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ABSTRACT. Let F{") =0 for ~k+1<n <0, ¥’ =1, and F{"¥ = Y5 F" for n > 2.
Also let L§ =k, L1V =1, LI =n+ Y77 LI for 2 <n <k, and LY = 2§ L LP - for

n > k+1. The identity >.1 ,m’ ((Lgk)—i—(m 2)Fl(f)1 Zf 5(J —2)F(k)7+1)) = "“F(k)l—i—

k—2 (m > 2,k > 2), derived recently by means of colored tiling [4], is presently proved using
only the definitions of F® and L%’”, and the identity L = Zk ]F(k)ﬁ_l (n>1).

1. INTRODUCTION AND SUMMARY

Let m > 2 be a fixed positive integer, and let n be a nonnegative integer, unless otherwise
specified. Denote by F;, and L, the Fibonacci and Lucas numbers, respectively, i.e., Fy = 0,
Fi=1F,=F, 1+ F, o (’I?, > 2) and Lo =2, L1 =1, L, =L, 1+ Ly o (n > 2) The first,
the second, and the third of the following well-known Fibonacci-Lucas identities

Z“ = 2" F, 23 i+ Fien) = 3" P,
(1.1)
ZmZ(Ll + (m — 2)E+1) = mn+1Fn+1,

are due to Benjamin and Quinn [1, 2], Marques [8] and Edgar [5], respectively. See also
Sury [12] and Kwong [7] for the first and Martinjak [9] for the second.

Let k > 2 be a fixed positive integer. Dafnis, Philippou, and Livieris [4] generalized the
above identities to the Fibonacci and Lucas numbers of order k, deriving the following theorem
by means of color tiling.

Theorem 1. Let (Fék))n>0 be the sequence of Fibonacci numbers of order k [9], and set

FO = .. F% =0, ie, F" =0 for -k +1<n <0, F{Y =1, and £V = 3% FY
forn > 2. Also let (L 7(lk))n>0, be the sequence of Lucas numbers of order k [3], i.e., (k) =k,
LY =1, L =0+ LY for2<n<k, and L =35 LY forn > k4 1. Then

n ‘ k

S (L + m = 2)F8 = 3G - 2R, ) = m S 1k -2,

i=0 =3

wherezj 29)=0ifa>b.
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2. NEw PROOF OF THEOREM 1

We presently give a new proof of Theorem 1, using only the definitions of (Fék))nz, k1 and
(L%k))nzo, and the relation L,(lk) = Z§:1 jFT(L]i)j+1, n > 1, which readily follows from (2.18) of
Charalambides [3].

Proof. Using L[()k) =k, Fl(k) =1, and adding and subtracting Fi(k) in the parenthesis, we have

n k
Somt (L + - 2R = Y6 - 2R, (2.1)
=0 7=3
' k
:k:+m—2—|—ZmZ<LZ(-k)+(m—2) P Z- Z]—Q )
=1 j=1
Next, using F( Z] L F ;4—1 for ¢ > 1, which hold true by definition, and L( ) =
ijljFi(_;+1 for i>113], we get
: : (k) : (k) (k) (k)
Z y+1 _ZjFi—j-i-l _QZFi—jH =1L, _2Fz+17
7j=1 j=1 7j=1
which implies
n k
ktm—2+4Y m' (LE’“) +(m—2)F% - F® -3 - 2)F(’“§+1)
i=1 J=1
—k+m—2+ Z m!(mF¥, — FM) (2.2)
=1

—ktm—24+m" T EY —mF® = R 2,
Relations (2.1) and (2.2) establish the theorem. O

The following obvious corollary to the theorem is the analogue of (1.1) for the Lucas numbers
of order 3 (or 3-step Lucas numbers) and the Tribonacci numbers.

Corollary 2. Let (T},)n>0 be the sequence of Tribonacci numbers [6, 9] i.e., Top =0, Th =1,
and T, = Ty + Ty—o + T3 forn > 3. Also let (Vy)n>0 be the sequence of Lucas numbers
of order 3 [3] (or 3-step Lucas numbers [11|, A001644), i.e., Vo =3, V1 =1, Vo = 3, and
Vi=Va1+Vho+V,_3 form>3. SetT_o=T_1=0. Then,

n n
D> UVi—Tig) =2"" T +1, Y 3 (Vi+ Tigr = Tig) = 3" Tpa + 1,
=0 i=0

n
S mi(Vi+ (m = 2)Tipq — Tig) = m™ Ty + 1.
=0
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