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Abstract. In this paper, we connect two well established theories, the Fibonacci numbers
and the Jordan algebras. We give a series of matrices, from literature, used to obtain re-
currence relations of second-order and polynomial sequences. We also give some identities
known in special Jordan Algebras. The matrices play a bridge role between both theories.
The mentioned matrices connect both areas of mathematics, special Jordan algebras and re-
currence relations, to obtain new identities and classic identities in Fibonacci numbers, Lucas
numbers, Pell numbers, binomial transform, tribonacci numbers, and polynomial sequences
among others. The list of identities in this paper contains just a few examples of many that
the reader can find using this technique.

1. Introduction

Many authors have used power of matrices to study recurrence relations. In 1981 Gould
[9] wrote a historical paper about the origins of using matrices in research with the Fibonacci
sequence. Gould’s paper has a bibliography with 45 items. Since then many papers have
appeared using this technique.

The study of the Fibonacci sequence and its identities became more visible when in 1963
Hoggatt and Brousseau founded the Fibonacci Quarterly journal. By the same time researchers
in another area of mathematics were working actively finding identities in Jordan algebras —
our interest here— (see for example, [8, 10, 11, 12, 13]). These two areas of mathematics
may have several topics in common. Therefore, the main objective of this paper, through
examples, is to show some connections between both, the recursive sequences and the special
Jordan algebra identities. We are wondering if the experts in Jordan algebras can find a deeper
connection. There are still many things, on how this connection works, that we would like to
understand better. For example, we believe there is a direct relationship between the power
associativity in Jordan identities and the arguments of the Fibonacci recurrence.

In this paper, we use matrices to bridge recurrence relations identities with special Jor-
dan algebras identities. We take a collection of matrices associated to sequences (Fibonacci
sequences, Lucas sequences, and matrices associated to other recursive identities) from the
literature; we also take a collection of special Jordan algebras identities, from the literature, to
obtain identities in numerical sequences.

Using identities from abstract algebra we can obtain more complex, general, and sophisti-
cated numerical identities. For example, we give classic identities, new identities, and very
complex identities in Fibonacci identities, Lucas identities, Pell identities, and many others.

Williams [21] and Mc Laughlin [17] give simple forms to construct sequences from 2 × 2
matrices. Here we use the technique given in [17] and the special Jordan algebra identities to
show a new form to construct identities for recursive relations of order two.

This work was partially supported by The Citadel foundation.
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2. Some Previous Results and Motivation

In this section, we give a series of matrices, from literature, used to obtain recurrence
relations of second-order and polynomial sequences. Most of these matrices can be found
in [1, 9, 16, 18, 22]. In Section 4, there is a more general form for powers of matrices associated
to recurrence relations of order two.

Our aim is to use matrices to connect the special Jordan algebra identities with the recurrence
relations to obtain new identities associated to numerical sequences or polynomial sequences.

2.1. Fibonacci Matrices and generalized Fibonacci matrices. From (2.2) we obtain
these sequences: the matrix Fn1 is the matrix associated to Fibonacci sequence. The matrix
Gn2 gives rise to Jacobsthal numbers an = an−1 + 2an−2, with a0 = 0, a1 = 1 (A001045). From
[9] we have the general case, the matrix Gnb gives rise to

gn = gn−1 + b · gn−2, with g0 = 0, g1 = 1, where b ∈ Z>0. (2.1)

We now give sequences associated with some values of b. From (2.2) with b = 1 we have Fn1
the Fibonacci sequence; the equation (2.2) with b = 2 gives the Jacobsthal numbers Jn := gn
see A001045; the equation (2.2) with b = 3 gives A006130; the equation (2.2) with b = 4 gives
A006131; the equation (2.2) with b = 5 gives A015440; and the equation (2.2) with b = 6 gives
A015441. We summarize these results in (2.3).

F1 :=

[
1 1
1 0

]
; G2 :=

[
1 2
1 0

]
; Gb :=

[
1 b
1 0

]
. (2.2)

The powers of these matrices are

Fn1 =

[
Fn+1 Fn
Fn Fn−1

]
; Gn2 =

[
J2n−1 J2n
J2n J2n+1

]
; Gnb =

[
gn+1 bgn
gn+1 bgn−1

]
. (2.3)

The powers of the matrix L give rise to a matrix where the entries are Lucas numbers and
Fibonacci numbers [14].

L := (1/2)

[
1 5
1 1

]
; Ln = (1/2)

[
Ln 5Fn
Fn Ln

]
. (2.4)

The generalized Fibonacci numbers are defined as wn = pwn−1 − qwn−2, where w0 = 0, and
w1 = 1 for p and q in Z≥0. This recurrence relation is represented by the power of the matrix
W in (2.5) (see [1, 9, 16]). Particular cases of this sequence are in A015518 and A006190.

W :=

[
p −q
1 0

]
; Wn =

[
wn+1 −qwn
wn −qwn−1

]
. (2.5)

2.2. Pell matrices and generalized Pell matrices. The matrices in (2.6) are obtained from
particular cases of (2.5) (see also [5, 9]). Using (2.6) and power matrices we have that: Pn2
gives rise to Pell numbers pn = 2pn−1 + pn−2, where p0 = 0, p1 = 1; the matrix Pn3 gives rise
to bn = 3bn−1+ bn−2, where b0 = 0, b1 = 1, and in general Pnb gives rise to cn = b · cn−1+ cn−2,
where c0 = 0, c1 = 1. Sequences associated with some values of b; b = 2 gives A000129; b = 3
gives A006190; b = 4 gives A001076; b = 5 gives A052918; and b = 6 gives A005668. We
summarize these results in (2.7).

P2 :=
[
2 1
1 0

]
; P3 :=

[
3 1
1 0

]
; Pb :=

[
b 1
1 0

]
. (2.6)
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The powers of these matrices are

Pn2 =

[
pn+1 pn
pn pn−1

]
; Pn3 =

[
bn+1 bn
bn bn−1

]
; Pnb =

[
cn+1 cn
cn cn−1

]
. (2.7)

2.3. Fibonacci Polynomials. The following matrices that give rise to Fibonacci polynomials
can be found in [18].

Q(x) :=
[
x 1
1 0

]
; Qn(x) =

[
Fn+1(x) Fn(x)
Fn(x) Fn−1(x)

]
. (2.8)

2.4. Special Jordan Algebra background. In this section, we give the background of spe-
cial Jordan algebras and three identities needed to show the examples required for this mo-
tivation section. The identities in Lemma 2.1 are part of Lemma 5.1 on page 9. Part of the
discussion here and some notation can be found in [11, 12, 13].

A Jordan algebra A is a non-associative algebra over a field not of characteristic 2 whose
multiplication satisfies that a · b = b · a (commutative law) and (a2 · b) · a = a2 · (b · a) (Jordan
identity). Let (A,+,×, ∗) be the vector space of all n× n matrices over R, where +, ×, and ∗
are the matrix addition, matrix product, and the scalar product, respectively. For simplicity,
we use ab instead of a × b. (In this paper n = 2.) The vector space A gives rise to the
special Jordan algebra A+ = (A,+, ·, ∗), where the Jordan product (denoted by ·) is defined as
a · b = (ab+ ba)/2. We use {a, b, c} to denote this ternary operation

{a, b, c} = (1/2) [(ab)c+ (cb)a] . (2.9)

Lemma 2.1 ([11, 13]). Let A be a special Jordan algebra with the ternary operation {·, ·, ·}. If
a, b, c ∈ A, where a · b is the Jordan product, then these identities hold

(1) {an, am, bn} = a(m+n) · bn,
(2) {al, {am, b, am}, al} = {am+l, b, am+l},
(3) {an, b, an} · c = 2{an, (an · b), c} − {a2n, b, c},
(4) {am, b, an} · al = {am, (b · al), an}.

3. Examples of applicability of the Jordan identities in numerical sequences

In this section, we give some a few examples on how to apply identities from special Jordan
algebras to obtain new identities of order two recurrences relations. For example, we show some
new and old identities in Fibonacci numbers, generalized Fibonacci numbers, Lucas numbers,
Pell numbers, and combinations of some of them.

3.1. Example. As a first example we show an application of Lemma 2.1 Part (1) to F1 in
(2.2). In this example, we use the Jordan identity to prove Identity VI in [2] (more general).
Thus, we prove that F2n+1 = F 2

n+1 + F 2
n . Letting a = F1 and b = I2 (the 2-by-2 identity

matrix) in Lemma 2.1 Part (1) we obtain that

{am, an, b} = a(m+n) · b,
{Fm1 ,Fn1 , I2} = Fm+n

1 · I2.
This and (2.3) imply that{[

Fm+1 Fm
Fm Fm−1

]
,

[
Fn+1 Fn
Fn Fn−1

]
,

[
1 0
0 1

]}
=

[
Fm+n+1 Fm+n

Fm+n Fm+n−1

]
. (3.1)

Applying (2.9) to the left side of this equality and simplifying we have the identity
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[
FmFn + Fm+1Fn+1 (FnLm + FmLn)/2
(FnLm + FmLn)/2 Fm−1Fn−1 + FmFn

]
=

[
Fm+n+1 Fm+n

Fm+n Fm+n−1

]
.

Taking m = n+ 1 and simplifying we obtain the desired identity.

3.2. Example. We now give a second example on the application of Lemma 2.1 Part (1) to
F1 in (2.3) and L in (2.4). Thus, letting a = F1 and b = L in Lemma 2.1 Part (1) we obtain
that

{an, am, bn} = a(m+n) · bn,
{Fn1 ,Fm1 ,Ln} = Fm+n

1 · Ln.
This, (2.3), and (2.4) imply that{[

Fn+1 Fn
Fn Fn−1

]
,

[
Fm+1 Fm
Fm Fm−1

]
,

[
Ln/2 5Fn/2
Fn/2 Ln/2

]}
=[

Fm+n+1 Fm+n

Fm+n Fm+n−1

]
·
[
Ln/2 5Fn/2
Fn/2 Ln/2

]
=[

(LnFm+n+1 + 3FnFm+n)/2 (2LnFm+n + 5FnLm+n)/4
(2LnFm+n + FnLm+n)/4 (LnFm+n−1 + 3FnFm+n)/4

]
. (3.2)

Applying (2.9) and simplifying we have that the left side (top) of this last equation is equal
to [

Ln(FmFn + Fm+1Fn+1)/2 Ln(LmFn + FmLn)/4
Ln(LmFn + FmLn)/4 Ln(Fm−1Fn−1 + FmFn)/2

]
+[

3Fn(Fm−1Fn + FmFn+1)/2 5Fn(Fm−1Fn−1 + 2FmFn + Fm+1Fn+1)/4
Fn(Fm−1Fn−1 + 2FmFn + Fm+1Fn+1)/4 3Fn(FmFn−1 + Fm+1Fn)/2

]
.

Since the entries of the sum of these last matrices are equal to the entries of the right side
matrix (bottom) of (3.2), after doing some simplifications, we obtain these four identities.

LnFm+n+1 + 3FnFm+n = Ln(FmFn + Fm+1Fn+1) + 3Fn(Fm−1Fn + FmFn+1).

2LnFm+n + 5FnLm+n = Ln(LmFn + FmLn) + 5Fn(Fm−1Fn−1 + 2FmFn + Fm+1Fn+1).

2LnFm+n + FnLm+n = Ln(LmFn + FmLn) + Fn(Fm−1Fn−1 + 2FmFn + Fm+1Fn+1).

LnFm+n−1 + 3FnFm+n = 2Ln(Fm−1Fn−1 + FmFn) + 6Fn(FmFn−1 + Fm+1Fn).

3.3. Example. In this example, we apply special Jordan identities to Fibonacci polynomials.
In this case, we use Lemma 2.1 Part (3) with (2.8). We take an = Qn(x), b = Qm(x) and
c = I2. So,

{an, b, an} · c = 2{an, (an · b), c} − {a2n, b, c}.
{Qn(x),Qm(x),Qn(x)} · I2 = 2{Qn(x), (Qn(x) · Qm(x)), I2} − {Q2n(x),Qm(x), I2}.

These give rise to the following identities. For simplicity of the identities we set ft = Ft(x) and
lt = Lt(x) (Lucas polynomial) for every t > 0. (For more identities in Fibonacci polynomials
see [7].)

fm−1f
2
n + fn+1(2fmfn + fm+1fn+1) = fm−1f

2
n + 2fmfnfn+1 + fm+1(f

2
n + 2f2n+1 − f2n+1).
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fn(fm−1fn−1 + fm+1fn+1) + fm(f
2
n + fn−1fn+1) =

fm(4f
2
n + l2n − l2n)/2 + fn(fm−1fn−1 + fm+1fn+1).

3.4. Example. In this example, we apply special Jordan identities combining Fibonacci num-
bers and Lucas numbers with a matrix having a variable. In this case, we use Lemma 2.1 Part

(1) with n = m and an = Ln and b =
[
x 1
1 0

]
.

5xF 2
n + 6LnFn + xL2

n = 6F2n + 2xL2n,

5F 2
n + 5xLnFn + L2

n = 5xF2n + 2L2n.

4. Recursive Relations from 2× 2 matrices

This section is based on the results found by Mc Laughlin [17]. We now give a summary of
the results from [17] that we are going to use here in this paper.

Let T := a+ d and D := ad− bc be the trace and the determinant of A, where

A =

[
a b
c d

]
.

If α = (T +
√
T 2 − 4D)/2 and β = (T −

√
T 2 − 4D)/2, then for α 6= β, I2 —the 2× 2 identity

matrix— and

zn :=
αn − βn

α− β
=

bn−1
2
c∑

m=0

(
n

2m+ 1

)
Tn−2m−1(T 2 − 4D)m/2n−1, (4.1)

this holds

An = znA− zn−1DI2. (4.2)

Theorem 4.1 ([17]). If

yn =

bn
2
c∑

i=0

(
n− i
i

)
Tn−2i(−D)i,

then

An =

[
yn − dyn−1 byn−1
cyn−1 yn − ayn−1

]
.

We have observed that if A := {{1, 1}, {1, 0}} and

Zn :=
αn + βn

T
=

bn
2
c∑

i=0

(
n

2i

)
Tn−2i(T 2 − 4D)i/2n−1,

then the Lucas sequence can be obtained by An−1B = ZnA−Zn−1DI2, where B := A2+ I2 =[
3 1
1 2

]
.
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4.1. Matrices associated to k-th binomial transform of Fibonacci numbers. We now
give some examples of matrices using the technique in Theorem 4.1 and (4.2). The first entries
of the matrices T nk+1 given in (4.3) give rise to the k-th binomial transform of Fk+1 (see [20]).
For the particular case T n2 gives rise to {F2n+1} and {F2n} see [18, 19].

In general, T nk+1 gives rise to the sequences

hn,k(j) =
n∑
i=0

(−1)i−1+j
(
n

i

)
Fi−j(k + 1)n−i.

We summarize these results in (4.4). When k varies for small values the sequences are in
[22]. For example, when k = 2 we obtain the sequence dn = 5dn−1 − 5dn−2, where the initial
conditions depend on the position in the matrix. For example, the sequence associated to the
entry (1, 1) of T n3 is dn,11 = 5dn−1 − 5dn−2, where d0 = 1, d1 = 3; the sequence associated to
the entries (1, 2) or (2, 1) is dn,12 = 5dn−1 − 5dn−2, where d0 = 1, d1 = 5; and the sequence
associated to the entry (2, 2) is dn,22 = 5dn−1−5dn−2, where d0 = 2, and d1 = 5 (see A081567,
A030191, and A020876).

T2 :=
[
2 1
1 1

]
; Tk+1 :=

[
k + 1 1
1 k

]
. (4.3)

The powers of these matrices are

T n2 =

[
F2n+1 F2n

F2n F2n−1

]
; T nk+1 =

[
hn,k(1) hn−1,k(0)
hn−1,k(0) hn,k(−1)

]
. (4.4)

4.2. Other matrices. The following matrices can be found in [17].

M1 :=

[
2 1
−1 0

]n
=

[
n+ 1 n
−n −n+ 1

]
. (4.5)

M2 :=

[
3 1
−2 0

]n
=

[
2n+1 − 1 2n − 1
−2n+1 + 2 −2n + 2

]
. (4.6)

M3 :=

[
−2 −1
1 1

]n
= (−1)n

[
Fn+2 Fn
−Fn −Fn−2

]
. (4.7)

4.3. Example. In this example, we apply special Jordan identities to k-th binomial transform
of Fibonacci numbers. In this case, we use Lemma 2.1 Part (4). We take a = Tk+1 from (4.4),
b = I2 and c = Tk+1 from (4.4). So, the entries (1,1) of all matrices give

h3n,k(1) = hn,k(0)h2n,k(0) + hn,k(1)h2n,k(1)− h2n,k(0)(2hn,k(1) + hn,k(−1)).
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This is equivalent to(
n∑
i=0

(−1)i
(
n

i

)
Fi−1(k + 1)n−i

)3

=

n∑
i=0

(−1)i−1
(
n

i

)
Fi(k + 1)n−i

2n∑
i=0

(−1)i−1
(
2n

i

)
Fi(k + 1)2n−i+

n∑
i=0

(−1)i
(
n

i

)
Fi−1(k + 1)n−i

2n∑
i=0

(−1)i
(
2n

i

)
Fi−1(k + 1)2n−i+

−

(
n∑
i=0

(−1)i−1
(
n

i

)
Fi(k + 1)n−i

)2( n∑
i=0

(−1)i
(
n

i

)
(2Fi−1 + Fi+1)(k + 1)n−i

)
.

4.4. Fibonacci-Lucas matrix. The powers of the matrix L give rise to a matrix where the
entries are Lucas numbers and Fibonacci numbers [14].

L := (1/2)

[
1 5
1 1

]
; Ln = (1/2)

[
Ln 5Fn
Fn Ln

]
. (4.8)

The powers of matrix Sk give rise to the sequences {(k2 + 1)n} and {k(k2 + 1)n}. Since
the matrix S2k in (4.9) is diagonalizable, it is easy to see that the matrices S2n

k and S2n+1
k are

correct.

Sk :=
[
1 k
k −1

]
; S2k =

[
k2 + 1 2k
2k k2 + 1

]
.

S2nk =

[
(k2 + 1)n 0
0 (k2 + 1)n

]
; S2n+1

k =

[
(k2 + 1)n k(k2 + 1)n

k(k2 + 1)n (k2 + 1)n

]
. (4.9)

4.5. Tribonacci identities. In this section, we give matrices associated to third-order recur-
rence relations. For example, the matrix associated to the tribonacci sequence is denoted by
T0,0,1, where the sequence generated by the powers of T0,0,1 is given by tn = tn−1+ tn−2+ tn−3,
where t0 = 0, t1 = 0, and t2 = 1 [3, 23]. The sequence generated by the powers of the matrix
T1,2,1 is sn = sn−1 + 2sn−2 + sn−3, where s0 = 0, s1 = 1, and s2 = 1 [23]. The sequence
generated the powers of the matrix Tr,s,t is un = run−1+ sun−2+ tun−3, where u0 = 0, u1 = 1,
and u2 = r [23]. For matrices in (4.13) see [18].

T0,0,1 :=

 1 1 1
1 0 0
0 1 0

 ; T n0,0,1 :=

 tn+2 tn + tn+1 tn+1

tn+1 tn + tn−1 tn
tn tn−1 + tn−2 tn−1

 . (4.10)

T1,2,1 :=

 1 2 1
1 0 0
0 1 0

 ; T n1,2,1 :=

 sn+1 2sn + sn−1 sn
sn 2sn−1 + sn−2 sn−1
sn−1 2sn−2 + sn−3 sn−2

 . (4.11)

Tr,s,t :=

 r s t
1 0 0
0 1 0

 ; T nr,s,t :=

 un+1 sun + tun−1 un
un sun−1 + tun−2 un−1
un−1 sun−2 + tun−3 un−2

 . (4.12)
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TF :=

 0 0 1
0 1 2
1 1 1

 ; T nF :=

 F 2
n−1 Fn−1Fn F 2

n

2Fn−1Fn F 2
n−1 + Fn+1Fn 2Fn+1Fn

F 2
n FnFn+1 F 2

n+1

 . (4.13)

4.6. Example. In this case, we use Lemma 2.1 Part (1). We take a = T0,0,1 from (4.10) and
b = I3.

(1) tm+n+2 = tmtn+1 + tm+1(tn + tn+1) + tm+2tn+2.
(2) 2tm+n+1 = tm−1tn+1 + tm+2tn+1 + tm(2tn + tn+1) + tm+1(tn−1 + tn + tn+2).

5. Identities in Jordan Algebras

In this section, we give a series of special Jordan algebra identities from classic literature
[11, 12, 13] (a few identities of many in the literature).

5.1. Special Jordan Algebra background. In this section, we complete the identities given
in Subsection 2.4. We recall that the Jordan product is defined as a · b = (ab+ ba)/2 and that
{a, b, c} denotes the ternary operation

{a, b, c} = (1/2) [(ab)c+ (cb)a] . (5.1)

Lemma 5.1 ([11, 13]). Let A be a special Jordan algebra with the ternary operation {·, ·, ·}. If
a, b, c ∈ A, where a · b is the Jordan product, then these identities hold

(1) {an, am, bn} = a(m+n) · bn.
(2) {al, {am, b, am}, al} = {am+l, b, am+l}.
(3) {an, b, an} · c = 2{an, (an · b), c} − {a2n, b, c}.
(4) 2({anm, b, c} · an) = {an, {a(mn−n), b, c}, an}+ {a(mn+n), b, c}.
(5) 2({an, b, an} · an) = {an, b · an, an}+ {a2n, b, an}.
(6) {am, b, an} · al = {am, (b · al), an}.
(7) {am, b, am} · al = {am+l, b, am}.
(8) {al, {am, b, an}, c} = {a(l+m), b · an, c}+ {a(l+n), b · am, c} − {a(l+m+n), b, c}.
(9) {al, {am, b, c}, an} = {a(l+m), b, c} · an + {a(m+n), b, c} · al − {a(l+m+n), b, c}.

Lemma 5.2 ([13, 15]). Let A be a special Jordan algebra with the ternary operation {·, ·, ·}. If
a, b, c ∈ A, where a · b is the Jordan product, then these identities hold

(1) 2{an, b, c} · a = {a, {an−1, b, c}, a}+ {an+1, b, c}.
(2) {an, {am, b, am}, c} = 2{an+m, (am · b), c} − {an+2m, b, c}.

6. Proving classical Fibonacci identities using Jordan identities

As an example, of the application of the Jordan algebras in numerical sequences, we give
different proofs of some classic identities. The proofs in this section are obtained applying just
one of Jordan identitites (Lemma 5.1 Part (1)). Note it is one of the simpler Jordan identity,
so this shows that Jordan identities are also a great tool to re-prove classical identities. For
example, Identity Part (1) is the Lucas identity [18, 24], Identities Parts (2), (3), (4), (7), are
in [24], Identities in Parts (5), (8) are in [4], Identity in Part (6) is in [6], the Identities in Parts
(9) and (10) are applications of Part (8).

Proposition 6.1. For n ≥ 1, these hold.
(1) F 2

n + F 2
n+1 = F2n+1,

(2) Fn(Fn−1 + Fn+1) = F2n,
(3) 5F 2

n + L2
n = 2L2n,
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(4) FnLn = F2n,
(5) FmFn + Fm+1Fn+1 = Fm+n+1,
(6) 5FmFn + LmLn = 2Lm+n,
(7) FnLm + FmLn = 2Fm+n,
(8) FmFn−1 + Fm+1Fn = Fm+n,
(9) FmFn + 2Fm+1Fn+1 + Fm+2Fn+2 = Fm+n+1 + Fm+n+3,
(10) F 2

n−1 + 2F 2
n + F 2

n+1 = F2n−1 + F2n+1.

Proof. The proofs of all parts of this proposition follow from Lemma 5.1 Part (1). Therefore,
here we indicate the matrices used for an, am, and b. For the proof of Parts (1) and (2), we

use an = Fn1 , am = Fn1 from (2.3) and b =
[
1 0
0 1

]
.

The proof of Parts (3) and (4), uses n = m, an = Ln from (4.8) with b =
[
1 0
0 1

]
.

The proof of Part (5), uses an = Fn1 , am = Fm1 from (2.3) with b =
[
1 0
0 0

]
.

The proof of Parts (6) and (7), uses an = Ln, am = Lm from (4.8) with b =
[
0 1
0 0

]
.

The proof of Part (8), uses an = Fn1 , am = Fm1 from (2.3) with b =
[
0 0
0 1

]
.

The proof of Part (9), uses an = Fn+1
1 , am = Fm+1

1 from (2.3) with b =
[
0 1
0 0

]
.

The proof of Part (10), uses n = m, an = Fn1 from (2.3) with b =
[
0 1
1 0

]
. �

7. Recursive relations identities from Jordan identities

Using the mentioned matrices in Sections 2 and 4, and the identities in Section 5, we connect
both areas of mathematics, special Jordan algebras and recurrence relations. Here we give a
collection of identities of Fibonacci numbers, Lucas numbers, Pell numbers, and the binomial
transform. This list is not complete, these identities are actually a few examples of many that
the reader can find using this technique. Since the main objective of this paper is to show the
path between special Jordan algebras and the recurrences relations, the identities are simplified
but not too deep.

7.1. Fibonacci and other identities from Jordan identities. The proofs of the following
theorems are straightforward applications of the identities given in Lemmas 5.1 and 5.2. and
the matrices that are given in Sections 2. The proofs are made following the technique used in
Section 3.

Proposition 7.1. If Fn is a Fibonacci number and Ln is a Lucas number, then these identities
hold

(1) Fm(F2nFn+1 + FnF2n+1) = F2n+1(Fm+n+1 − Fm+1Fn+1)− F2n(Fm−1Fn − Fm+n),
(2) 5F 2

n = Fn+2(2Fn+3 − 3Fn−1)− Fn+1(6Fn + Fn+1),
(3) Fn+1(2Fn+2 − Fn+1) = FnFn+3 + Fn−1Fn+2,
(4) 5(F 2

n+1 + F 2
n) = 4F2n + 5F2n+1 − 4Fn(Fn−1 + Fn+1),

(5) 11F 2
n+1 = 13F2n + 6F2n−1 + 11F2n+1 − 6F 2

n−1 − 17F 2
n − 13Fn(Fn−1 + Fn+1),

(6) 3F 2
n+1 = 5F2n + 2F2n−1 + 3F2n+1 − 2F 2

n−1 − 5Fn(Fn−1 + Fn+2),
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(7)

Fn−1
(
F 2
2n − FnF2nFn+1 + F 2

2n−1 − F 2
n(F2n−1 + F2n+1)

)
=

2F 2
n−1FnF2n + F 3

n−1F2n−1 + Fn
(
F 2
nF2n + FnFn+1F2n+1 − F2n(F2n−1 + F2n+1)

)
,

(8) Fr((Fn−1−Fn+1)Fm+2+(Fm−1−Fm+1)Fn+2) = ((2Fn+Fn+1)Fm+Fm+1Fn)(Fr−1−
Fr+1),

(9)

Fm−1((3Fn+1 − 2Fn−1)Fr + Fn(Fr−1 − Fr+1)) =

Fm+1(−3Fn−1Fr + 4Fn+1Fr + 2Fn(Fr−1 − Fr+1))− Fm(Fn−1 − 2Fn+1)(Fr−1 − Fr+1).

Proof. This proof is a straightforward application of Lemma 5.1. In this lemma we use Parts
(1)–(6) setting a = F1, from (2.2) and (2.3), b = T2 from (4.3) and (4.4) and c = L from (4.8).

The Proof of Part (1) uses Lemma 5.1 Part (1).
The Proofs of Parts (2) and (3) use Lemma 5.1 Part (2).
The Proofs of Parts (4)–(6) use Lemma 5.1 Part (3).
The Proof of Part (7) uses Lemma 5.1 Part (5).
The Proofs of Parts (8) and (9) use Lemma 5.1 Part (6). �

Proposition 7.2. If Fn is a Fibonacci number and Ln is a Lucas number, then these identities
hold

(1) F 2
n+2 − F 2

n = F2n+2,
(2) F 2

n−2 + 2F 2
n + 2F 2

n+3 + 8FnFn+2 = 8F 2
n+2 + 4FnFn−2 + F 2

n+1,
(3) F 2

n−2 + F2n+1 + 6FnFn+2 + 2Fn+1Fn+3 = Fn−1Ln+2 + 4F 2
n+2 + Fn−2(3Fn + Fn+2),

(4) F 2
n−2 + 2FnLn + 2FnFn+2 + 2F 2

n+1 = F 2
n−1 + F 2

n + 2F 2
n+2,

(5)

3F 3
n + 2F 2

n (Fn+2 + Ln) = Fn−2Fn (2Fn + 3Ln)+

Fn
(
−3Fn+2Ln + 2F 2

n+2 + 2F2n + F2n−2 − 2F2n+2

)
+
(
F 2
n+2 + 3F2n − L2n

)
Ln + F 2

n−2 (Fn + Ln) ,

(6)

5Fn (2Fn2Fn+2 − (Fn2−2 − 2Fn2+2)Fn+2 + Fn2+n−2 − 2Fn2+n − 2Fn2+n+2) =

F 2
nLn

(
−Fn2−n−2 + Fn2−n+2 − 3F(n−1)n

)
+

2FnLn (Fn2−2 − 2Fn2+2 + Fn−2Fn2−n−2 + 2Fn+2Fn2−n+2)

+ LnFn−2
(
3Fn2 − Fn2−2 + Fn2+2 + Fn+2Fn2−n−2 − Fn+2Fn2−n+2 − 3F(n−1)nFn+2

)
+ Ln (−3Fn2Fn+2 + Fn+2Fn2−2 − Fn+2Fn2+2 − Fn2+n−2 + 3Fn2+n + Fn2+n+2)+

2F 2
n

(
6Fn2 + 3 (Fn2−2 − Fn2+2 + Fn+2Fn2−n+2)− 2F(n−1)nFn+2

)
+

− F 3
n

(
Fn2−n−2 − 2Fn2−n+2 + 2F(n−1)n

)
+ Fn−2F

2
n

(
6Fn2−n−2 + 8F(n−1)n

)
+

5FnFn−2
(
2Fn2 − Fn2−2 + 2Fn2+2 + Fn+2Fn2−n−2 − 2Fn+2Fn2−n+2 − 2F(n−1)nFn+2

)
,
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(7)

Fn
(
Fn (6Fn2 − 2Fn2−2 + 4Fn2+2) + F 2

n

(
2F(n−1)n − 3Fn2−n+2

)
− 3Fn2+n−2 − 4Fn2+n

)
=

Ln
(
Fn2−n−2F

2
n−2 +

(
2Fn2−2 − 3FnF(n−1)n

)
Fn−2 − 3FnFn2 + 2F 2

nFn2−n+2 + Fn2+n−2
)
+

FnFn−2
(
8Fn2 + 6Fn2−2 + Fn

(
2Fn2−n−2 − 4Fn2−n+2 − 6F(n−1)n

))
+

FnF
2
n−2

(
3Fn2−n−2 + 4F(n−1)n

)
,

(8) Fn−2F2n−1F
2
n +F2nF2n−1Fn+Fn+2F2n+1

(
F 2
n+2 − F2n+2

)
= F 2

nFn+2 (F2n−1 + F2n+1),
(9)

F2nFn+2F
2
n +

(
−2F 2

2n + F2n−2F2n−1 + F2n+1

(
2F 2

n+2 − F2n+2

))
Fn+

F 2
n−2 (F2nFn+2 + 2FnF2n−1) + F2nFn+2 (F2n−2 − F2n+1) =

Fn−2
(
F2nF

2
n + Fn+2 (F2n−1 + F2n+1)Fn + F2n

(
F 2
n+2 − F2n−1 − F2n+2

))
+(F2n−1 + F2n+1)F

3
n ,

(10) F2n−1F
3
n−2 + Fn (FnFn+2 − F2n)F2n+1 = Fn−2

(
F 2
n (F2n−1 + F2n+1)− F2n−2F2n−1

)
,

(11) Fn (Fl−2 + Fl+2) = Fl (Fn−2 + Fn+2),
(12)

F2n+1F
2
l+n+2 − F2n−1F

2
l+n = F 2

l

(
F 2
nF2n+1 − F 2

n−2F2n−1
)
+

2Fl+2FlFn (Fn−2F2n−1 − Fn+2F2n+1) + F 2
l+2

(
F 2
n+2F2n+1 − F 2

nF2n−1
)
,

(13)

F2n+1Fl+nFl+n+2 + F2nF
2
l+n = F 2

l (F2nF
2
n + (Fn−2F2n−1 − Fn+2F2n+1)Fn − Fn−2F2nFn+2)+

Fl(Fl−2(F
2
nF2n+1 − F 2

n−2F2n−1) + Fl+2(F
2
n+2F2n+1 − F 2

nF2n−1))+

F2nFl+n−2Fl+n+2 + F2n−1Fl+n−2Fl+n+

Fl−2Fl+2(Fn−2F2n−1Fn − Fn+2F2n+1Fn − F 2
nF2n + Fn−2F2nFn+2),

(14)

F2n−1F
2
l+n−2 = F 2

l−2
(
F 2
n−2F2n−1 − F 2

nF2n+1

)
+

2FlFl−2Fn (Fn+2F2n+1 − Fn−2F2n−1) + F2n+1F
2
l+n + F 2

l

(
F 2
nF2n−1 − F 2

n+2F2n+1

)
,

(15)

2F 2
n−2Fn +

(
4F 2

n+2 − 3F2n − 6F2n+2

)
Fn + 2F3n + 7Fn+2F2n+2 =

4F 3
n + 2F 3

n+2 + Fn−2
(
F 2
n + 2Fn+2Fn − 3F 2

n+2 − 4F2n + 3F2n+2

)
+ 5F3n+2,

(16)

24F 2
nFn+2 + 21Fn+2F2n+2 + 14F2nFn+2 + 6F3n−2 + 5F 3

n−2 =

F 2
n−2 (2Fn + Fn+2) +

(
19F 2

n − 13Fn+2Fn − F 2
n+2 + 12F2n − 11F2n−2 + F2n+2

)
Fn−2+

7F 3
n + 10F 3

n+2 + 13F3n + Fn+2F2n−2 + Fn
(
4F 2

n+2 + 30F2n + 3F2n−2 − 3F2n+2

)
+ 11F3n+2,
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(17)

6F2nFn+2 + 3F3n+2 + F 3
n + 2F 3

n+2 + Fn+2F2n−2 = F 3
n−2 + (2Fn − Fn+2)F

2
n−2+(

−3F 2
n − 5Fn+2Fn + F 2

n+2 + 4F2n + 3F2n−2 − F2n+2

)
Fn−2+

5F3n + 4F 2
nFn+2 + 5Fn+2F2n+2 + Fn

(
4F 2

n+2 − 6F2n + 3F2n−2 − 3F2n+2

)
+ 2F3n−2,

(18)

8F2nFn+2 + 3Fn+2F2n−2 + 2F 3
n = F 3

n−2 + (2Fn − 3Fn+2)F
2
n−2+

(5F2n−2 − 4FnFn+2)Fn−2 + 4F3n + 2F 2
nFn+2 + Fn

(
4F 2

n+2 − 3F2n + 6F2n−2
)
+ 4F3n−2,

(19)

Fn
(
6Fn+2F2n+2 + 2F3n − 3F 3

n+2 − 4F2nFn+2 − 3F3n+2

)
=

Ln
(
Fn−2F

2
n − 3Fn+2F

2
n + 3F2nFn + 2

(
F 3
n+2 − 2F2n+2Fn+2 + F3n+2

))
+

Fn
(
4F 3

n − 6Fn+2F
2
n + Fn−2 (3Fn + 2Fn+2)Fn +

(
−6F 2

n+2 + 6F2n − 2F2n−2 + 4F2n+2

)
Fn
)
,

(20)

Fn(Fn(6F2n − 2F2n−2 + 4F2n+2)− 3F3n−2) =

Fn(3F
3
n−2 + 6FnF

2
n−2 + (−6F 2

n − 4Fn+2Fn + 8F2n + 6F2n−2)Fn−2 − 2F 3
n + 4F3n + 3F 2

nFn+2)+

Ln(F
3
n−2 + (2F2n−2 − 3F 2

n)Fn−2 − 3FnF2n + 2F 2
nFn+2 + F3n−2).

Proof. This proof is a straightforward application of Lemma 5.1. In this lemma we use Parts
(1)–(8) setting a =M3 from (4.7), b = T2 from (4.4), and c = L from (4.8).

The Proof of Part (1) uses Lemma 5.1 Part (1).
The Proofs of Parts (2)–(4) use Lemma 5.1 Part (2).
The Proof of Part (5) uses Lemma 5.1 Part (3).
The Proofs of Parts (6) and (7) use Lemma 5.1 Part (4).
The Proofs of Parts (8)–(10) use Lemma 5.1 Part (5).
The Proof of Part (11) uses Lemma 5.1 Part (6).
The Proofs of Parts (12)–(14) use Lemma 5.1 Part (7).
The Proofs of Parts (15)–(18) use Lemma 5.1 Part (8).
The Proofs of Parts (19) and (20) use Lemma 5.1 Part (9). �

Proposition 7.3. If Fn is a Fibonacci number and Ln is a Lucas number, then these identities
hold

(1) 8Fn−2 + 16Fn−1 + 5Fn+2 = 5Fn + 13Fn+1,
(2) Fn−1 + 16Fn + 8Fn+1 = 11Fn+2 + 2Fn−2,
(3) 4Fn + 8Fn+1 = 11Fn−1 + 6Fn−2 + 3Fn+2,
(4)

Fm+1Fm+n + 7Fm+1Fm+n+1 = 3F 2
m−1Fn + 2F 2

m+1Fn+1 + F 2
m (7Fn + 4Fn+1)+

Fm−1 (Fm+1 (Fn + 3Fn+1) + Fm (7Fn + 3Fn+1)− 7Fm+n − 3Fm+n+1)+

Fm (2Fm+1 (Fn + 4Fn+1)− 9Fm+n − 11Fm+n+1) + 4F2m+n + 5F2m+n+1,
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(5)

Fm−1 (11Fm+n−1 + 12Fm+n + Fm+n+1) = F 2
m−1 (5Fn−1 + Fn)+

Fm−1 (Fm+1 (Fn−1 + 10Fn + Fn+1) + Fm (11Fn−1 + 12Fn + Fn+1))+

2F 2
m+1Fn + 10F 2

m+1Fn+1 + F 2
m (11Fn−1 + 13Fn + 6Fn+1)− Fm+1Fm+n−1+

− 14Fm+1Fm+n − 21Fm+1Fm+n+1 + 6F2m+n−1 + 13F2m+n + 11F2m+n+1+

Fm (2Fm+1 (Fn−1 + 11Fn + 6Fn+1)− 13Fm+n−1 − 34Fm+n − 13Fm+n+1) ,

(6)

Fm−1 (4Fm+n + Fm+n+1)+Fm+1Fm+n−1+6Fm+1Fm+n+5Fm+1Fm+n+1 = F 2
m−1 (Fn−1 + Fn)+

Fm−1 (Fm+1 (Fn−1 + 2Fn + Fn+1) + Fm (3Fn−1 + 4Fn + Fn+1)− 3Fm+n−1)+

2F 2
m+1Fn + 2F 2

m+1Fn+1 + F 2
m (3Fn−1 + 5Fn + 2Fn+1)+

Fm (2Fm+1 (Fn−1 + 3Fn + 2Fn+1)− 5 (Fm+n−1 + 2Fm+n + Fm+n+1))+

2F2m+n−1 + 5F2m+n + 3F2m+n+1.

Proof. This proof is a straightforward application of Lemma 5.2. Set a = Fn1 from (2.3),
b = T n2 from (4.4), and c = Ln from (4.8).

The Proofs of Parts (1)–(3) use Lemma 5.2 Part (1).
The Proofs of Parts (4)–(6) use Lemma 5.2 Part (2). �

7.2. Binomial transform of Fibonacci numbers identities. In this section, we use the
sequence give in Section 4.1 and the identities from Section 5.

Proposition 7.4. If k, n ≥ 1 and i ∈ {−1, 0, 1} and

hn,k(j) =

n∑
i=0

(−1)i−1+j
(
n

i

)
Fi−j(k + 1)n−i,

then these identities hold
(1)

hn,k(1)(hm,k(1)hn,k(1)−hm+n,k(1))+h
2
n,k(0)hm,k(−1) = hn,k(0)(hm+n,k(0)−2hm,k(0)hn,k(1)),

(2)

hm+n,k(0)(hn,k(1) + hn,k(−1)) = 2hm,k(0)(h
2
n,k(0) + hn,k(1)hn,k(−1))+

hn,k(0)(2hm,k(1)hn,k(1)− hm+n,k(1) + 2hm,k(−1)hn,k(−1)− hm+n,k(−1)),

(3)

h2n,k(0)hm,k(1) + hn,k(−1)(hm,k(−1)hn,k(−1)− hm+n,k(−1)) =
hn,k(0)(hm+n,k(0)− 2hm,k(0)hn,k(−1)),

(4)

h2n+1,k(0) + h2n+1,k(1) = h2n,k(0)(1 + (1 + k)2) + (1 + k)2h2n,k(1)+

h2n,k(−1) + 2(1 + k)hn,k(0)(hn,k(1) + hn,k(−1)),

(5) h3n,k(1) = hn,k(0)h2n,k(0) + hn,k(1)h2n,k(1)− h2n,k(0)(2hn,k(1) + hn,k(−1)),
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(6)

2h3n,k(0) = h2n,k(0)(hn,k(1) + hn,k(−1)) + hn,k(0)(−2h2n,k(1)+
h2n,k(1)− 2hn,k(1)hn,k(−1)− 2h2n,k(−1) + h2n,k(−1)),

(7)

h2n,k(1)h2n,k(1) = h4n,k(0) + h4n,k(1)− hn,k(0)h2n,k(0)(hn,k(1) + hn,k(−1))
+ h2n,k(0)(3h

2
n,k(1)− h2n,k(1) + 2hn,k(1)hn,k(−1) + h2n,k(−1)),

(8)

2h2n,k(0)h2n,k(0) = 4h3n,k(0)(hn,k(1) + hn,k(−1))− h2n,k(0)(h2n,k(1) + h2n,k(−1))
+ hn,k(0)(hn,k(1) + hn,k(−1))(2h2n,k(1)− h2n,k(1) + 2h2n,k(−1)− h2n,k(−1)),

(9) h3n,k(1)+h3n,k(1)+h
2
n,k(0)(2hn,k(1)+hn,k(−1)) = 2(hn,k(0)h2n,k(0)+hn,k(1)h2n,k(1)),

(10)

h2n,k(0)(hn,k(1) + hn,k(−1)) = h3n,k(0) + h3n,k(0) + hn,k(0)(h
2
n,k(1)− h2n,k(1)+

hn,k(1)hn,k(−1) + h2n,k(−1)− h2n,k(−1)),

(11)

hn,k(1)(2hn,k(1)h2n,k(1)− h3n,k(1)− h3n,k(1)) = h4n,k(0)+

hn,k(0)(h3n,k(0)− h2n,k(0)(3hn,k(1) + hn,k(−1))) + h2n,k(0)(3h
2
n,k(1)− h2n,k(1)

+ 2hn,k(1)hn,k(−1) + h2n,k(−1)− h2n,k(−1)).

Proof. Proof of Parts (1)–(3). These proofs are straightforward applications of Lemma 5.1 Part
(1) by setting a = Tk+1, and b = Tk+1.

Proof of Part (4). This proof is a straightforward application of Lemma 5.1 Part (2) by
setting a = Tk+1 and b = I2.

Proof of Parts (5) and (6). These proofs are straightforward applications of Lemma 5.1 Part
(3) by setting a = Tk+1, and b = I2 and c = Tk+1.

Proof of Parts (7) and (8). These proofs are straightforward applications of Lemma 5.1 Part
(5) by setting a = Tk+1, and b = Tk+1.

Proof of Parts (9) and (10). These proofs are straightforward applications of Lemma 5.1
Part (8) by setting a = Tk+1, and b = c = I2.

Proof of Part (11). This proof is a straightforward application of Lemma 5.1 Part (9) by
setting a = Tk+1, b = I2, and c = Tk+1. �

7.3. Pell identities from Jordan identities. We recall that the Pell numbers sequence is
given by the recursive relation pn = 2pn−1 + pn−2, where p0 = 0, p1 = 1.

Proposition 7.5. If Pn is a Pell number, then these identities hold
(1) PmPn + Pm+1Pn+1 =Pm+n+1,
(2)

Pm−1(nPn−1 − nPn + Pn) + Pm((n+ 1)Pn−1 + 2nPn − (n− 1)Pn+1)+

Pm+1((n+ 1)Pn + nPn+1) = n(Pm+n−1 + Pm+n+1) + 2Pm+n,

(3) Pn+2 = Pn + 2Pn+1,
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(4) 2Pn+2Pn+1 + PnPn+2 = P 2
n + Pn+1(2Pn + 5Pn+1 − Pn−1),

(5) P 2
n+1 + 2Pn+2Pn+1 − PnPn+2 = −P 2

n + 2Pn+1Pn + Pn+1(Pn−1 + 4Pn+1),
(6) P2n+1 = P 2

n + P 2
n+1,

(7) 4P2n + 3P2n−1 + 2P2n+1 = 3P 2
n−1 + 5P 2

n + 2P 2
n+1 + 4PnPn−1 + 4PnPn+1,

(8) 7P 2
n = −3Pn−1Pn−1 + 2PnPn−1 − 4P 2

n+1 − 2P2n + 2PnPn+1 + 3P2n−1 + 4P2n+1,
(9) 3P 2

n = −Pn−1(3Pn−1 + 2Pn) + 2P2n − 2PnPn+1 + 3P2n−1,
(10)

2Pn(3Pmn − Pmn+1) + 18Pn+1Pmn+1 = −P 2
n(2Pmn−n + 3Pmn−n−1)+

2Pn+1(3Pmn−n − Pmn−n+1)Pn + 9(Pmn−n+1P
2
n+1 + Pmn+n+1),

(11)

Pn−1(4Pmn + 3Pmn−1 + 2Pmn+1) + Pn+1(4Pmn + 3Pmn−1 + 2Pmn+1)

+ Pn(−2Pmn − 3Pmn−1 + 9Pmn+1) = P 2
n(2Pmn−n − 3Pmn−n−1 − 4Pmn−n+1)+

Pn−1(Pn+1(4Pmn−n + 3Pmn−n−1 + 2Pmn−n+1)− Pn(2Pmn−n + 3Pmn−n−1))+

9Pn+1Pmn−n+1Pn + 3Pmn+n−1 + 4Pmn+n + 2Pmn+n+1,

(12)

Pn−1(2Pmn − 3Pmn−1 − 4Pmn+1) + Pn+1(2Pmn − 3Pmn−1 − 4Pmn+1)+

Pn(−2Pmn − 3Pmn−1 + 9Pmn+1) = P 2
n(4Pmn−n + 3Pmn−n−1 + 2Pmn−n+1)+

9Pn+1Pmn−n+1Pn − Pn−1(Pn(2Pmn−n + 3Pmn−n−1)+

Pn+1(−2Pmn−n + 3Pmn−n−1 + 4Pmn−n+1))− 3Pmn+n−1 + 2Pmn+n − 4Pmn+n+1,

(13)

2Pn(3Pmn − Pmn+1)− 2Pn−1(2Pmn + 3Pmn−1) + P 2
n−1(2Pmn−n + 3Pmn−n−1) =

2PnPn−1(3Pmn−n − Pmn−n+1) + 9P 2
nPmn−n+1 − 3Pmn+n−1 − 2Pmn+n,

(14) (n− 1)Pn−1P
2
n = 2Pn+1P

2
n + (n− 1)P2nPn + (n+ 1)Pn+1

(
P 2
n+1 − P2n+1

)
,

(15)

Pn−1
(
nP 2

n − 2Pn+1Pn − (n− 1)P2n + n
(
P2n+1 − P 2

n+1

))
+ Pn+1((n+ 1)P2n + nP2n−1) =

2P 3
n − nPn+1P

2
n +

(
2(n+ 1)P 2

n+1 + 2nP2n + nP2n−1 − P2n−1 − nP2n+1 − P2n+1

)
Pn+

P 2
n−1(nPn+1 − 2(n− 1)Pn),

(16)

Pn−1(nP
2
n + 2Pn+1Pn + (n− 1)P2n + n(P2n+1 − P 2

n+1)) + 2P 3
n + nPn+1P

2
n =

(−2(n+ 1)P 2
n+1 + 2nP2n − nP2n−1 + P2n−1 + nP2n+1 + P2n+1)Pn+

P 2
n−1(2(n− 1)Pn + nPn+1) + Pn+1((n+ 1)P2n − nP2n−1),

(17) (n− 1)P 3
n−1 =

(
2P 2

n + (n− 1)P2n−1
)
Pn−1 + (n+ 1)Pn(PnPn+1 − P2n),

(18) (Pl−1 − Pl+1)(Pm+1Pn + PmPn+1) = Pl(Pm−1Pn+1 + Pm+1(Pn−1 − 2Pn+1)),
(19) 2(Pl−1 − Pl+1)PmPn = Pl(Pn(Pm−1 − Pm+1) + Pm(Pn−1 − Pn+1)),
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(20)

(1− n)P 2
l+m + P 2

l+m+1 + nP 2
l+m+1 = P 2

l

(
(n+ 1)P 2

m − (n− 1)P 2
m−1

)
+

2Pl+1PlPm((n+ 1)Pm+1 − (n− 1)Pm−1) + P 2
l+1

(
(n+ 1)P 2

m+1 − (n− 1)P 2
m

)
,

(21)

Pl+m−1(nPl+m+1 − (n− 1)Pl+m)− Pl+m(nPl+m − (n+ 1)Pl+m+1) =

Pl−1Pl+1(Pm−1(−nPm + nPm+1 + Pm) + Pm((n+ 1)Pm+1 − nPm))+
PlPl+1

(
(n+ 1)P 2

m+1 − (n− 1)P 2
m

)
+ P 2

l (Pm(nPm + (n+ 1)Pm+1)+

Pl−1Pl
(
(n+ 1)P 2

m − (n− 1)P 2
m−1

)
+ Pm−1(−nPm − nPm+1 + Pm)),

(22)

Pl+m+1((n+ 1)Pl+m − nPl+m−1)− Pl+m((n− 1)Pl+m−1 − nPl+m) =
P 2
l Pm−1(−nPm + nPm+1 + Pm) + P 2

l Pm((n+ 1)Pm+1 − nPm)+
Pl+1Pl

(
(n+ 1)P 2

m+1 − (n− 1)P 2
m

)
+ Pl+1Pl−1Pm(nPm + (n+ 1)Pm+1)+

PlPl−1
(
(n+ 1)P 2

m − (n− 1)P 2
m−1

)
+ Pl+1Pl−1Pm−1(−nPm − nPm+1 + Pm),

(23)

P 2
l+m−1 + P 2

l+m = P 2
l−1
(
(n+ 1)P 2

m − (n− 1)P 2
m−1

)
+

2PlPl−1Pm((n+ 1)Pm+1 − (n− 1)Pm−1) + nP 2
l+m−1 − nP 2

l+m+

P 2
l

(
(n+ 1)P 2

m+1 − (n− 1)P 2
m

)
,

(24) P 2
l+m+1 = P 2

l P
2
m + 2PlPl+1Pm+1Pm + P 2

l+1P
2
m+1,

(25)

P 2
l+m = Pl+m−1Pl+m+1 + 2Pl+mPl+m+1 − 2Pl+1PlP

2
m+1−

P 2
l (P

2
m + 2Pm+1Pm − Pm−1Pm+1)− Pl−1(2PlP 2

m+

Pl+1(−P 2
m + 2Pm+1Pm + Pm−1Pm+1)),

(26)

PnPl+m + PmPl+n + 3PmPl+n+1 + Pm+1Pl+n+1 = PlPm+1Pn + Pm−1Pl+n+1

+ PlPm(6Pn + Pn+1) + (Pn−1 − 3Pn − Pn+1)Pl+m+1 + Pl+1(2PmPn − Pm−1Pn+1+

3PmPn+1 + Pm+1(−Pn−1 + 3Pn + 2Pn+1)),

(27)

Pn−1Pl+m−1 + Pn−1Pl+m+1 + 2Pl+1PmPn + 20PnPl+m + 2PnPl+m+1 + 2PnPl+m−1+

Pn+1Pl+m−1 + 21Pn+1Pl+m+1 + Pm−1Pl+n−1 + 2PmPl+n−1 + Pm+1Pl+n−1 + 20PmPl+n+

Pm−1Pl+n+1 + 2PmPl+n+1 + 21Pm+1Pl+n+1 + 16Pl+m+n = Pl+1Pm+1Pn−1 + 10Pn−1Pl+m+

2Pl+1Pm+1Pn + Pl+1Pm−1Pn+1 + 2Pl+1PmPn+1 + 20Pl+1Pm+1Pn+1 + 6Pn+1Pl+m+

Pl−1(Pm+1(Pn−1 + 2Pn) + Pm−1Pn+1 + 2Pm(9Pn + Pn+1))+

Pl(−10Pm−1Pn+1 + 4Pm(6Pn + 5Pn+1) + Pm+1(4(5Pn + Pn+1)− 10Pn−1))+

10Pm−1Pl+n + 6Pm+1Pl+n + 2Pl+m+n−1 + 22Pl+m+n+1,
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(28)

6Pn+1Pl+m + 3PmPl+n−1 + PmPl+n + 6Pm+1Pl+n + 2Pl+m+n−1 + PnPl+m = PlPm+1Pn+

Pl−1(4PmPn − Pm+1(Pn−1 − 3Pn)− Pm−1Pn+1 + 3PmPn+1) + Pm−1Pl+n−1+

Pm+1Pl+n−1 + PlPmPn+1 + 6PlPm+1Pn+1 + (Pn−1 − 3Pn + Pn+1)Pl+m−1 + 6Pl+m+n,

(29)

Pn(Pl+1(Pm − 3Pm+1)− Pl+m + 3Pl+m+1) =

Pl(−2Pm−1Pn + 6PmPn − PmPn+1 + 3Pm+1Pn+1 + Pm+n − 3Pm+n+1),

(30)

Pn−1Pl+m−1 + 11Pl−1Pm+n+1 + 16Pl+m+n + Pn+1Pl+m−1 + Pl−1Pm+n−1 =

4PnPl+m−1 − 12PnPl+m + Pl−1Pm−1Pn+1 − 8Pl−1PmPn+1+

11Pl−1Pm+1Pn+1 + 8Pn+1Pl+m − 11Pn+1Pl+m+1 + 8Pl−1Pm+n+

− 2Pl(−6PmPn−1 − 4PmPn − Pm+1Pn + Pm−1(2Pn−1 + Pn)− 2Pm+n−1 + 6Pm+n)+

Pl+1(Pm−1Pn−1 − 8PmPn−1 + 11Pm+1Pn−1 − Pm+n−1 + 8Pm+n − 11Pm+n+1)+

8Pn−1Pl+m − 11Pn−1Pl+m+1 − 4Pl−1Pm−1Pn + 12Pl−1PmPn + 2Pl+m+n−1 + 22Pl+m+n+1,

(31)

6Pn−1Pl+m + 3PnPl+m+1 + 2Pl+m+n−1 = 2Pn−1Pl+m−1 + 6Pl+m+n + PnPl+m+

Pl−1(−2Pm−1Pn−1 + 6PmPn−1 − PmPn + 3Pm+1Pn + 2Pm+n−1 − 6Pm+n)+

Pl(−PmPn−1 + 3Pm+1Pn−1 + Pm+n − 3Pm+n+1).

Proof. This proof is a straightforward application of Lemma 5.1. In this lemma we use Parts
(1)–(8) setting a = P2 from (2.7), b =M1 from (4.5), c =M2 from (4.6), d = Sk from (4.9),
and to use Parts (8) and (9) of the lemma we set c = L from 4.8.

The Proofs of Parts (1) and (2) use Lemma 5.1 Part (1).
The Proofs of Parts (3)–(5) use Lemma 5.1 Part (2).
The Proofs of Parts (6)–(9) use Lemma 5.1 Part (3).
The Proofs of Parts (10)–(13) use Lemma 5.1 Part (4).
The Proofs of Parts (14)–(17) use Lemma 5.1 Part (5).
The Proofs of Parts (18) and (19) use Lemma 5.1 Part (6).
The Proofs of Parts (20)–(23) use Lemma 5.1 Part (7).
The Proofs of Parts (24) and (25) use Lemma 5.1 Part (2).
The Proofs of Parts (26)–(28) use Lemma 5.1 Part (8).
The Proofs of Parts (29)–(31) use Lemma 5.1 Part (9). �

8. Appendix. Mathematica programing

In this section, we share our programs that we made in Mathematica. Where Mc[A_, n_]
is An given in Theorem 4.1,

Input. An integer n and a matrix

A =

[
a b
c d

]
.

Output. Matrix with sequences associated to A.
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8.1. Construction of Mc Laughlin Matrix from Theorem 4.1. Here Y[A_, n_] is yn
and Mc[A_, n_] is An as given in Theorem 4.1.

Y[A_, n_] :=
∑Floor[n

2
]

i=0 Binomial[n− i, i]Tr[A]n−2i(−Det[A])i;

Mc[A_, n_] := {{Y[A,n]−A[[2]][[2]] ∗Y[A,n− 1], A[[1]][[2]] ∗Y[A,n− 1]},
{A[[2]][[1]] ∗Y[A,n− 1],Y[A,n]−A[[1]][[1]] ∗Y[A,n− 1]}};

8.2. Construction of Mc Laughlin Matrix using (4.1) and (4.2). Here Z[A_, n_] is as
in (4.1) and McIden[A_, n_] is as in (4.2).
α[A_] = (1/2)(Tr[A] +

√
Tr[A]2 − 4Det[A]);

β[A_] = (1/2)(Tr[A]−
√

Tr[A]2 − 4Det[A]);

Z[A_, n_] := Simplify
[
α[A]n−β[A]n
α[A]−β[A]

]
;

McIden[A_, n_] := {{Z[A,n] ∗A[[1]][[1]]− Z[A,n− 1] ∗Det[A],Z[A,n] ∗A[[1]][[2]]},
{Z[A,n] ∗A[[2]][[1]],Z[A,n] ∗A[[2]][[2]]− Z[A,n− 1] ∗Det[A]}};

8.3. Using Jordan Identities. In this section, we give functions to evaluate the Jordan
product and the ternary Jordan product and one of the identities from Section 5 (we give only
one identity, in a similar way the other identities can be defined). Here JordanP[A_, B_] is
the Jordan product and TernaryP[A_, B_, C_] is the ternary product.

Input. An integer n and 2× 2 matrices A, B, C.
Output. An identity of matrices.
JordanP[A_, B_] := (1/2)(A.B +B.A);
TernaryP[A_, B_, C_] := (1/2)((A.B).C + (C.B).A);

Identity1[An_, Am_, Bn_, AmSn_] := Print[MatrixForm[TernaryP [An,Am,Bn]],

“ = ”,MatrixForm[JordanP[AmSn,Bn]]];

This function can be used with any matrices associated to a recurrence relation. For
example, if A = {{1, 1}, {1, 0}}, we can take An = McIden[A,n], Am = McIden[A,m],
Bn = {{1, 0}, {0, 1}}, and AmSn = McIden[A,m + n] into Identity1[An,Am,Bn,AmSn]
to obtain fibonacci numerical values n and m. (If we want a symbolic identity it is possible to
do some manipulation on Binomial[n− i, i] such that it provides symbolic results).

Note 1. The coding in Mathematica for the identities and some matrices will be available
on the webpage http://macs.citadel.edu/florez/research.html .

Note 2. Again, there are still many things, on how this connection works, that we would
like to understand better. For example, we are wondering under what conditions the identities
given by Glennie [8] can be used to obtain new identities –under the context of this paper. We
only know that some identities associated to powers have good behavior.
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