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Abstract. This work generalizes results on exact divisibility of powers of the Fibonacci
number F k

n into another Fibonacci number Gk(n) defined iteratively by G1(n) = Fn and
Gk(n) = FnGk−1(n) for k ≥ 2. In particular, we prove analogous results on nondegenerate
Lucas sequences by providing explicit formulas for p-adic valuation of iterative terms in these
sequences. The proof makes use of recent results by Sanna regarding the p-adic valuation of
Lucas sequences.

1. Introduction

Let P and Q be fixed relatively prime integers. The Lucas sequence, denoted Un(P,Q), is
defined by U0(P,Q) = 0, U1(P,Q) = 1, and

Un(P,Q) = P · Un−1(P,Q)−Q · Un−2(P,Q) for n ≥ 2.

For example, the Fibonacci numbers Fn and the Mersenne numbers 2n − 1 correspond to
Un(1,−1) and Un(3, 2), respectively. We associate the characteristic polynomial x2 − Px+Q
with the sequence Un(P,Q). Let D = P 2 − 4Q be the discriminant of this polynomial. If
D 6= 0, then the characteristic polynomial x2 − Px + Q has two distinct zeros α and β and
Un(P,Q) can be expressed explicitly as

Un(P,Q) =
αn − βn

α− β
=

αn − βn

√
D

.

If not stated otherwise, the sequence Un in this work is referred to as Un(P,Q) for some fixed
relatively prime integers P and Q and assumed to be nondegenerate, that is, Q 6= 0 and
the ratio of the two roots of the characteristic polynomial x2 − Px+Q is not a root of unity.
Consequently, the two roots of such characteristic polynomial are distinct and the discriminant
D = P 2 − 4Q 6= 0. Let n ≥ 0. Define the Lucas iteration sequence Gk(n) by G1(n) = Un and
Gk(n) = UnGk−1(n) for k ≥ 2. For example, the first three terms of the sequence Gk(n) are

G1(n) = Un, G2(n) = UnUn
, and G3(n) = UnUnUn

.

The sequence Gk(n) corresponding to the Fibonacci sequence Un(1,−1) was studied by Tang-
boonduangjit and Wiboonton [5] where they proved that F k

n divides Gk(n). A year later,
Panraksa, Tangboonduangjit, and Wiboonton [2] proved that the divisibility is exact for n > 3
and gave explicit formulas for the quotient Gk(n)/F

k
n modulo Fn for the cases k = 2 and k = 3.

Another year later, however, Onphaeng and Pongsriiam [1] generalized the sequence Gk(n)
and were able to give explicit formulas for the quotient Gk(n)/F

k
n modulo Fn for all k ≥ 2.

For each prime number p, we recall that the p-adic valuation νp(m) of non-zero integer m is
defined to be the exponent of p in the prime factorization of m, whereas νp(0) is defined to
be infinity. In this paper, we generalize some results in [2] to the Lucas sequence Un(P,Q).
In particular, we give explicit formulas for p-adic valuation of the sequence Gk(n). The main
result is presented in section 3.
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2. Preliminary

Sanna [4] gives a complete account of the p-adic valuation of nondegenerate Lucas sequences.
The results needed in this work are stated as Theorem 1.5 and Corollary 1.6 in [4]. We recall
them here as a single theorem. If p is prime such that p ∤ Q, then the rank of apparition of p
in the sequence Un, denoted τ(p), is defined to be the least positive integer such that p | Uτ(p).
These basic facts about τ(p) are well-known: τ(p) exists for each p, and p | Un if and only if
τ(p) | n.
Theorem 2.1. Let p be prime such that p ∤ Q. Then, for each positive integer n,

νp(Un) =































νp(n) + νp(Up)− 1 if p | D and p | n,
0 if p | D and p ∤ n,

νp(n) + νp(Upτ(p))− 1 if p ∤ D, τ(p) | n, and p | n,
νp(Uτ(p)) if p ∤ D, τ(p) | n, and p ∤ n,

0 if p ∤ D and τ(p) ∤ n.

In particular, if p is an odd prime such that p ∤ Q, then, for each positive integer n,

νp(Un) =























νp(n) + νp(Up)− 1 if p | D and p | n,
0 if p | D and p ∤ n,

νp(n) + νp(Uτ(p)) if p ∤ D and τ(p) | n,
0 if p ∤ D and τ(p) ∤ n.

The following theorem by Riasat [3] generalizes “lifting the exponent” lemma to the ring of
algebraic integers.

Theorem 2.2. Let K be an algebraic number field and OK its ring of integers. Let α, β ∈ OK

such that the ideals (α) and (β) are relatively prime to (p) for some prime p. Define the
sequence an by

an =
αn − βn

α− β
.

If an is an integer for all n ≥ 0, then, for all k ≥ 0 and n ≥ 0,

νp(akpn) = n+ νp(ak).

The following lemma is inspired by the above theorem.

Lemma 2.3. Let n, k ≥ 1 and p a prime factor of Uk such that p ∤ Q. Then,

(1) if (i) p is odd, or (ii) p = 2 and k is even, or (iii) p = 2 and n is odd, we have

νp(Ukn) = νp(n) + νp(Uk);

(2) if k and D are odd and n is even, we have

ν2(Ukn) = ν2(n) + ν2(Uk) +
(

ν2(U2τ(2))− ν2(Uτ(2))− 1
)

≥ ν2(n) + ν2(Uk).

Proof. We distinguish two main cases.
Case 1. p | D. This implies p | k (and therefore p | kn), since otherwise we have, by the

second case of Theorem 2.1, νp(Uk) = 0, which contradicts the assumption that p is a prime
factor of Uk. Consequently, the first case of Theorem 2.1 yields

νp(Ukn) = νp(kn) + νp(Up)− 1 = νp(n) +
(

νp(k) + νp(Up)− 1
)

.
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According to Theorem 2.1, the value of νp(Uk) is νp(k) + νp(Up) − 1 or 0; however, since, by
assumption, νp(Uk) > 0, it could not be the latter. Thus,

νp(Ukn) = νp(n) + νp(Uk).

Case 2. p ∤ D. Since p | Uk, it follows that τ(p) | k (and therefore τ(p) | kn). We consider
two sub-cases.

Case 2.1. p | k. Then p | kn, so that by the third case of Theorem 2.1, we have

νp(Ukn) = νp(kn) + νp(Upτ(p))− 1 = νp(n) +
(

νp(k) + νp(Upτ(p))− 1
)

= νp(n) + νp(Uk).

Case 2.2. p ∤ k. We consider two sub-cases.
Case 2.2.1. p is odd. Then by the third case of Theorem 2.1 for the case when p is an odd

prime, we have

νp(Ukn) = νp(kn) + νp(Uτ(p)) = νp(n) +
(

νp(k) + νp(Uτ(p))
)

= νp(n) + νp(Uk).

Case 2.2.2. p = 2. We consider two sub-cases.
Case 2.2.2.1. n is even. This implies p | kn. Then by the third case of Theorem 2.1, we

have

νp(Ukn) = νp(kn) + νp(Upτ(p))− 1 = νp(n) + νp(k) + νp(Upτ(p))− 1

= νp(n) + νp(Uτ(p)) +
(

νp(Upτ(p))− νp(Uτ(p))− 1
)

.

Since p ∤ k, the fourth case of Theorem 2.1 yields,

νp(Uk) = νp(k) + νp(Uτ(p)) = 0 + νp(Uτ(p)) = νp(Uτ(p)).

Thus, νp(Ukn) = νp(n) + νp(Uk) +
(

νp(Upτ(p))− νp(Uτ(p))− 1
)

≥ νp(n) + νp(Uk), where the

last inequality follows from Lemma 3.2 in [4].
Case 2.2.2.2. n is odd. Then p ∤ kn, and so, by the fourth case of Theorem 2.1, we have

νp(Ukn) = νp(Uτ (p)) = νp(Uk) = 0 + νp(Uk) = νp(n) + νp(Uk).

�

3. The Main Theorem

Theorem 3.1. Let n ≥ 1 and p a prime factor of Un. Then, for k ≥ 1,

(1) if (i) p is odd, or (ii) p = 2 and 2 | D, or (iii) p = 2 and ν2(Un) ≥ 2, we have

νp(Gk(n)) = k · νp(Un);

(2) if 2 ∤ D and ν2(Un) = 1, we have

ν2(Gk(n)) = (γ − 1)k + 2− γ,

where γ = ν2(U2τ(2)) = ν2(U6).

Proof. Let n ≥ 1 be given and let p be a prime factor of Un. We first prove assertion (1)
with assumption (i). Suppose that p is odd. For n = 1, the formula holds trivially, since
Gk(1) = 1 = U1 for all k. Let n > 1 and suppose that νp(Un) = s. We want to show that
νp(Gk(n)) = s · k. We prove this by induction on k. For k = 1, we have νp(G1(n)) = νp(Un) =
s = s ·1. Hence, the formula holds for k = 1. Assume the formula holds for some k ≥ 1, which
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is νp(Gk(n)) = s · k. We want to show that νp(Gk+1(n)) = s(k + 1). By the definition and
Lemma 2.3(1), we have

νp(Gk+1(n)) = νp(UnGk(n)) = νp(Un) + νp(Gk(n)) = s+ sk = s(k + 1).

This proves assertion (1) with assumption (i). Now we prove assertion (1) with assumption
(ii). Assume that p = 2 and 2 | D. Then P is even and Q is odd, since gcd(P,Q) = 1.
Together with the assumption that ν2(Un) > 0, Theorem 2.1 implies 2 | n, that is n is even
and ν2(Un) = ν2(n) + ν2(U2) − 1. By induction (similar to the proof of assertion (1) with
assumption (i) above), we have ν2(Gk(n)) = kν2(Un). Theorem 2.1 allows us to express
ν2(Gk(n)) in simpler terms as follows.

ν2(Gk(n)) = kν2(Un) = k(ν2(n) + ν2(U2)− 1).

To prove assertion (1) with assumption (iii), we assume that p = 2 and ν2(Un) ≥ 2. If 2 | D,
then it is proved in the previous case. So we may assume that 2 ∤ D. Then from D = P 2−4Q,
we have P is odd. Assume that Q is even. From the recurrence Un = PUn−1 −QUn−2, since
P is odd and U1 = 1, it follows by induction that Un is odd for all n ≥ 1. This contradicts the
assumption that ν2(Un) ≥ 2. Hence, Q is odd.

If n is even, then Lemma 2.3(1) implies that

ν2(Gk+1(n)) = ν2(UnGk(n)) = ν2(Gk(n)) + ν2(Un).

Then again by induction, we have ν2(Gk(n)) = kν2(Un).
If n is odd, then since U3 = PU2 −QU1 = P 2 −Q, and P and Q are odd, it follows that U3

is even. Since U1 = 1 and U2 = P are not divisible by 2, but U3 is, we have τ(2) = 3, so that
2τ(2) = 6. By direct computation from the recurrence of Un, we find that

U3 = P 2 − 3Q and U6 = P 5 − 4P 3Q+ 3PQ2 = P (P 2 − 3Q)(P 2 −Q).

Since 2 ∤ n and ν2(Un) 6= 0 by assumption, it follows by the fourth case of Theorem 2.1 that
ν2(Un) = ν2(Uτ(2)) = ν2(U3) and therefore, 2ℓ || U3 for some ℓ ≥ 2. Consequently, 2 || P 2−3Q,

since P 2 − 3Q = (P 2 − Q) − 2Q and 2 || 2Q. Thus, ν2(U2τ(2)) = ν2(Uτ(2)) + 1. By Lemma
2.3(2), we have

ν2(Gk+1(n)) = ν2(UnGk(n)) = ν2(Gk(n)) + ν2(Un) + ν2(U2τ(2))− ν2(Uτ(2))− 1

= ν2(Gk(n)) + ν2(Un) + 0 = ν2(Gk(n)) + ν2(Un).

Then by induction as before, ν2(Gk(n)) = kν2(Un).
We make the following observation before proving assertion (2). If 2 ∤ D and ν2(Un) = 1,

then n is odd. Assume otherwise; then since D = P 2−4Q, it follows that 2 ∤ P and by Lemma
3.2 in [4] that ν2(U2τ(2)) ≥ ν2(Uτ(2))+1. Now since 2 | n, the third case of Theorem 2.1 applies
and gives

1 = ν2(Un) = ν2(n) + ν2(U2τ(2))− 1 ≥ 1 +
(

ν2(Uτ(2)) + 1
)

− 1 = ν2(Uτ(2)) + 1 ≥ 2,

which is a contradiction.
Now we proceed to prove assertion (2). Assume that 2 ∤ D and ν2(Un) = 1. By the

observation above, we have n is odd. We prove the formula by induction on k. For k = 1, we
have ν2(G1(n)) = ν2(Un) = 1 = (γ − 1) · 1 + 2− γ. Assuming that the formula holds for some
positive integer k, we want to show that it holds for k + 1. We have

ν2(Gk+1(n)) = ν2(UnGk(n)) = ν2(nGk(n)) + ν2(U2τ(2))− 1 = ν2(n) + ν2(Gk(n)) + γ − 1

= 0 + ((γ − 1)k + 2− γ) + γ − 1 = (γ − 1)k + 1 = (γ − 1)(k + 1) + 2− γ,
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where the second equality follows from the third case of Theorem 2.1. This establishes the
inductive step. Hence, the formula holds for all positive integers k. �

Corollary 3.2. Let n ≥ 1 and p a prime factor of Un. If 2 ∤ D and ν2(Un) = 1, then, for
k ≥ 1, we have ν2(Gk(n)) ≥ 2k − 1.

Proof. We will prove that γ = ν2(U6) ≥ 3. Then, Theorem 3.1(2) implies that

ν2(Gk(n)) = (γ − 1)k + 2− γ = γ(k − 1) + 2− k ≥ 3(k − 1) + 2− k = 2k − 1.

By direct computation from the recurrence of Lucas sequence, we find

U6 = P 5 − 4P 3Q+ 3PQ2 = P (P 2 − 3Q)(P 2 −Q).

It will be shown in the proof of Theorem 3.1 that P and Q are odd. Consequently, the factors
P 2−3Q and P 2−Q of U6 are even and therefore, ν2(U6) ≥ 2. However, considering in modulo
4, we find that 4 | P 2 − 3Q or 4 | P 2 −Q. Hence, 8 | U6 or ν2(U6) ≥ 3, as desired. �

We make a remark here that the value of γ = ν2(U6) ≥ 3 can be any integer. We demonstrate
this by proving that for each ℓ ≥ 3, there exists a Lucas sequence Un such that ν2(U6) = ℓ.
Indeed, letting ℓ ≥ 3, we consider the Lucas sequence Un(P,Q) with P = 1 and Q = 1− 2ℓ−1.
We find that

U6 = P (P 2 − 3Q)(P 2 −Q) = (1− 3(1 − 2ℓ−1))(1 − (1− 2ℓ−1)) = 2ℓ(3 · 2ℓ−2 − 1).

Since 3 · 2ℓ−2 − 1 is odd for ℓ ≥ 3, it follows that ν2(U6) = ℓ. The following corollary of exact
divisibility is stated as Theorem 3.3 in [2]. We present an alternative proof based on the main
result of this work.

Corollary 3.3. Let Fn be the Fibonacci sequence. Then, for all k ≥ 1,

(1) F k
n || Gk(n) for all n > 3;

(2) F 2k−1
3 || Gk(3).

Proof. For the Fibonacci sequence Fn = Un(1,−1), we have P = 1 = −Q so that D =
P 2 − 4Q = 5. We note first that Fn divides Gk(n) for all n, k ≥ 1. The statement is obviously
true for k = 1. For k > 1, using Fn is a divisibility sequence, we have Fn | FnGk−1(n) or
Fn | Gk(n). To prove (1), we let n > 3. It suffices to show that Fn has a prime factor
p such that νp(Gk(n)) = k · νp(Fn). If Fn has an odd prime factor, then we let p be that
prime factor, and the hypothesis of Theorem 3.1(1) part (i) is satisfied. If Fn has no odd
prime factor, then we let p = 2. Since F3 = 2 and the Fibonacci sequence Fn is strictly
increasing for n ≥ 3, it follows that ν2(Fn) ≥ 2. Hence, the hypothesis of Theorem 3.1(1)
part (iii) is satisfied. In all cases, we conclude that there is a prime factor p of Fn such that
νp(Gk(n)) = k · νp(Fn), as we wanted to show. To prove (2), we consider that for n = 3, the
number γ = ν2(F6) = ν2(8) = 3. Since 2 ∤ D and ν2(F3) = ν2(2) = 1, Theorem 3.1(2) implies

that ν2(Gk(3)) = (3− 1)k + 2− 3 = 2k − 1. Thus, F 2k−1
3 || Gk(3). �
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