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Abstract. The Tower of Hanoi puzzle, with three pegs and n graduated discs, was invented

by Édouard Lucas in 1883, writing under the name of Professor Claus. A simple question
about relative distances between various regular states of this puzzle has lead to the discovery
of a new occurrence of Fibonacci numbers, a new illustration of the finite Fibonacci words,
and a fractal of Hausdorff dimension log2(φ), where φ is the Golden ratio.

1. Introduction and Background

The Tower of Hanoi, a puzzle invented in 1883 by French mathematician Édouard Lucas
writing under the nom de plume Professor Claus [3, 4], consists of three vertical pegs and n
discs of mutually different diameters. The discs are pierced in the center so that they can be
stacked on the pegs. Following [7], any stacking of the discs on the pegs with no larger disc
lying on a smaller one is called a regular state of the puzzle. A regular state in which all the
discs are stacked on a single peg is called a perfect state. The pegs are labeled 0, 1, and 2,
and the discs are labeled from 1 to n in increasing order of diameter. A legal move consists of
moving a disc from the top of one stack to the top of a (possibly empty) stack on another peg,
but never placing a disc on top of a smaller one. The classical task is to transform an initial
perfect state into a final perfect state through a minimum-length sequence of legal moves. It
is well known that there exists a unique such sequence, consisting of 2n−1 moves. For more
information about the Tower of Hanoi, see the comprehensive book [7] by Hinz, Klavžar, and
Petr.

The Fibonacci numbers Fk, familiar to all readers of this journal, are defined by F0 = 0,
F1 = 1, and Fn = Fn−1 + Fn−2 for n ≥ 2. Perhaps less familiar are the (finite) Fibonacci
words Wk, strings of the symbols 0 and 1, discussed thoroughly by Allouche and Shallit in
[1, Chapter 7]. We give two characterizations of these words.

Characterization 1: The Fibonacci words Wk can be defined by

• W0 = 1;
• W1 = 0; and
• Wn = Wn−1Wn−2 for n ≥ 2,

the concatenation of previously defined words.

Characterization 2: The Fibonacci words Wk can be defined by

• W0 = 1; and
• Wn+1 = ϕ(Wn),

where ϕ is the Fibonacci morphism defined by ϕ(0) = 01 and ϕ(1) = 0. The proof that
these two characterizations agree can be found, for example, in [1, Theorem 7.1.1]. These two
characterizations will provide us with dual presentations of some of the concepts discussed in
Sections 4 and 5.

The first nine finite Fibonacci words are displayed in Table 1. Note that the word Wn
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W0 = 1

W1 = 0

W2 = 01

W3 = 010

W4 = 01001

W5 = 01001010

W6 = 0100101001001

W7 = 010010100100101001010

W8 = 0100101001001010010100100101001001

Table 1. The first nine finite Fibonacci words.

consists of Fn copies of the symbol 0 and Fn−1 copies of the symbol 1, for a total length of
Fn+1 symbols. As n increases, these words approach the infinite Fibonacci word; see sequence
A003849 in [8].

There is a known result linking the Tower of Hanoi puzzle with the Fibonacci numbers.
Bennish [2] reports that the number of different legal arrangements of discs on the initial,
intermediate, and final pegs encountered in the optimal move sequence for the classical Tower
of Hanoi puzzle are the Fibonacci numbers Fn+2, Fn+1, and Fn+2, respectively (cf. [7, Exer-
cise 2.6] and its solution). He attributes this result to his colleague Kent Merryfield. In this
paper we present a new link between these two classics of recreational mathematics, as well
as a link between the Tower of Hanoi and the finite Fibonacci words.

2. Distances in the Hanoi Graphs Hn
3

A great deal of insight can be gained by examining the Hanoi graph Hn
3 for the puzzle with

n discs and 3 pegs. The vertices of this graph are the 3n regular states of the puzzle. Each
state is represented by the sequence snsn−1 . . . s1 ∈ Tn, where T = {0, 1, 2} and si denotes
the peg containing disc i. Two vertices are adjacent if one can be reached from the other
by a legal move of one disc. These graphs are easily seen to be connected and planar, and
are customarily drawn on and inside an equilateral triangle, with all edges having the same
length. We follow the convention of placing the perfect state 0n at the center top point, with

coordinates
(
1
2 ,
√
3
2

)
, the perfect state 1n in the lower left corner point, with coordinates (0, 0),

and the perfect state 2n in the lower right corner point, with coordinates (1, 0). Figure 1 shows
the standard display of the graph H5

3 with the perfect states labeled.
We define the distance d(v1, v2) between vertices v1 and v2 in Hn

3 to be the number of edges
in a minimal-length path from v1 to v2. (Alternatively, d(v1, v2) is the minimum number of
disc moves required to transform the Tower of Hanoi state corresponding to v1 into the state
corresponding to v2.) We are particularly interested in the distances from an arbitrary vertex
v to the perfect vertices 0n, 1n, and 2n, and for each i ∈ T we use the abbreviation di(v) for
d (v, in).

The following facts are well known. See, for example, [7, Theorem 2.7, Lemma 2.8, and
Proposition 2.13].

Facts:

(1) We have 0 ≤ di(v) ≤ 2n − 1 for all v in Hn
3 and all i ∈ {0, 1, 2}.

DECEMBER 2019 73

https://oeis.org/A003849


THE FIBONACCI QUARTERLY

Figure 1. Drawing of the graph H5
3 .

(2) Every vertex v of Hn
3 is uniquely determined by the three distances d0(v), d1(v), and

d2(v).
(3) For any v in Hn

3 we have d0(v) + d1(v) + d3(v) = 2 (2n − 1).

Note that by combining (2) and (3) above, we conclude that every vertex v is uniquely deter-
mined by any two of the distances d0(v), d1(v), and d2(v) ([7, Remark 2.14]).

In view of these facts, it is natural to ask for a rule determining, given three numbers d0,
d1, and d2, when there exists a vertex v of Hn

3 with d0(v) = d0, d1(v) = d1, and d2(v) = d2.
Properties (1) and (3) above, while necessary, are not sufficient. For example, with n = 2, the
values d0 = d1 = d2 = 2 satisfy these properties, but there is no vertex v of H2

3 with these
distances.

Theorem 2.1. For any three nonnegative integers d0, d1, and d2, each at most 2n−1, there
exists a vertex v of Hn

3 with these distances to the three perfect vertices if and only if for each
of the n bit positions in the binary representations of these three integers, exactly one of the
three numbers has a 0 in that bit position.

Proof. The proof, by induction on n, follows that of Lemma 2.8 in [7]. The graph H1
3 is in

fact the complete graph K3, with distances 0, 1, and 1, so the claim is true in this case. We
suppose that the claim is true in the graph Hn

3 for some arbitrary n. Consider an arbitrary
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vertex v = it in the graph Hn+1
3 , where i ∈ T and t ∈ Tn. Then

d(v, in+1) = d(it, in+1) = d(t, in) ≤ 2n − 1,

while for j ∈ T, j 6= i we have

d(v, jn+1) = d(it, jn+1) = d(t, (3− i− j)n) + 2n ≥ 2n.

Thus the left-most bit of di(v) is 0 while for j 6= i the left-most bit of dj(v) is 1. The remain-
ing bits come from the three distances d(t, in), d(t, jn) and d(t, kn), which by the induction
hypothesis must have the desired bit property.

Conversely, consider three nonnegative distances d0, d1, and d2, each at most 2n+1 − 1,
satisfying the bit property of the theorem. If di is the unique distance with 0 as its leftmost
bit, we know that any vertex with these distances must be of the form it for some t ∈ Tn.
The induction hypothesis guarantees the existence of a vertex v′ = s′ ∈ Tn with distance di to
vertex in, distance dj − 2n to vertex (3− i− j)n, and distance dk − 2n to vertex (3− i− k)n.

Then v = is′ is the desired vertex in Hn+1
3 . �

Example: For n = 6, consider the distances d0 = 29, d1 = 39, and d2 = 58. We have

d0 = 29 = (011101)(2)

d1 = 39 = (100111)(2)

d2 = 58 = (111010)(2)

so yes, there is such a vertex v. Each column of the binary representations contains exactly
one 0.

Theorem 2.1 is not only useful in what follows, it is also reassuring. It provides additional
confirmation that the number of vertices in Hn

3 is 3n and that d1 + d2 + d3 = 2(2n − 1).

3. The Key Results

Our main result answers a seemingly innocent question. We say a vertex v is a key vertex
of Hn

3 if d2(v) = 2d0(v), and ask for the number of key vertices in the graph Hn
3 . Figure 2,

showing the key vertices in the graph H6
3 , hints at the remarkable answer. We see that there

are five key vertices, and that they partition naturally into three on the left and two on the
right. Moreover, the three on the left partition into two and one. With this hint, our next
result is not surprising.

Theorem 3.1. The number of key vertices of graph Hn
3 is the Fibonacci number Fn−1.

In the proof of this theorem we will make use of the following lemma.

Lemma 3.2. A number d0 is a valid value of d0(v) for a key vertex v of Hn
3 if and only if in

the n-bit binary representation of d0,

(1) the left-most bit is 0;
(2) the right-most bit is 1; and
(3) there are no two consecutive 0 bits.

Proof of Lemma 3.2. For any vertex v of Hn
3 we write its three distances in binary as

d0(v) = (d0,n−1 d0,n−2 . . . d0,1 d0,0)(2) ,

d1(v) = (d1,n−1 d1,n−2 . . . d1,1 d1,0)(2), and

d2(v) = (d2,n−1 d2,n−2 . . . d2,1 d2,0)(2).
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Figure 2. Key vertices in H6
3 .

If v is a key vertex, then 2d0(v) = d2(v) < 2n, or d0(v) < 2n−1, making d0,n−1 = 0. Also, d2(v)
being even makes d2,0 = 0, and Theorem 2.1 then forces d0,0 = 1. Moreover, Theorem 2.1
prohibits d0,i and d2,i both being 0 for 1 ≤ i ≤ n− 1. But d2,i = d0,i−1 for key vertices, so d0,i
and d0,i−1 cannot both be 0.

Conversely, suppose an n-bit number d0 has the properties listed. We define d2 by d2 = 2d0,
and observe that d0,i and d2,i are not both 0, for 0 ≤ i ≤ n − 1. The distance d1 is defined
by d1,i = 2 − d0,i − d2,i for 0 ≤ i ≤ n − 1. Then d0, d1, and d2 satisfy the requirements of
Theorem 2.1 for the existence of a vertex v with these distances. �

Table 2 lists the three distances for each of the five key vertices of H6
3 illustrated in Figure 2.

The reader can easily verify that for each vertex vi we have d2(vi) = 2d0(vi), and both
Lemma 3.2 and Theorem 2.1 are satisfied.

Proof of Theorem 3.1. The proof is by induction. Clearly a key vertex v of Hn
3 is uniquely

determined by the value d0(v). For n = 1 there is no number d0 satisfying Lemma 3.2 so the
number of key vertices is F0 = 0. For n = 2 the unique value for d0 satisfying Lemma 3.2 is
d0 = 1 = (01)(2), leading to d2 = 2 = (10)(2) and d1 = 3 = (11)(2). Thus the number of key

vertices of H2
3 is F1 = 1. Similarly, for n = 3 we have d0 = 3 = (011)(2), d2 = 6 = (110)(2),

d1 = 5 = (101)(2) and therefore exactly F2 = 1 key vertex in H3
3 .
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d0(v1) = 31 = (011111)(2) d0(v2) = 29 = (011101)(2) d0(v3) = 27 = (011011)(2)
d1(v1) = 33 = (100001)(2) d1(v2) = 39 = (100111)(2) d1(v3) = 45 = (101101)(2)
d2(v1) = 62 = (111110)(2) d2(v2) = 58 = (111010)(2) d2(v3) = 54 = (110110)(2)

d0(v4) = 23 = (010111)(2) d0(v5) = 21 = (010101((2)
d1(v4) = 57 = (111001)(2) d1(v5) = 63 = (111111)(2)
d2(v4) = 46 = (101110)(2) d2(v5) = 42 = (101010)(2)

Table 2. The distances for the five key vertices of H6
3 .

Now let n be an arbitrary integer greater than 3, and assume the claim is true for all smaller
values. We partition the set of key vertices of Hn

3 into two classes. Class 1 consists of key
vertices whose d0 values start out d0(v) = (011 . . . )(2), while Class 2 consists of key vertices
whose d0 values start out d0(v) = (0101 . . . )(2). For each vertex v in Class 1 we can delete the

leftmost 1 in the binary representation of d0(v), in effect subtracting 2n−2, to obtain a valid
d0 value for a key vertex of Hn−1

3 . Moreover, we can reverse this process by adding 2n−2 to

the d0 value of any key vertex of Hn−1
3 to obtain a valid d0 value of a key vertex of Hn

3 . Thus
there exist Fn−2 key vertices of Class 1 in Hn

3 .
Similarly, for each vertex v in Class 2 we can delete the leftmost 10 substring in the binary

representation of d0(v), in effect again subtracting 2n−2, to obtain a valid d0 value for a key
vertex of Hn−2

3 . Moreover, we can reverse this process by adding 2n−2 to the d0 value of any

key vertex of Hn−2
3 to obtain a valid d0 value of a key vertex of Hn

3 . Thus there exist Fn−3
key vertices of Class 1 in Hn

3 for a total of Fn−2 + Fn−3 = Fn−1 key vertices of Hn
3 . In fact,

the d0 values of all key vertices of Hn
3 can be obtained by adding 2n−2 to the d0 values of the

key vertices of Hn−1
3 and Hn−2

3 . �

Of the five key vertices of H6
3 listed in Table 2, the first three are in Class 1 and appear

in the left half of Figure 2. The final two are in Class 2, and appear in the right half of the
figure. We observe that for all key vertices v of Hn

3 we have 2n−2 ≤ d0(v) < 2n−1, so there is
no overlap between d0 values of key vertices of graphs of different orders. The sequence of all
possible d0 values for key vertices starts out 1, 3, 5, 7, 11, 13, 15, 21, 23, 27, 29, 31, 43, 45,
47, 53, 55, 59, 61, 63, . . . . It is sequence A247648 in the OEIS [8].

Figure 2 illustrates another vital fact about key vertices.

Theorem 3.3. A vertex of graph Hn
3 is a key vertex if and only if it lies on the line joining the

point A =
(
1
4 ,
√
3
4

)
half-way up the left side of the graph with the point B =

(
2
3 ,
√
3
3

)
two-thirds

of the way up the right side of the graph when the graph is drawn in standard position.

Proof. The vertices of Hn
3 that are d0 steps from vertex 0n, for 0 ≤ d0 ≤ 2n − 1, all lie along

the horizontal line

L0 : y =

√
3

2

(
1− d0

2n − 1

)
,

while the vertices that are d2 steps from vertex 2n all lie along the line

L2 : y =
√

3

(
x− 1 +

d2
2n − 1

)
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with slope
√

3. These two lines intersect for

x =
1

2

(
3− d0 + 2d2

2n − 1

)
=

1

2

(
3− 5d0

2n − 1

)
,

the latter for d2 = 2d0. With this formula, together with the formula for y from L0, we have
parametric equations for the magic line ML containing all points that are twice as far from
vertex 2n as from vertex 0n. We can eliminate the parameter d0 to obtain the form

ML : y =

√
3

5
(x+ 1) .

This line passes through points A and B with slope
√
3
5 . Clearly a vertex is key if and only if

it lies on this line. �

Point A is not a vertex of Hn
3 , but the leftmost key vertex vL of Hn

3 , with distances d0 =
2n−1 − 1, d1 = 2n−1 + 1, and d2 = 2n − 2 is close by and approaches point A in the limit as
n increases. When n is even, point B is in fact the rightmost key vertex vR1, with distances
d0 = 1

3 (2n − 1), d1 = 2n − 1, and d2 = 2
3 (2n − 1). When n is odd, point B is not a vertex

of Hn
3 but the rightmost key vertex vR2, with distances d0 = 1

3 (2n + 1), d1 = 2n − 3, and

d2 = 2
3 (2n + 1), is close by and approaches point B as a limit as n increases. Thus for n ≥ 4

the magic line could also be described as the line connecting vertex vL with vR1 (n even) or
vR2 (n odd).

4. Magic Lines and the Sierpiński Triangle

It is well known that, when properly embedded and scaled, the graphs Hn
3 approach a

fractal, often called the Sierpiński gasket or the Sierpiński triangle (ST ). See, for example, [7,
page 151]. A common way to construct this fractal is to start with set ST0, a filled equilateral

triangle with vertices v0 =
(
1
2 ,
√
3
2

)
, v1 = (0, 0), and v2 = (1, 0). The set STn+1 is formed by

partitioning each triangle in STn into four sub-triangles, using lines joining the midpoints of
its three sides, and removing each (open) middle sub-triangle. Alternatively, we can use the

three mappings f0(x, y) =
(
2x+1
4 , 2y+

√
3

4

)
, f1(x, y) =

(
x
2 ,

y
2

)
, and f2(x, y) =

(
x+1
2 , y2

)
. These

mappings are all dilations with ratio r = 1
2 , and each fi has fixed point vi for i ∈ T . Starting

with the same ST0 as before, we can set STn+1 = f0[STn]∪ f1[STn]∪ f2[STn], where we write
f [S] as an abbreviation for {f(x) | x ∈ S}. Thus the set STn+1 can be described as the union
of three half-scale copies of STn. In either case, the Sierpiński triangle is the intersection of
all the STn, or ST = ∩∞n=0STn.

In light of Theorem 3.3 it is natural to enquire about the intersection of the Sierpiński
triangle with a magic line. We define the upper magic line (UML) as the line joining point(
1
4 ,
√
3
4

)
half way up the left side of ST0 to the point

(
2
3 ,
√
3
3

)
two thirds up the right side, as

before. Also, we define the parallel lower magic line (LML) as the line connecting the point

(0, 0) at the lower left corner of ST0 to the point
(
5
6 ,
√
3
6

)
one third up the right side.

Figure 3 shows the amazing results when we intersect the ST4 approximation of the Sier-
piński triangle with the two magic lines. These intersections consist of line segments of two
types: Type 0 segments that extend from the lower left corner to the point one third of the
way up the right side of the solid black subtriangle containing it, and Type 1 segments that
extend from the midpoint of the left side to the point two thirds of the way up the right side
of the solid black subtriangle containing it.
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Figure 3. The upper and lower magic lines in ST4.

The intersection ST4 ∩ UML consists of F4 = 3 Type 0 segments and F3 = 2 Type 1
segments, for a total of F5 = 5 segments. The intersection ST4 ∩ LML consists of F5 = 5
Type 0 segments and F4 = 3 Type 1 segments, for a total of F6 = 8 segments. Moreover, the
order of the segments of the UML is given by the finite Fibonacci word W4 = 01001, while
the order of the segments of the LML is given by W5 = 01001010. We now show that this
remarkable pattern continues.

Lemma 4.1. The following statements are true for all n ≥ 0.

(1) Type 0 segments in STn all have length L
2n , and Type 1 segments in STn all have length

L
2n+1 , where L is the length of ST0 ∩ LML.

(2) In passing from STn to STn+1 by removing middle triangles, every Type 1 segment in
STn becomes a Type 0 segment in STn+1, and every Type 0 segment in STn has its
third quarter removed, resulting in a Type 0 segment on the left in STn+1 and a Type 1
segment on the right.

(3) We have
(a) STn ∩ UML = f0[STn−1 ∩ LML] and
(b) STn ∩ LML = f1[STn−1 ∩ LML] ∪ f2[STn−1 ∩UML], both for n ≥ 1. Therefore,
(c) STn ∩ LML = f1[STn−1 ∩ LML] ∪ f2 [f0[STn−2 ∩ LML]] for n ≥ 2.

Proof. The proof of part (1) is by induction. The length of the Type 0 segment of ST0 is L by
definition, and the length of the Type 1 segment of ST0 is clearly L

2 . Moreover, both segment
types are half as long in STn+1 as they are in STn. Part (2) should be clear from Figure 4. A
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rigorous proof can be constructed using similar triangles and/or manipulation of coordinates.
Part (3) follows immediately from the definitions, and is illustrated in Figure 3. �

Figure 4. The magic lines intersecting ST0 (a) and ST1 (b).

Theorem 4.2. For every n ≥ 0, the intersection of the upper magic line with the STn approx-
imation of the Sierpiński triangle consists of Fn Type 0 segments and Fn−1 Type 1 segments,
for a total of Fn+1 segments, ordered according to the finite Fibonacci word Wn. Similarly,
the intersection of the lower magic line with the STn approximation of the Sierpiński trian-
gle consists of Fn+1 Type 0 segments and Fn Type 1 segments, for a total of Fn+2 segments,
ordered by the finite Fibonacci word Wn+1.

Proof. The claim is clearly true for n = 0 and n = 1, provided we extend the definition of
Fibonacci number to include F−1 = 1. Also, from Lemma 4.1 part (2), we see that the line
segments of each magic line satisfy the morphism ϕ in the first characterization of the finite
Fibonacci words. Alternatively, from Lemma 4.1 part (3)(c), we see that the line segments of
the LML satisfy the concatenation characterization of the finite Fibonacci words. The result
for the UML then follows from Lemma 4.1, part (3)(a). �

5. The Fibonacci Fractal

Just as the sets STn approach the Sierpiński triangle, a fractal of Hausdorff dimension
log2(3), the sets STn ∩ LML approach a fractal of smaller dimension. In this section we
explore this fractal. Our exploration mimics the usual treatment of the well known Cantor
set, or the Cantor middle-third set, by starting with a closed line segment and systematically
removing open subsets. We use the length L from Section 4 as our new unit of length, refer
to Type 0 segments as long segments and Type 1 segments as short segments, and invoke
Lemma 4.1, part (2) in our construction.

We start with set FF0 = [0, 1], the closed unit interval, which we define to be a long segment.
There are two rules for forming FFn+1 from FFn:

(1) Each short segment of FFn remains intact, but becomes a long segment in FFn+1.
(2) The (open) third quarter of each long segment of FFn is removed, leaving a long

segment on the left and a short segment on the right in FFn+1.
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Thus, for example, we have FF1 =
[
0, 12

]
∪
[
3
4 , 1

]
and FF2 =

[
0, 14

]
∪
[
3
8 ,

1
2

]
∪
[
3
4 , 1

]
. The

Fibonacci fractal is the intersection of these sets, or FF = ∩∞n=0FFn. We observe that being
the intersection of closed sets, the Fibonacci fractal is closed, and as it is also bounded, it is
a compact subset of R.

We display the Fibonacci fractal in Figure 5 in a manner often used to display the Can-
tor set. The top bar represents the set FF0, and successive rows represent the successive
approximations FFn for 1 ≤ n ≤ 8.

Figure 5. Approximations FF0 to FF8 of the Fibonacci fractal.

The following theorem is essentially a recasting of parts of Theorem 4.2 and Lemma 4.1
part (a).

Theorem 5.1. For every n ≥ 0, the FFn approximation of the Fibonacci fractal consists of
Fn+1 long segments, each of length 1

2n , and Fn short segments, each of length 1
2n+1 , for a total

of Fn+2 segments. The total length of these segments is Fn+1

2n + Fn
2n+1 = Fn+3

2n+1 , which approaches
a limit of 0 as n increases. Representing a long segment by 0 and a short segment by 1, these
segments are ordered by the finite Fibonacci word Wn+1.

An alternative approach to the Fibonacci fractal is through mappings g1(x) = x
2 and g2(x) =

x+3
4 . Mapping g1 is a dilation with ratio 1

2 and fixed point 0, sending the unit interval onto

the interval
[
0, 12

]
. Mapping g2 is a dilation with ratio 1

4 and fixed point 1, sending the unit

interval onto the interval
[
3
4 , 1

]
.

Theorem 5.2. For all n ≥ 2 we have

FFn = g1[FFn−1] ∪ g2[FFn−2].

Moreover, in the limit we have

FF = g1[FF ] ∪ g2[FF ].

Proof. We have

g1 [FF1] = g1
[[

0, 12
]
∪
[
3
4 , 1

]]
=

[
0, 14

]
∪
[
3
8 ,

1
2

]
and

g2 [FF0] = g2 [[0, 1]] =
[
3
4 , 1

]
so

FF2 =
[
0, 14

]
∪
[
3
8 ,

1
2

]
∪
[
3
4 , 1

]
= g1 [FF1] ∪ g2 [FF0]

and the first claim is true for n = 2. The truth of this claim for larger n follows by induction.
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For the second claim we have

x ∈ FF ⇔ x ∈ FFn for all n ≥ 2

⇔ x ∈ g1[FFn−1] ∪ g2[FFn−2] for all n ≥ 2

⇔ x ∈ g1[FFn] for all n ≥ 1, or x ∈ g2[FFn] for all n ≥ 0

⇔ x ∈ g1[FF ] ∪ g2[FF ]. �

We can use Theorem 5.2 to derive the Hausdorff dimension of the Fibonacci fractal following,
for example, the methods explained in Edgar [5].

Corollary 5.3. The Fibonacci fractal has Hausdorff dimension log2(φ), where φ is the Golden

ratio 1+
√
5

2 , the limiting ratio of consecutive Fibonacci numbers Fn+1

Fn
.

Proof. We have seen that {g1, g2} is a contracting iterated function system with invariant
set FF and ratio list

(
1
2 ,

1
4

)
. The similarity dimension of the system is then log2(φ), the

unique nonnegative number s satisfying the equation
(
1
2

)s
+
(
1
4

)s
= 1 (cf. [5, Theorem 4.1.1]).

The open interval (0, 1) satisfies Moran’s open set condition for this iterated function system,
which implies that log2(φ) is also the Hausdorff dimension of the Fibonacci fractal (cf. [5,
Theorem 6.5.4]). �

It is well known that the Cantor set is the set of numbers in [0, 1] that can be written
in base 3 using only the ternary digits 0 and 2. A somewhat similar but more complicated
characterization exists for numbers in the Fibonacci fractal.

Theorem 5.4. A number x with 0 ≤ x ≤ 1 is in the Fibonacci fractal if and only if x can be
written in binary using the binary digit 0 and pairs 11 of the binary digit 1. Equivalently, x
is not in the Fibonacci fractal if and only if every binary representation of x contains at least
one odd length block of the binary digit 1.

Proof. We in fact prove that a number x is removed when forming FFn if and only if every
binary representation of x begins after the radix point with a string of length n−1 made up of
copies of the bit 0 and pairs 11 of the bit 1, followed by the bit 1, followed by the bit 0. The
first odd length block of 1 bits will then end with the 1 in position n.

The proof is by induction. There are no numbers removed in forming FF0 and no numbers
satisfy the characterization, so the claim is true for n = 0. The numbers removed when
forming FF1 are those for which 1

2 < x < 3
4 , i.e., those in the third quarter of FF0. The

binary representation of each of these numbers must start 0.10b3b4 . . . , as claimed. Moreover,
the numbers that have a representation of this form are those for which 1

2 ≤ x ≤
3
4 . However,

the endpoints have alternative representations, 1
2 = 0.0111 . . . and 3

4 = 0.110000 . . . , and are
not removed. The claim is thus true for n = 1.

Now suppose the claim is true for all numbers removed prior to the forming of FFn, for
some n ≥ 2. The numbers that are removed in forming FFn are exactly the images under
g1 of the numbers removed in forming FFn−1, together with the images under g2 of the
numbers removed in forming FFn−2. Now for any number x = (0.b1b2b3 . . . )(2), we have
f1(x) = (0.0b1b2b3 . . . )(2) and f2(x) = (0.11b1b2b3 . . . )(2). Invoking the inductive hypothesis
for x in FFn−1 and x in FFn−2, we obtain the desired result. �

For example, the numbers 4
7 = (0.100100)(2) and 5

7 = (0.101101)(2) are both removed in

forming FF1, the number 2
7 = (0.010010)(2) is removed in forming FF2, and the number
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1
7 = (0.001001)(2) is removed in forming FF3. The numbers 3

7 = (0.011011)(2) and 6
7 =

(0.110110)(2) remain in FF , even though neither one is an endpoint of a removed interval.

Corollary 5.5. The Fibonacci fractal contains an uncountable number of points.

Proof. For any x from 0 to 1, replace each 1 bit in the binary representation of x with 11.
The result will be a point in FF . Moreover, it is easy to show that every member of FF has
a unique binary representation of this form. �

The Fibonacci fractal was mentioned briefly in two earlier works, where it was called the
asymmetric Cantor set. It was introduced by Farmer [6], with a somewhat different construc-
tion, as an example of a set with information dimension different from Hausdorff dimension.
Unfortunately the value given for the Hausdorff dimension is wrong. This error was pointed
out and corrected by Tsang [9]. The construction used in those papers removes the third quar-
ter of all segments, not just the long ones. It therefore does not display the finite Fibonacci
words, and misses the rich Fibonacci aspects of our construction.

6. Ongoing Work

We are currently extending our work in two directions. First, we are looking at graphs other
than the graphs Hn

3 . For example, the graphs Sn
4 , discussed in [7, Section 4.2], are a natural

extension of the Hanoi graphs and have a standard embedding into tetrahedra in R3. Vertices
twice as far from one corner vertex as from another in Sn

4 lie in a magic plane and are counted
by the Pell numbers.

We are also looking at multiples other than m = 2 in defining key vertices as those with
d2 = m · d0. For m = 5, for example, we can show that the number of these key vertices in
Hn

3 is 0 if n is odd, and Fk−1 when n = 2k.
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