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Abstract. The determinant Hosoya triangle is a triangle with determinants of two-by-two
Fibonacci matrices as its entries. In this paper we give a combinatorial interpretation of this
triangle and explore properties of square matrices embedded in the triangle (in particular,
symmetric and persymmetric). Specifically, we explore the eigenvalues, eigenvectors, and
characteristic polynomials of these matrices and provide closed formulas for the same in
terms of Fibonacci and Lucas numbers.

1. Introduction

The determinant Hosoya triangle, denoted by H, is a triangular array where its entries are
determinants of two-by-two matrices with Fibonacci numbers as entries. For example, using
Proposition 2.1 we have that the entry H6,3 of H is given by

H6,3 =

∣∣∣∣F5 F4

F3 F4

∣∣∣∣ = ∣∣∣∣5 3
2 3

∣∣∣∣ = 9.

The Table 1 shows the first rows of H.
0

1 1
1 3 1

2 4 4 2
3 7 5 7 3

5 11 9 9 11 5
8 18 14 16 14 18 8

Table 1. Determinant Hosoya Triangle H.

Several authors have been interested in the study of matrices with Fibonacci numbers (eigen-
values, eigenvectors, graphs). For example, in 2020 Ching et al. [5] took the matrices from this
triangle mod 2 to obtain three infinite families of cographs with one of them integral. Blair et
al. [4] study sequences and geometric properties of the triangle considered here. In 2018, Blair
et al. [3] studied properties of matrices in the Hosoya triangle and hence bridged linear algebra
with combinatorial triangles (other related papers are [17,22]).

In this paper we discuss properties of matrices embedded in H. A matrix in H is slash
(backslash) if its columns are embedded in the slash (backslash) diagonals of H, as depicted in
Figures 1 and 5. We analyze these two types of matrices and use linear algebra and geometry
to explore different patterns in this triangle.

We show that these matrices embedded in the determinant Hosoya triangle are of rank two
and therefore can be written as sum of two products of vectors. Thus, a matrix within H has

Several of the main results in this paper were found by the first author while working on his undergraduate
research project under the guidance of the second and third authors (who followed the guidelines given in [9]).
The second and third authors were partially supported by The Citadel Foundation.
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the form u1
Tv1 + u2

Tv2, where u1,v1,u2,v2 are vectors. The entries of these vectors are
consecutive Fibonacci numbers (located on the sides of the triangle as in Figure 1). Matrices
with this behavior allow us to explore properties where the outcomes are again Fibonacci num-
bers. For example, these matrices have closed formulas for trace, eigenvalues, and eigenvectors
primarily in terms of Fibonacci and Lucas numbers.

We also look at particular cases of these matrices one of which are families of symmetric
matrices and persymmetric matrices —symmetric with respect to the antidiagonal. The closed
formulas are also connected to the geometry of the triangle. For example, the trace of the
symmetric matrices give rise to a hockey stick-like property found in the Hosoya triangle (see
[7]). Some of these properties were also explored in the Hosoya triangle [3] (this is a triangular
array defined recursively similar to the triangle here, but with different initial conditions, see
Section 6).

The properties of the matrices and their proofs, mainly depend on the recursive nature of
the entries of the triangle and some well-known linear algebra techniques.

It is well-known that the Fibonacci number Fn counts the number of tilings of a board of
length n−1 with cells labelled 1 to n−1 from left to right with only squares and dominoes [1].
We use this idea to give a combinatorial interpretation of the entries of the determinant Hosoya
triangle.

2. The determinant Hosoya triangle

In this section we give a recursive definition of the determinant Hosoya triangle, we present
a closed formula for the entries of the triangle and investigate several properties of the triangle.

The determinant Hosoya triangle was originally discovered by Sloane [21, A108038]. The
determinant Hosoya sequence {H(r, k)}r,k>0 is defined using this double recursion.

H(r, k) = H(r − 1, k) +H(r − 2, k) and H(r, k) = H(r − 1, k − 1) +H(r − 2, k − 2) (2.1)

with initial conditions H(1, 1) = 0, H(2, 1) = H(2, 2) = 1, and H(3, 2) = 3 where r > 2
and 1 ≤ k ≤ r. For brevity, we write Hr,k instead of H(r, k) for the rest of the paper.
This sequence gives rise to the determinant Hosoya triangle, denoted by H, where the entry in
position k (taken from left to right) of the rth row is equal to Hr,k. Note that the left hand-side
of (2.1) gives of rise to slash diagonals and the right hand-side give rise to backslash diagonals
of the triangle.

It is easy to see that every diagonal in the determinant Hosoya triangle is a general-
ized Fibonacci number. For instance, the fifth (slash or backslash) diagonal in Figure 1 is
3, 11, 14, 25, 39, 64, . . . this sequence corresponds to the generalized Fibonacci number G(5)

n =

G
(5)
n−1 + G

(5)
n−2, where G

(5)
1 = 3 and G(5)

2 = 11. In this paper we use Fm and Lm to represent
Fibonacci and Lucas numbers. In general, the entries of the mth diagonal of this triangle are
given by the generalized Fibonacci number

G(m)
n = G

(m)
n−1 +G

(m)
n−2, where G

(m)
1 = Fm−1 and G

(m)
2 = Lm.

The following proposition gives an equivalent definition of the entries of the triangle using
determinants of 2× 2 matrices with Fibonacci numbers as entries. In this paper we use |A| or
detA to represent determinant of the matrix A.

Proposition 2.1. If r, k are positive integers with k ≤ r with Hr,k as defined in (2.1), then
(1) Hr,k = Fk+1Fr−k+2 − FkFr−k+1. Thus,

Hr,k =

∣∣∣∣Fr−k+2 Fr−k+1

Fk Fk+1

∣∣∣∣ .
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Figure 1. (a) Slash matrix S(2, 4, 3) (b) Symmetric matrix S(4) in H.

(2) Hr,k = Fk−1Fr−k+2 + FkFr−k. Thus,

Hr,k =

∣∣∣∣Fr−k+2 −Fr−k
Fk Fk−1

∣∣∣∣ .
(3) Hn,k = LkFn−k + Fk−1F−k+n−1. Thus,

Hr,k =

∣∣∣∣Fn−k −F−k+n−1
Fk−1 Lk

∣∣∣∣ .
Proof. We prove Part (1) by mathematical induction, the proof of Part (2) follows from Part
(1) substituting Fk+1 by Fk + Fk+1 and simplifying, and Part (3) follows from generalized
Fibonacci numbers (for details, see [4]).

Let P (r, k) be the statement:

Hr,k = Fk+1Fr−k+2 − Fr−k+1Fk for every 1 ≤ k ≤ r.
We prove this statement by mathematical induction.

We first prove the statements P (r, 1) for r ≥ 1 and P (r, 2) for r ≥ 2 are true. To prove
P (r, 1), we show that Hr,1 = Fr−1 for every r ≥ 1. From the recursive definition of Hr,1 it
is easy to verify that P (1, 1), P (2, 1) are true. Let n > 2 be a fixed integer number, if we
suppose that for r = n the statements P (n, 1) and P (n− 1, 1) are true, then by the recursive
definition of Hr,1 we have that P (n + 1, 1) is true. The statement P (r, 2) (i.e., Hr,2 = Lr−1)
can be proved using a similar argument.

We now prove the statement for P (r, k) for any r ≥ k. Since P (r, 1) and P (r, 2) are
true, we have proved the basis step. Suppose that P (r − 1, k − 1) and that P (r − 2, k − 2)
are true for any r ≥ k. Thus, Hr−2,k−2 = Fk−2+1Fr−2−(k−2)+2 − Fr−2−(k−2)+1Fk−2 and
Hr−1,k−1 = Fk−1+1Fr−1−(k−1)+2 − Fr−1−(k−1)+1Fk−1. Since, Hr,k = Hr−1,k−1 +Hr−2,k−2 we
have that

Hr,k = FkFr−k+2 − Fr−k+1Fk−1 + Fk−1Fr−k+2 − Fr−k+1Fk−2 = Fk+1Fr−k+2 − Fr−k+1Fk.

This completes the proof. �

The following proposition provides a closed formula for the sum of entries in each row of the
determinant Hosoya triangle.

Proposition 2.2. If r, k are positive integers with k ≤ r, then
r∑

k=1

Hr,k =
r∑

k=1

∣∣∣∣Fr−k+2 Fr−k+1

Fk Fk+1

∣∣∣∣ = (rLr+2 − 4Fr)/5 = ((7r − 4)Fr−1 + 4(r − 1)Fr−2)/5.
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Proof. From Proposition 2.1 we have
r∑

k=1

Hr,k =
r∑

k=1

(Fk+1Fr−k+2 − Fr−k+1Fk) =
r∑

k=1

(FkFr−k + Fk−1Fr−k+2).

Using the identity for convolution of Fibonacci numbers,
n∑

i=0

FiFn−i = (nLn − Fn)/5, we have

r∑
k=1

(FkFr−k + Fk−1Fr−k+2) =
r∑

k=1

FkFr−k +
r∑

k=1

Fk−1Fr−k+2

= (rLr − Fr)/5 + ((r + 1)Lr+1 − Fr+1 − 5Fr)/5

= (rLr+2 − 4Fr)/5.

This proves the middle equality in the proposition. The right equality of the proposition holds
using Lr+2 = Fr+1 + Fr+3 in the middle equality. �

3. A combinatorial interpretation and connections with other triangular
arrays

In this section we give a combinatorial interpretation of the entries of the determinant
Hosoya triangle and some connections with other triangles. Benjamin [2] asked the first author
the following question after his presentation at the conference, Is there any combinatorial
interpretation for the entries of the determinant Hosoya triangle? Here we give a combinatorial
interpretation to address this question.

3.1. A combinatorial interpretation. It is well-known that the Fibonacci number Fn+1

counts the number of tilings of a board of length n (n-board) with cells labelled 1 to n from
left to right with only squares and dominoes (cf. [1]). Let Tn denote the set of all n-tilings,
then |Tn|= Fn+1, for all n ≥ 0. For example, in Figure 2 we show the elements of T4. We use
this interpretation to give a combinatorial interpretation of the determinant Hosoya sequence
Hn,k.

Figure 2. Different ways to tile a 4-board.

For n, k > 0, let hn,k denote the number of tilings in Tn such that in the cell k or k + 1 or
both there is a hole, and we can not put any tile over the hole. For example, h4,1 = 7, the
relevant tilings are in Figure 3.

Proposition 3.1. For 0 ≤ k ≤ n, we have that hn,k = FkFn−k+2 + Fk+1Fn−k. Therefore,
Hn+1,k+1 = hn,k.

Proof. For any tiling T in Tn, (n ≥ 0) there are three cases: there is either a hole in the kth
cell or there is a hole in the (k+1)th cell or there are holes in both cells. In the first case, the
n-board is divided into a (k − 1)-board (it could be empty) and a (n− k)-board. Then there
are FkFn−k+1 possibilities. In the second case, the n-board is divided into a k-board and a
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Figure 3. Different ways to tile a 4-board with holes.

(n− k − 1)-board, so there are Fk+1Fn−k possibilities. Finally, in the third case, we can use a
similar argument, and then we obtain FkFn−k options. Altogether, we have

hn,k = FkFn−k+1 + Fk+1Fn−k + FkFn−k = FkFn−k+2 + Fk+1Fn−k. �

Notice that from the combinatorial interpretation we obtain the following corollary.

Corollary 3.2. The sequence hn,k satisfies that
• hn,k = hn,n−k, therefore, the determinant Hosoya triangle is symmetric.
• hn,k = hn−1,k + hn−2,k, for n ≥ 2 and 0 ≤ k ≤ n.
• hn,k = hn−1,k−1 + hn−2,k−2, for n ≥ 2 and 2 ≤ k ≤ n.

Corollary 3.3. The bivariate generating function of the sequence hn,k is given by∑
n,k≥0

hn,kx
nyk =

x+ xy + x2y

(1− x− x2)(1− xy − x2y2)
.

Proof. From the Proposition 3.1 we have∑
n,k≥0

hn,kx
nyk = x+ y +

∑
n≥2

xn
n∑

k=0

hn,ky
k

= x+ y + 3x2y +
∑
n≥2

xn
n∑

k=0

(FkFn−k+2 + Fk+1Fn−k) y
k.

The last sum can be evaluate using the software Mathematica R©. In this case we obtain that
this last sum is given by

x2(1 + x+ 3y − x2y + y2 − 2x2y2 − x3y2 + xy3 − x2y3 − x3y3)
(1− x− x2)(1− xy − x2y2)

.

Simplifying we obtain the conclusion of the corollary. �

By taking y = 1 in the last corollary we obtain the generating function for the row sum of
the determinant Hosoya triangle.

Corollary 3.4. The generating function of the row sum is given by∑
n≥0

n∑
k=0

Hn+1,k+1x
n =

∑
n≥0

n∑
k=0

hn,kx
n =

x(2 + x)

(1− x− x2)2
.

The first few values of the last generating function are

0, 2, 5, 12, 25, 50, 96, 180, 331, 600, 1075, . . .
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Note that this sequence is given by the closed formula from Proposition 2.2.
We now give the first of two potential problems that arise from this combinatorial interpre-

tation.
Problem 1. If we think of the determinant Hosoya triangle as an infinite matrix, we could

find a fractal structure associated to this matrix. For example, if we evaluated (using Mathe-
matica R©) their entries mod 3 and mod 11 we obtain two interesting patterns (see Figure 4).
For example, studying these patterns (with these matrices) may yield interesting results.

1 20 40 60 80 101

1

20

40

60

80

101

1 20 40 60 80 101

1

20

40

60

80

101

1 20 40 60 80 101

1

20

40

60

80

101

1 20 40 60 80 101

1

20

40

60

80

101

Figure 4. The determinant Hosoya triangle mod 3 and mod 11.

3.2. Connections with other triangular arrays. Here we provide two connections. How-
ever, there are more connections, see for example [3, 6–8,10,11,14–16,20].

Hosoya triangle. The entries of the Hosoya triangle are given by H ′m,n = FnFm−n+1 (see
Section 6 or [14]). As a consequence of Proposition 2.1 we have a relation between the entries
of the determinant Hosoya triangle and the Hosoya triangle. Thus, Hr,k = H ′r+2,k+1−H ′r,k for
1 ≤ k ≤ r.

Fibonomial triangle. Vajda [23] shows that the entries of the Fibonomial triangle are
based on the identity

Fk+n = Fk−1Fn + FkFn+1.

See A010048 or [23, (8)]. The entries of the determinant Hosoya triangle are obtained by
replacing —on the right-hand side of above identity— the first n by (r−k+2) and the second
n by (r − k − 1) where 1 ≤ k ≤ r. Therefore, for 1 ≤ k ≤ r the entries of the determinant
Hosoya triangle are given by

Hr,k = Fk−1Fr−k+2 + FkFr−k. (3.1)

We observe that fixing k and varying r, gives rise to the sequence {Hr,k}r∈Z>0 comprising of
generalized Fibonacci numbers.
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4. Rank-2 matrices in the determinant Hosoya triangle

We recall that a matrix in H is slash (backslash) if its columns are embedded in the slash
(backslash) diagonals of H. In this section we study the properties of the slash matrices
embedded in the determinant Hosoya triangle H. We begin by showing that these matrices
can be expressed as a sum of products of two vectors (see Figure 1). We then discuss the
eigenvalues and eigenvectors of the matrices.

4.1. Slash matrices in the determinant Hosoya triangle. In this section we use S(m,n, t)
to represent a member of a family of rank-2 matrices within the triangle. We use three cases
to analyze this type of matrices; in the first case we consider S(m,n, t) with m ≤ n, in the
second we analyze the case m > n, and the third is the case in which m = n = 1, a special
case of the symmetric matrix S(n, n, t).

We denote a t× t slash matrix in H by S(m,n, t). If m,n, and t are positive integers with
m ≤ n and ri = (m+ n− 1) + i for 0 ≤ i ≤ t− 1, then we define, formally, the slash matrix of
this form,

S(m,n, t) =


Hr0,m Hr1,m+1 Hr2,m+2 · · · Hrt−1,m+t−1
Hr1,m Hr2,m+1 Hr3,m+2 · · · Hrt,m+t−1
...

...
...

. . .
...

Hrt−1,m Hrt,m+1 Hrt+1,m+2 · · · Hr2(t−1),m+t−1

 . (4.1)

For example, in Figure 1(a) the matrix is S(2, 4, 3) and the first entry of the matrix is
H2+4−1,2 = 7. Note that the coordinates (m,n) denote the intersection of the mth slash
diagonal with the nth backslash diagonal in H and this ordered pair is the location of the (1, 1)
entry of the matrix S(m,n, t). We now define some vectors needed several times in this paper.

ur,t := [Fr, Fr+1, . . . , Fr+t−1] , vl,t := [Fl, Fl+1, . . . , Fl+t−1] with l, r ≥ 0. (4.2)

We use A(l, r, t) to denote the t × t rank one matrix uTr,t · vl,t. We recall that S(m,n, t) is
defined for m ≤ n.

Proposition 4.1. If un,t and vm,t are as defined in (4.2), then

S(m,n, t) = A(m− 1, n+ 1, t) +A(m,n− 1, t) = uTn+1,t · vm−1,t + uTn−1,t · vm,t.

Proof. Let i, j be fixed positive integers such that 0 ≤ i, j ≤ t − 1 and ri = (m + n − 1) + i.
From Proposition 2.1 Part (2), we have that the entry (i, j) of matrix S(m,n, t) is given by

Hri+j ,m+j = Fn+i+1Fm−j−1 + Fm+jFn+i−1.

Similarly, the entry (i, j) of the matrix un+1,t ·vm−1,t+un−1,t ·vm,t is given by Fn+i+1Fm−j−1+
Fm+jFn+i−1. This completes the proof. �

For example, in Figure 1(a) we see that if

u5,3 = [F5, F6, F7] , v1,3 = [F1, F2, F3] , u3,3 = [F3, F4, F5] , and v2,3 = [F2, F3, F4] ,

then the slash matrix S(2, 4, 3) is given as follows

uT5,3 · v1,3 + uT3,3 · v2,3 =

F5

F6

F7

 · [F1, F2, F3] +

F3

F4

F5

 · [F2, F3, F4] =

 7 9 16
11 14 25
18 23 41

 .
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Proposition 4.2. If S(m,n, t) is the slash matrix in H given in (4.1), where m,n, and t are
positive integers, then

tr(S(m,n, t)) =

{
(Lm+n+2t − Lm+n) /5, if t is even;(
Lm+n+2t − Lm+n − (−1)n+t(Lm−n−2 + Lm−n+1)

)
/5, if t is odd.

Proof. From Proposition 4.1 we conclude that

tr(S(m,n, t)) = tr(A(m− 1, n+ 1, t)) + tr(A(m,n− 1, t)).

This and Proposition 6.1 Part (c) (see Appendix on Page 50) prove the proposition. �

Next we show that all (slash) matrices of the form uT1 v1 + uT2 v2 embedded in H are of rank
two. The vectors in the following lemma are formed by consecutive Fibonacci numbers (located
on the sides of the triangle as in Figure 1).

Lemma 4.3. The matrix S(m,n, t) as given in (4.1) has rank 2.

Proof. Clearly S(m,n, t) 6= 0. Since uT1 v1 and uT2 v2 are rank-one matrices, rank(S(m,n, t)) ≤
2. In addition, since u1 6= αu2 and v1 6= βv2, rank(S(m,n, t)) 6= 1. This completes the
proof. �

We now find the eigenvalues of the slash matrices. Before we introduce this result, we
recall that the only non-zero eigenvalue of the slash matrix A(m,n, t) in the Hosoya triangle
is given by λ = tr(A(m,n, t)) in Proposition 6.1 (c). The proofs of the following theorem
and Proposition 4.6 are based on well-known linear algebra techniques. We adapted these
techniques to fit our objective in this paper, (see for example [12,13,19,24]).

Theorem 4.4. If S(m,n, t) is the slash matrix in H given in (4.1), with 1 < m ≤ n, where
A =

(
Lm+n − Lm+n+2t + (−1)n+t(Lm−n−2 + Lm−n+1)

)
/5 and B = (Lm+n+2t − Lm+n)/5,

then these hold
(a) the characteristic polynomial of S(m,n, t) is given by

P (x) =

{
−xt−2(x2 +Ax+ (−1)m+n+t+1(1− F 2

t )), if t is odd;

xt−2(x2 +Bx+ (−1)m+n+t+1F 2
t ), if t is even.

(b) The eigenvalues of S(m,n, t) are λ0 = 0 with multiplicity (t− 2), and for i ∈ {1, 2}

λi =


−A±

√
A2 + 4(−1)m+n+t(1− F 2

t )

2
, if t is odd;

−B ±
√
B2 + 4(−1)m+n+tF 2

t

2
, if t is even.

Proof. Let p(x) = (−1)t(xt+ct−1xt−1+ct−2xt−2+· · ·+c1x+c0) be the characteristic polynomial
of S′ := S(m,n, t). From Lemma 4.3 we know that S′ is of rank 2. Therefore, xt−2(x2+ct−1x+
ct−2) = 0. Let x1 and x2 be the non-zero eigenvalues of S′. So, the eigenvalues of S′ are x0 = 0
and

x1 =
−ct−1 +

√
(ct−1)2 − 4ct−2
2

and x2 =
−ct−1 −

√
(ct−1)2 − 4ct−2
2

. (4.3)

Since rank(S′) = 2, from linear algebra we know that ct−1 is the trace of S′ (the sum of all
eigenvalues of S′) and that ct−2 is the product of the two non-zero eigenvalues of S′. Thus,

ct−1 = −(x1 + x2) and ct−2 = x1x2.
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We now find ct−1 and ct−2. From Proposition 4.1 and (4.2) we know that

S′ = uTn+1,t · vm−1,t + uTn−1,t · vm,t. (4.4)

It is well known that

µ1 := vm−1,t · uTn+1,t is the non-zero eigenvalue of A(m− 1, n+ 1, t) = uTn+1,t · vm−1,t;
µ2 := vm,t · uTn−1,t is the non-zero eigenvalue of A(m,n− 1, t) = uTn−1,t · vm,t;

µ12 := vm,t · uTn+1,t is the non-zero eigenvalue of A(m,n+ 1, t) = uTn+1,tvm,t; (4.5)

µ21 := vm−1,t · uTn−1,t is the non-zero eigenvalue of A(m− 1, n− 1, t) = uTn−1,t · vm−1,t.

We divide the rest of the proof into two claims.
Claim 1: tr(S′) = µ1 + µ2. This is clear, because S′ = uTn+1,t · vm−1,t + uTn−1,t · vm,t.
Claim 2: tr((S′)2) = µ21 + 2µ12µ21 + µ22.
Proof of Claim 2. From (4.4) we have that

(S′)2 = uTn+1,t · (vm−1,t · uTn+1,t) · vm−1,t + uTn−1,t · (vm,t · uTn+1,t) · vm−1,t+
uTn+1,t · (vm−1,t · uTn−1,t) · vm,t + uTn−1,t · (vm,t · uTn−1,t) · vm,t.

Thus,

(S′)2 = uTn+1,t(µ1)vm−1,t + uTn−1,t(µ12)vm−1,t + uTn+1,t(µ21)vm,t + uTn−1,t(µ2)vm,t.

Therefore,

tr(S′)2 = µ1 tr(u
T
n+1,tvm−1,t) + µ12 tr(u

T
n−1,tvm−1,t) + µ21 tr(u

T
n+1,tvm,t) + µ2 tr(u

T
n−1,tvm,t)

= µ1(vm−1,tu
T
n+1,t) + µ12(vm−1,tu

T
n−1,t) + µ21(vm,tu

T
n+1,t) + µ2(vm,tu

T
n−1,t)

= µ21 + 2µ12µ21 + µ22.

This completes the proof of Claim 2.
Let us now recall a well-known property from linear algebra, [tr(S′)]2 − 2ct−2 = tr(S′)2.

Therefore, using this fact and Claims 1 and 2 we have that

µ21 + 2µ1µ2 + µ22 − 2ct−2 = µ21 + 2µ12µ21 + µ22.

Simplifying, we obtain 2µ12µ21 = 2µ1µ2 − 2ct−2. So, ct−2 = µ1µ2 − µ12µ21.
The equations in (4.5) and the closed formula given in Proposition 6.1 Part (c) (see Appendix

on Page 50) imply that for t odd this holds

ct−2 = µ1µ2 − µ12µ21 = (−1)m+n+t+1(1− F 2
t ),

and for t even this holds

ct−2 = µ1µ2 − µ12µ21 = (−1)m+n+t+1(F 2
t ).

In addition, from Claim 1 we have ct−1 = µ1 + µ2. This gives that ct−1 equals −A if t is
odd and equals −B if t is even, where A and B are as given in the statement of this theorem.
This completes the proof. �
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We now define

w1 =



−F1

−F2

1
0
0
0
...
0


, w2 =



−F2

−F3

0
1
0
0
...
0


, w3 =



−F3

−F4

0
0
1
0
...
0


, · · · , wt−2 =



−Ft−2
−Ft−1

0
0
0
0
...
1


. (4.6)

It is easy to see that {wj : j = 1, 2, . . . , t − 2} is linearly independent. From (4.1) we
know that S(m,n, t) = uTn+1,t · vm−1,t + uTn−1,t · vm,t, and from (4.2) also know that vm−1,t =
[Fm−1, Fm, . . . , Fm−1+t−1] and vm,t = [Fm, Fm+1, . . . , Fm+t−1]. Note that vm−i,t.wj = 0 for
i ∈ {0, 1} and j = 1, . . . , t− 2. Thus, wj is orthogonal to vm−i,t. This is a geometric proof of
the following proposition.

Proposition 4.5. If S(m,n, t) is as given in (4.1), then {wj : j ∈ {1, 2, . . . , t− 2}} is the set
of the eigenvectors associated to the eigenvalue λ0 = 0.

Proof. We first observe that each entry of the matrix S(m,n, t) can be written as a generalized
Fibonacci number of the form Gij = Fj−1Gi1 + FjGi2 for 3 ≤ i, j ≤ t, with initial conditions
Gi1 = Hi,1 and Gi2 = Hi,2. From this observation it is easy to see that each row of S(m,n, t) is
a linear combination of the first two rows. Therefore, we can reduce the rest of the (t−2) rows
using the following row operations: first, for the i-th row denoted by Ri, Ri → Ri − Fi−2R1,
where i > 2. Next, for the same i, we apply the row operation, Ri → Ri − Fi−1R2 to obtain
the matrix

S(m,n, t) =


H1,1 H2,1 H3,1 · · · Ht,1

H2,2 H3,2 H4,2 · · · Ht+1,2

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 .
Using the definition of the entries of the triangle from Proposition 2.1, we have, Hj,1 =

F2Fj+1 − FjF1 = Fj−1 and Hj,2 = Lj . Then applying the row operations R2 ↔ R1 (inter-
changing R1 with R2) and R1 → R1−3R2 on the non-zero rows of S(m,n, t), and finally using
the identity F1Fj + F3Fj−1 = Lj and applying R1 → R2 −R1 twice

S(m,n, t) =


F0 F1 F2 F3 · · · Ft−1
L1 L2 L3 L4 · · · Lt

0 0 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0

 =


F0 F1 F2 F3 · · · Ft−1
F2 F2 F3 F4 · · · Ft

0 0 0 0 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 0

 .
We now solve the system of equations S(m,n, t)x = 0 (where x = [x1, x2, . . . , xt]

T and 0 is
the zero vector), to obtain the eigenvectors w1,w2, · · · ,wt−2 given in (4.6). �

For the following proposition we use the same notation as in Theorem 4.4. For example,
µ1 = vm−1,t · uTn+1,t, and µ12 = vm,t · uTn+1,t are as given in (4.5), λj for j ∈ {1, 2} is as given
in Theorem 4.4 Part b and S(m,n, t) as given in (4.1).
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Proposition 4.6. Let µ1 = vm−1,t · uTn+1,t and µ21 = vm−1,t · uTn−1,t. If j ∈ {1, 2}, then
xj = µ21u

T
n+1,t + (λj − µ1)uTn−1,t is an eigenvector of S(m,n, t) associated to λj.

Proof. Let S′ := S(m,n, t) = uTn+1,t ·vm−1,t+uTn−1,t ·vm,t. It is easy to see that un+1,t and un−1,t
are not in span({wj : j ∈ {1, 2, . . . , t − 2}}) (the orthogonal subspace to the vectors vm−1,t,
vm,t, see (4.6)). Therefore, Rt = span({un+1,t, un−1,t}) ∪ span({wj : j ∈ {1, 2, . . . , t− 2}}).

If xj is the eigenvector associated to λj for j ∈ {1, 2}, then there are constants αj and βj
such that xj = αju

T
n+1,t + βju

T
n−1,t. Since λjxj = S′xj , we have that (with the notation given

in (4.5))

λj(αju
T
n+1,t + βju

T
n−1,t) = (uTn+1,t · vm−1,t + uTn−1,t · vm,t)xj

= (uTn+1,t · vm−1,t + uTn−1,t · vm,t)(αju
T
n+1,t + βju

T
n−1,t)

= αju
T
n+1,tµ1 + αju

T
n−1,tµ12 + βju

T
n+1,tµ21 + βju

T
n−1,tµ2.

Since

λjαju
T
n+1,t + λjβju

T
n−1,t = (αjµ1 + βjµ21)u

T
n+1,t + (αjµ12 + βjµ2)u

T
n−1,t,

we have that αj = µ21 and βj = λj − µ1 (or equivalently, αj = λj − µ2 and βj = µ12).
Therefore, xj = µ21u

T
n+1,t + (λj − µ1)uTn−1,t. �

We note here that for 1 < m, t ≤ n, the slash matrices S(m,n, t) are diagonalizable. In fact,
if we define the matrix of eigenvectors T =

[
x1 x2 w1 w2 · · · wt−2

]
and V is the t × t

diagonal matrix with the diagonal elements λ1, λ2, and 0 given by the eigenpairs (λj ,xj), with
j ∈ {1, 2} and (0,wl) with l ∈ {1, 2, . . . , t− 2}, then S(m,n, t) = TV T−1.

4.2. Slash matrices and their transposes in the determinant Hosoya triangle. In this
section we analyze S(m,n, t) with 1 ≤ n < m.

Proposition 4.7. This identity holds in H, S(m,n, t)T = S(n,m, t).

Proof. The ith column of S(m,n, t) is on the (m+i)th slash diagonal of the triangle, where the
first entry of every column is on the nth backslash diagonal of the triangle. On the other hand,
the ith row of S(n,m, t) is on the (m+ i)th backslash diagonal of the triangle, where the first
entry of every row is on the nth slash diagonal of the triangle. Since the determinant Hosoya
triangle is symmetric with respect to its median, we have that the columns of S(m,n, t) are
equal to the rows of S(n,m, t). �

Corollary 4.8. If S(m,n, t) = uTn+1,t · vm−1,t + uTn−1,t · vm,t, then S(n,m, t) = vTm−1,tun+1,t +

vTm,tun−1,t.

Proof. Since S(m,n, t)T = S(n,m, t), we have that

S(m,n, t)T = (uTn+1,t · vm−1,t + uTn−1,t · vm,t)
T = vTm−1,tun+1,t + vTm,tun−1,t = S(n,m, t). �

Using this corollary and the techniques in Subsection 4.1 we can find the eigenvectors and
eigenvalues of S(m,n, t) when m > n. Since S(m,n, t) is the transpose of S(n,m, t), they both
share eigenvalues and characteristic polynomial, in this case Proposition 5.4 works for both.
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4.3. Symmetric matrices of rank two in the determinant Hosoya triangle. The matrix
S(m,n, t) is symmetric if m = n. Fixing m = n = 1, we obtain a special case of this symmetric
matrix, S(1, 1, t). Its first row and its first column are formed with the first entries of the right-
hand side border and the left-hand side border of the triangle, respectively. For simplicity, we
use S(t) := S(1, 1, t), where t is the size of the matrix. For example, S(4) is depicted in Figure
1(b) on page 36. In this section we discuss properties of S(t) within H. The results here are
corollaries of the previous results. We believe that these particular results help in getting a
better understanding of the symmetric matrices embedded in the determinant Hosoya triangle.

The matrix S(t) is formally stated as follows

S(t) =


H1,1 H2,2 H3,3 · · · Ht,t

H2,1 H3,2 H4,3 · · · Ht+1,t

H3,1 H4,2 H5,3 · · · Ht+2,t
...

...
...

. . .
...

Ht,1 Ht+1,2 Ht+2,3 · · · H2t−1,t

 . (4.7)

Since S(t)T = S(t), we use S(t) and S(t)T interchangeably in the results below as needed.
From Corollary 3.2 (see also Table 1 or Figure 1) we have that Hr,k = Hr,r−k (the triangle is
symmetric with respect to the median).

From Proposition 4.2 we have the following corollary. Another proof for this corollary follows
expanding the indicated sum and using a telescoping sum.

Corollary 4.9. For a positive integer t ≥ 2, the trace of the matrix S(t) is given by

tr(S(t)) =
n∑

i=1

H2i−1,i =
t∑

i=1

∣∣∣∣Fi+1 Fi

Fi Fi+1

∣∣∣∣ = F 2
t+1 − 1.

Using the geometry of the determinant Hosoya triangle we can easily see that for any t ∈ N,

tr(S(t)) = F 2
t+1 − 1 = H2t,t − 1.

This geometric property is similar to hockey stick properties present, for example, in the Pascal
triangle or the Hosoya triangle (see [7]). In addition, we also see that

tr(S(t)) =



t−1∑
i=1

Fi+1Fi+2, if t is odd;

t−1∑
i=1

Fi+1Fi+2 + 1, if t is even.

The following is a corollary of Theorem 4.4 that provides the eigenvalues of the t×t symmetric
matrices S(t) embedded in the determinant Hosoya traingle. These matrices have two non-zero,
(distinct) eigenvalues and the rest of the (t− 2) eigenvalues are all zero.

The eigenvectors of the symmetric matrix S(t), associated with the eigenvalue λ0 = 0, are
the same vectors as given in the statement of Proposition 4.5. The corollary provides the
eigenvectors of the symmetric matrix S(t) associated with the non-zero eigenvalues.

Corollary 4.10. If S(t) is as given in (4.7), then these hold
(1) the eigenvalues of S(t) are λ0 = 0 with multiplicity (t− 2), and

λ1 =
ct−1 +

√
(ct−1)2 − 4ct−2
2

, and λ2 =
ct−1 −

√
(ct−1)2 − 4ct−2
2

,
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where ct−1 and ct−2, for k ∈ N are given by

ct−1 =

{
FtFt+2 − 2, if t = 2k + 1;

FtFt+2, if t = 2k;
and ct−2 =

{
1− F 2

t , if t = 2k + 1;

−F 2
t , if t = 2k.

(2) If j ∈ {1, 2}, then xj = µ21u
T
2,t + (λj − µ1)uT0,t is an eigenvector of S(t) associated to

λj, where µ21 = FtFt−1 and

µ1 =

{
FtFt+1, if t is even ;

FtFt+1 − 1, if t is odd.

5. Backslash matrices of rank two in the determinant Hosoya triangle

A matrix embedded in the determinant Hosoya triangle is backslash if its columns are in
the backslash diagonals of the triangle. In this section we study this type of matrix. These
matrices can be expressed as a sum of products of two vectors (see Figure 5). We begin this
section giving some results from [3]. Let ul,t := [Fl, Fl+1, . . . , Fl+t−1] (as given in (4.2)) and
wr,t := [Fr, Fr−1, . . . , Fr−t+1] and let B(m,n, t) := uTm,t · wn,t. The matrix B(m,n, t) is a type
of backslash matrix that is embedded in the Hosoya triangle H′, see Appendix on page 50.

Proposition 5.1 ( [3]). If m,n, t are fixed positive integers with t ≤ n, then B(m,n, t) has
these properties,
(1) the eigenvalues of B(m,n, t) are λb1 = tr(B(m,n, t)) and λb2 = 0 with algebraic multiplicity

1 and (t− 1), respectively,
(2) the trace of B(m,n, t) is given by

tr(B(m,n, t)) =
t−1∑
i=0

Fm+iFn−i =
1

5
(tLm+n + (−1)n−tFm−n+2t−1 + (−1)m−1Fn−m+1).

If m,n, and t are positive integers with m, t ≤ n, s = t − 1, and ri = (m + n − 1) + i for
0 ≤ i ≤ s, then the backslash matrix is given by

K(m,n, t) :=


Hr0,m Hr0−1,m Hr0−2,m · · · Hr0−s,m
Hr1,m+1 Hr1−1,m+1 Hr1−2,m+1 · · · Hr1−s,m+1
...

...
...

. . .
...

Hrs,m+s Hrs−1,m+s Hrs−2,m+s · · · Hrs−s,m+s

 . (5.1)

Figure 5. (a) Backslash matrix K(4, 4, 3) (b) Persymmetric matrix K(4) in H.
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Proposition 5.2. If um,t = [Fm, Fm+1, . . . , Fm+t−1] and wn,t = [Fn, Fn−1, . . . , Fn−t+1], then

K(m,n, t) = B(m+ 1, n− 1, t) +B(m− 1, n, t)

= uTm+1,t · wn−1,t + uTm−1,t · wn,t.

The proof of this proposition is similar to the proof of Proposition 4.1.

Proposition 5.3. If m,n, and t are positive integers, then

tr(K(m,n, t)) =
(
tLm+n+1 + 2(−1)n−t−1Fm−n+2t−1 + 2(−1)mFn−m+1

)
/5.

Proof. The proposition is an application of Proposition 5.2 and Proposition 5.1 Part (2). �

For the rest of the section of use ζ to represent the eigenvalues of the matrices K(·, ·, ·).

Proposition 5.4. Let m,n, and t be positive integers. If t 6= 5 and

C =
(
tLm+n+1 + (−1)n−t−12Fm−n+2t−1 + 2(−1)mFn−m+1

)
/5, and

D = (−1)m+n+t+1(L2t + (−1)t(5t2 − 2))/25,

then these hold
(a) the characteristic polynomial of K(m,n, t) is given by

P (x) = (−1)txt−2(x2 − Cx+D).

(b) The eigenvalues of K(m,n, t) are ζ0 = 0 with multiplicity (t− 2), and

ζi =
C ±

√
C2 − 4D

2
, for i = 1, 2.

Proof. We prove Part (a), the proof of Part (b) follows using the quadratic formula on part
Part (a). This proof follows similar steps to the proof of Theorem 4.4. Let

p(x) = (−1)t(xt + ct−1x
t−1 + ct−2x

t−2 + · · ·+ c1x+ c0)

be the characteristic polynomial of K ′ := K(m,n, t). Similar to Lemma 4.3, from Proposition
5.2 we can deduce that K ′ is of rank 2. This implies that xt−2(x2 + ct−1x+ ct−2) = 0. Let x1
and x2 be the non-zero eigenvalues of K ′. So, the eigenvalues of K ′ are x0 = 0 and

x1 =
−ct−1 +

√
(ct−1)2 − 4ct−2
2

and x2 =
−ct−1 −

√
(ct−1)2 − 4ct−2
2

. (5.2)

Since rank(K ′) = 2, from linear algebra we know that ct−1 is the trace of K ′ (the sum of all
eigenvalues of K ′) and that ct−2 is the product of the two non-zero eigenvalues of K ′. Thus,

ct−1 = −(x1 + x2) and ct−2 = x1x2.

We know that

ν1 = tr(B(m+ 1, n− 1, t)) = wn−1,t · uTm+1,t is the non-zero eigenvalue of B(m+ 1, n− 1, t);

ν2 = tr(B(m− 1, n, t)) = wn,t · uTm−1,t is the non-zero eigenvalue of (B(m− 1, n, t);

ν12 = tr(B(m+ 1, n, t)) = wn,t · uTm+1,t is the non-zero eigenvalue of B(m+ 1, n, t); and

ν21 = tr(B(m− 1, n− 1, t)) = wn−1,t · uTm−1,t is the non-zero eigenvalue of B(m− 1, n− 1, t).

It is easy to see that tr(K ′) = ν1 + ν2. Using an identical procedure as used in the proof of
Claim 2 in the proof of Theorem 4.4, we have that tr((K ′)2) = ν21 + 2ν12ν21 + ν22 . These and
the fact that [tr(K ′)]2 − 2ct−2 = tr(S′)2 (this is known in linear algebra) imply that

ν21 + 2ν1ν2 + ν22 − 2ct−2 = ν21 + 2ν12ν21 + ν22 .
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Simplifying, we obtain 2ν12ν21 = 2ν1ν2 − 2ct−2. So, ct−2 = ν1ν2 − ν12ν21. From Proposition
5.2 we conclude that

ct−1 = −(tr(B(m+ 1, n− 1, t)) + tr(B(m− 1, n, t))) = −(ν1 + ν2).

We use identities on Lucas and Fibonacci numbers to obtain ct−1 or

C =
(
tLm+n+1 + 2(−1)n−t−1Fm−n+2t−1 + 2(−1)mFn−m+1

)
/5.

Finally, since ct−2 = (ν1ν2 − ν12ν21), we use identities to obtain ct−2 or

D = (−1)m+n+t+1(L2t + (−1)t(5t2 − 2))/25.

This complete the proof of Part (a). �

The following three theorems use the same notation and results found in Proposition 5.4. In
particular, the value C from Proposition 5.4 simplifies to C = 2(−1)mLn−m−4 + Ln+m+1 and
D = 0 when t = 5. The proof of the following proposition is similar to the proof of Proposition
5.4. Recall that K(m,n, t) is defined for m, t ≤ n.

Proposition 5.5. Let m,n be positive integers with n ≥ 5. If t = 5,

C = 2(−1)mLn−m−4 + Ln+m+1, and D = 0,

then these hold
(a) the characteristic polynomial of K(m,n, 5) is given by

P (x) = −xt−1(x− C).

(b) The eigenvalues of K(m,n, 5) are ζ0 = 0 with multiplicity (t− 2), ζ1 = C, and ζ2 = 0.

We find eigenvectors associated to ζ = 0. It is easy to see that {yj : j = 1, 2, . . . , t − 2}
is linearly independent. From Proposition (5.2) we know that K(m,n, t) = uTm+1,t · wn−1,t +

uTm−1,t · wn,t. Note that if wn,t := [Fn, Fn−1, . . . , Fn−t+1], then we have that wn−i,t.yj = 0 for
i ∈ {0, 1} and j = 1, . . . , t− 2. Thus, yj is orthogonal to wm−i,t. This is basically the proof of
the following proposition.

Proposition 5.6. If K(m,n, t) is as given in (5.1), then the eigenvectors associated to the
eigenvalue ζ0 = 0 are given by

y1 =



−F1

F2

1
0
0
0
...
0


, y2 =



F2

−F3

0
1
0
0
...
0


, y3 =



−F3

F4

0
0
1
0
...
0


, . . . , yt−2 =



(−1)nFt−2
(−1)n−1Ft−1

0
0
0
0
...
1


.

Proposition 5.7. Let ν1 = wn−1,t · uTm+1,t, and µ21 = vn−1,t · uTm−1,t. If j ∈ {1, 2}, then
xj = ν21u

T
m+1,t + (ζj − ν1)uTm−1,t is an eigenvector of K(m,n, t) associated to ζj.

Proof. This proof is similar to the proof of Proposition 4.6. Here we replace v by w, µ by ν,
and S′ = S(n,m, t) by K ′ := K(m,n, t) = uTm+1,t · wn−1,t + uTm−1,t · wn,t. �
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We note here that for 1 < m, t ≤ n, the backslash matrices K(m,n, t) for t 6= 5 are diagonal-
izable. In fact, if we define the matrix of eigenvectors U =

[
x1 x2 y1 y2 · · · yt−2

]
and

W is the t×t diagonal matrix with the diagonal elements as the eigenvalues of K(m,n, t), or ζ1,
ζ2, and 0 given by the eigenpairs (ζj ,xj), with j ∈ {1, 2} and (0,yl) with l ∈ {1, 2, . . . , t− 2},
then K(m,n, t) = UWU−1.

SinceD = (−1)m+n+t+1(L2t+(−1)t(5t2−2))/25 = 0 when t = 5, we have another eigenvalue
equal to zero (see Proposition 5.5 Part (b)). In this Proposition we analyze the case t = 5.
Proposition 5.8 Part (2) is the same as given in Proposition 5.7. But we restate it here for the
case t = 5.

Proposition 5.8. If K(m,n, 5) is as given in (5.1), then
(1) the eigenvector associated to the eigenvalue ζ2 = 0 is given by zT2 = [0, 0, 0, 0, 0].
(2) the eigenvector associated to the eigenvalue ζ1 = 2(−1)mLn−m−4 + Ln+m+1

is the third column of the matrix K(m,n, 5). Thus,

z1 =


Hm+n−3,m
Hm+n−2,m+1

Hm+n−1,m+2

Hm+n,m+3

Hm+n+1,m+4

 .
The matrix K(m,n, 5) has rank 2 (easy to check, similar to Lemma 4.3), but it is not

diagonalizable since it has only four linearly independent eigenvectors.

5.1. Persymmetric matrices in the determinant Hosoya triangle. In this section we
discuss a special case for the backslash matrices obtained by taking m = 1 and n = t 6= 5.
These matrices are symmetric about the antidiagonal and are called persymmetric matrices.
If um,t = [Fm, Fm+1, . . . , Fm+t−1] and wn,t = [Fn, Fn−1, . . . , Fn−t+1], then

K(1, n, n) = uT2,n · wn−1,n + uT0,n · wn,n.

For simplicity we use K(n) for K(1, n, n) with n 6= 5. We see the example of the 4 × 4
persymmetric matrix K(4) in Figure 5 Part (b) on Page 46.

From Proposition 5.3, we know that the trace of the persymmetric matrix K(n) is given by
the following formula

tr(K(n)) = (nLn+2 − 4Fn)/5 = ((7n− 4)Fn−1 + 4(n− 1)Fn−2)/5.

We note here that the trace of the persymmetric matrix K(n) for n > 1, is the sum of entries
of the nth row of the determinant Hosoya triangle.

The following is a corollary of Proposition 5.4 on page 47, this corollary provides the eigen-
values of the persymmetric matrices.

Corollary 5.9. If n 6= 5 and j ∈ {1, 2}, then the eigenvalues of K(n) are given by ζ0 = 0,
with multiplicity (n− 2), and

ζj =
−4Fn + nLn+2 ±

√
(4Fn − nLn+2)

2 − 4 (L2n + (−1)n (5n2 − 2))

10
.

The eigenvectors of the n × n persymmetric matrix K(n), associated with an eigenvalue
ζ0 = 0, are the same vectors as given in the statement of Proposition 5.6. The following is a
corollary of Proposition 5.7 that provides the eigenvectors of the persymmetric matrix K(n)
associated with the non-zero eigenvalues.
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Corollary 5.10. If ν1 = (nFn+2 + (n− 3)Fn) /5 and ν21 = (nLn−1 − 2Fn) /5, then xj =
ν21u

T
n+1,t + (ζj − ν1)uTn−1,t is an eigenvector of K(1, n, t) associated to ζj, for j ∈ {1, 2}.

6. Appendix. The Hosoya triangle

The Hosoya triangle, denoted by H′, is a triangular array where the entry in position k
(taken from left to right) of the rth row is equal to H ′r,k := FkFr−k+1, where 1 ≤ k ≤ r (see
Table 2 or [3,7,10,11,14–16]). If we take H ′(1, 1) = H ′(2, 1) = H ′(2, 2) = H ′(3, 2) = 1 instead
of H in (2.1) we have a recursive definition of the Hosoya triangle.

1
1 1

2 1 2
3 2 2 3

5 3 4 3 5
8 5 6 6 5 8

13 8 10 9 10 8 13
21 13 16 15 15 16 13 21

34 21 26 24 25 24 26 21 34
55 34 42 39 40 40 39 42 34 55

Table 2. Hosoya triangle.

If ri = (m+n− 1)+ i for i = 0, 1, 2, . . . , (t− 1) then the matrix A(m,n, t) embedded in the
Hosoya triangle is given by

A(m,n, t) =


H ′r0,m H ′r1,m+1 H ′r2,m+2 · · · H ′rt−1,m+t−1
H ′r1,m H ′r2,m+1 H ′r3,m+2 · · · H ′rt,m+t−1
...

...
...

. . .
...

H ′rt−1,m H ′rt,m+1 H ′rt+1,m+2 · · · H ′r2(t−1),m+t−1

 .
If un,t = [Fn, Fn+1, . . . , Fn+t−1] and vm,t = [Fm, Fm+1, . . . , Fm+t−1], then A(m,n, t) := uTn,t ·
vm,t.

We recall that if α = (1 +
√
5)/2 and β = (1 −

√
5)/2, then Binet formula for Fibonacci

numbers is given by Fn = (αn− βn)/(α− β) = (αn− βn)/
√
5, while the Binet formula for the

Lucas numbers is given by Ln = αn + βn.

Proposition 6.1. For A(m,n, t) these hold

(a) A(m,n, t) is of rank 1.
(b) The characteristic equation of A(m,n, t) is given by xt−1(x− tr(A(m,n, t))) = 0.
(c) The non-zero eigenvalue of A(m,n, t) is given by λa1 = tr(A(m,n, t)) = vm,t · uTn,t. Thus,

λa1 =

{
(Lm+n+2t−1 − Lm+n−1) /5, if t is even;(
Lm+n+2t−1 − Lm+n−1 − (−1)n+t−1Ln−m

)
/5, if t is odd.

(d) The vector un,t is the eigenvector associated with λa1.
(e) The eigenvalue λa2 = 0 has algebraic multiplicity (t− 1).
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(f) The matrix A(m,n, t) is diagonalizable and the eigenvectors of B′ are given by,

u =


Fn

Fn+1

Fn+2
...

Fn+t−1

 ,v1 =


−Fm+1

Fm

0
...
0

 , . . . ,vt−1 =


−Fm+t−1

0
0
...
Fm

 .
Proof. The proofs of parts (a), (b), (d), and (e) are straightforward applications of linear
algebra, so we omit them (for a similar formal proof see [3]).

Proof of Part (c). To prove this part we first show that

tr(A(m,n, t)) =

{
(Lm+n+2t−1 − Lm+n−1) /5, if t is even;(
Lm+n+2t−1 − Lm+n−1 − (−1)n+t−1Ln−m

)
/5, if t is odd.

We observe that tr(A(m,n, t)) =
t−1∑
i=0

H ′r2i,m+i where ri = (m+ n− 1) + i. By the definition

of each entry of the Hosoya triangle, H ′r,k := FkFr−k+1, we have that the tr(A(m,n, t)) equals
t−1∑
i=0

Fm+iFn+i. Using the Binet formula for Fm+i and Fn+i (seen above), we obtain

tr(A(m,n, t)) =

t−1∑
i=0

(
Lm+n+2i − (−1)n+iLm−n

)
/5

=
1

5

t−1∑
i=0

Lm+n+2i −
Lm−n
5

t−1∑
i=0

(−1)n+i. (6.1)

If t is even, then
∑t−1

i=0(−1)n+i = 0 and using the Binet formula for Lucas numbers and (6.1)
we have that

tr(A(m,n, t)) =
1

5

t−1∑
i=0

Lm+n+2i =
1

5

t−1∑
i=0

(αm+n+2i + βm+n+2i).

Next, we observe that
t−1∑
i=0

αm+n+2i = αm+n
t−1∑
i=0

α2i = αm+n(α2t/(α2 − 1)) and similarly,

t−1∑
i=0

βm+n+2i = βm+n(β2t/(β2 − 1)). This implies that tr(A(m,n, t)) is equal to

(
(αm+n+2t − αm+n)(β2 − 1) + (βm+n+2t − βm+n)(α2 − 1)

)
/(5(α2 − 1)(β2 − 1)).

Simplifying the numerator, using the identity (α2 − 1)(β2 − 1) = −1, and the fact that
Lk = αk + βk we see that

tr(A(m,n, t)) = − (Lm+n − Lm+n+2t − Lm+n−2 + Lm+n+2t−2) /5 = (Lm+n+2t−1 − Lm+n−1) /5.

If t is odd, then
∑t−1

i=0(−1)n+i = (−1)n+t−1. Therefore, from (6.1), the trace of A(m,n, t)
equals

1

5

t−1∑
i=0

Lm+n+2i + (−1)n+tLm−n
5

=
(
Lm+n+2t−1 − Lm+n−1 + (−1)n+tLm−n

)
/5.
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Next, by part (b) we know that the matrix A(m,n, t) has only one non-zero eigenvalue λa1,
we have that λa1 = tr(A(m,n, t)). This completes the proof.

Proof of Part (f). We give a geometric proof for this part. We know from linear algebra that
if a matrix A is given by A = u · vT , then A is diagonalizabe if and only if vT · u 6= 0 if and
only if u is not orthogonal to v. The orthogonal complement of v is a basis of the null space.
In particular, if W = {u,v1,v2, . . . ,vt−1} is the set of eigenvectors of A(m,n, t) (as seen in
the statement of this part), then vi is orthogonal to vm,t for all i. �

We now give a second potential problems to work (the first problem was given on page 39).
Problem 2.
Given a prime p, the p-adic valuation of n ∈ N, denoted by νp(n), is the highest power of p

that divides n. Given a sequence of positive integers (an)n≥0 a description of the sequence of
valuations νp(an) often presents interesting questions. For example, Lengyel [18], among other
things, determined this expression for the 2-adic valuation for the Fibonacci numbers:

ν2(Fn) =


0, if n ≡ 1, 2, (mod 3);

1, if n ≡ 3, (mod 6);

3, if n ≡ 6, (mod 12);

ν2(n) + 4, if n ≡ 0, (mod 12).

In Figure 6 part (a), we show the 2-adic valuation for the first 150 values of ν2(Fn). From
Lengyel’s result we conclude that ν2(H ′r,k) = ν2(Fk) + ν2(Fr−k+2). In Figure 6 part (b), we
show the 2-adic valuation for ν2(H ′r,k) for 0 ≤ r, k ≤ 20.

20 40 60 80 100 120 140

1

2

3

4

5

6

7

Figure 6. (a) The 2-adic valuation of Fn (b) The 2-adic valuation of H ′r,k.

A natural question is how to describe the 2-adic valuation of the determinant Hosoya triangle
and its associated sequences. For example, for hn =

∑n
k=1Hn,k, the Figure 7 shows the first

150 values of ν2(hn).
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Figure 7. The 2-adic valuation of hn.
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