k)
is

1

sin(2k(j + 1))
× sin2(k(n+ 2j + 3))− sin2(k(n+ 1))

sin2(k(n+ 1)) · · · sin2(k(n+ 2j + 3))

=
1

sin(2k(j + 1))
× sin(2k(n+ j + 2)) sin(2k(j + 1))

sin2(k(n+ 1)) · · · sin2(k(n+ 2j + 3))
,by (4.2)

=
sin(2k(n+ j + 2))

sin2(k(n+ 1)) · · · sin2(k(n+ 2j + 3))

= S9(n+ 1, j, k)− S9(n, j, k).

(4.3)

In a similar manner, we see that

r(1, j, k) =
1

sin(2k(j + 1))
× sin2(k(2j + 3))− sin2 k

sin2 k sin2(2k) · · · sin2(k(2j + 3))

=
1

sin(2k(j + 1))
× sin(2k(j + 2)) sin(2k(j + 1))

sin2 k sin2(2k) · · · sin2(k(2j + 3))

=
sin(2k(j + 2))

sin2 k sin2(2k) · · · sin2(k(2j + 3))

= S9(1, j, k).

(4.4)

Together, (4.3) and (4.4) prove (3.9). �

5. Special Cases of a Selection of Our Main Results

In this section, we give some simple cases of a selection of our main results. To begin, with
k = 1, (3.3) becomes

n∑
i=1

sin(2i+ 2j + 1)

cos(2i) cos(2(i+ 1)) · · · cos(2(i+ 2j + 1))

=
1

2 sin(2j + 1)

[
1

cos(2(i+ 1)) · · · cos(2(i+ 2j + 1))

]n
0

.

(5.1)

With j = 0 and j = 1, (5.1) becomes, respectively

n∑
i=1

sin(2i+ 1)

cos(2i) cos(2(i+ 1))
=

1

2 sin 1

(
1

cos(2(n+ 1))
− 1

cos 2

)
,

n∑
i=1

sin(2i+ 3)

cos(2i) cos(2(i+ 1)) · · · cos(2(i+ 3))
=

1

2 sin 3

[
1

cos(2(i+ 1)) · · · cos(2(i+ 3))

]n
0

.
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Next, with k = 1, (3.5) becomes
n∑

i=1

(−1)i sin(i+ j + 1)

sin i sin(i+ 1) · · · sin(i+ 2j + 2)

=
1

2 cos(j + 1)

[
(−1)i

sin(i+ 1) · · · sin(i+ 2j + 2)

]n
0

.

(5.2)

With j = 0 and j = 1, (5.2) becomes, respectively
n∑

i=1

(−1)i

sin i sin(i+ 2)
=

1

2 cos 1

(
(−1)n

sin(n+ 1) sin(n+ 2)
− 1

sin 1 sin 2

)
,

n∑
i=1

(−1)i

sin i sin(i+ 1) sin(i+ 3) sin(i+ 4)
=

1

2 cos 2

[
(−1)i

sin(i+ 1) · · · sin(i+ 4)

]n
0

.

(5.3)

To conclude, we remark that to present this paper succinctly, we have chosen to present all
our results in an abbreviated manner. We now indicate how our results can be expressed in
their most general form. Let θ be any real number that is not a rational multiple of π. This
condition on θ eliminates the possibility of vanishing denominators. Then, this entire paper
can be generalized in the following manner: take every occurrence of sin and cos, and multiply
the argument by θ. For instance, the generalized form of the first sum in the array (5.3) is

n∑
i=1

(−1)i

sin(iθ) sin((i+ 2)θ)
=

1

2 cos θ

(
(−1)n

sin((n+ 1)θ) sin((n+ 2)θ)
− 1

sin θ sin(2θ)

)
.
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