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Abstract. We relate the p-rationality of a real quadratic field K to properties of periods of
a Fibonacci sequence associated to K.

1. Introduction

Let p be an odd prime number. A number field K is said to be p-rational if the Galois group
of the maximal pro-p-extension of K which is unramified outside p is a free pro-p-group of rank
r2 + 1, where r2 is the number of pairs of complex embeddings of K. The notion of p-rational
number fields has been introduced by Movahhedi and Nguyen Quang Do [M-N], [Mo88], [Mo90],
and was used for the construction of non-abelian extensions satisfying Leopoldt’s conjecture.
Greenberg [G] used complex abelian p-rational number fields for the construction of p-adic
Galois representations with open images. In these notes, we focus on the p-rationality of real
quadratic number fields. In [G, Corollary 4.1.5], Greenberg relates the p-rationality of the field
Q(
√

5) to properties of the classical Fibonacci numbers. In [B], the author gave a generalization
of this result to any real quadratic field.

Let d > 0 be a fundamental discriminant. Denote by εd and hd the fundamental unit and the
class number of the field Q(

√
d) respectively, and let N(.) be the absolute norm. We associate

to the field Q(
√
d) a Fibonacci sequence F (εd+εd,−N(εd)) = (Fn)n≥0 defined by F0 = 0, F1 = 1

and the recursion formula

Fn+2 = (εd + εd)Fn+1 −N(εd)Fn, for n ≥ 0.

Let p ≥ 5 be a prime number such that p - (εd − εd)2hd. Then,

Q(
√
d) is p-rational if and only if Fp−( d

p
) ≡ 0 (mod p2), (1.1)

where (d. ) denotes the Legendre symbol (see [B, Theorem 3.4]). The proof of this result uses
mainly the equivalence (3.5) below, which relates the p-rationality of the quadratic field to
congruence modulo p2 of the p-adic regulator, hence to congruence modulo p2 of powers of the
fundamental unit, which is related to Fibonacci numbers.

For any positive integerm, the Fibonacci sequence (Fn)n modulom is periodic. We define its
period to be the smallest positive integer s for which Fs ≡ 0 (mod m) and Fs+1 ≡ 1 (mod m).
Periods of Fibonacci sequences have been studied for first by [Wall] for the classical Fibonacci
sequence.

Using the equivalence (1.1), we prove a result which describes the p-rationality of real qua-
dratic number fields in terms of a property of the periods of Fibonacci sequences.

Theorem 1.1. Let d > 0 be a fundamental discriminant. For every odd prime number p such
that p - (εd − εd)2hd, let k(p) and k(p2) be the periods of the Fibonacci sequence associated to

We thank the 19th International Fibonacci Conference referee for useful comments on an earlier version.
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the field Q(
√
d) modulo p and p2 respectively. The quadratic field Q(

√
d) is p-rational precisely

when k(p) 6= k(p2).

The numerical examples we obtain support a conjecture of Gras asserting that a number
field is p-rational for almost all primes p [Gr].

2. Real quadratic fields and Fibonacci numbers

The classical Fibonacci sequence is defined by F0 = 0, F1 = 1 and the recurrence relation

Fn+1 = Fn + Fn−1.

For every integer n ≥ 0, the values of Fn are encoded in the powers of the matrix T =

(
0 1
1 1

)
,

i.e., for any n ≥ 0 we have

Tn =

(
Fn−1 Fn
Fn Fn+1

)
.

As a generalization we define, for any integers a and b, a Fibonacci sequence in the following
way: F0 = 0, F1 = 1 and Fn+1 = aFn + bFn−1. The terms of the above sequence are generated

by the integer powers of the matrix U =

(
0 1
b a

)
, where for any n ≥ 0 wee have

Un =

(
bFn−1 Fn
bFn Fn+1

)
.

For a positive integer m, we define the period k(m) of (Fn)n modulo m to be the smallest
positive integer s for which

U s ≡ I (mod m),

where I =

(
1 0
0 1

)
.

These periods have been studied at first for the classical Fibonacci sequence by D.D. Wall in
[Wall]. For general Fibonacci sequences, see [R], [E-J], and [D-R].

Formulas are known for computing k(m) based on the prime factorization of m, but if p is
prime,there is no formula for k(p). However, certain divisibility relations hold. Here we are
interested in k(p) and k(p2). The following theorem lists some of their properties for general
Fibonacci sequences. If p is a prime number and b in an integer, we set ordp(b) for the order
of b in the group Z/pZ.

Theorem 2.1. Let (Fn)n be a Fibonacci sequence associated to the coprime integers a, b and
let U be the corresponding matrix. Let ∆ := a2−4b and denote lcm(n,m) for the least common
multiple of n and m.

(1) Un ≡ I (mod m) ⇔ k(m) - n.
(2) If m = pn1

1 · · · pns
s , then k(m) = lcm(k(pn1

1 ), ..., k(pns
s )).

(3) If k(p) 6= k(p2), then k(p2) = pk(p).
(4) if ∆ is a(nonzero)quadratic residue modulo p, then k(p) - p− 1.
(5) if ∆ is a quadratic nonresidue modulo p, then k(p) - (p+ 1) · ordp(−b); except if b ≡ −1

(mod p) in which case k(p) - p+ 1.
(6) if ∆ ≡ 0 (mod p), then k(p) = p · ordp(2−1a).

Proof. All statements are proved in [R]. �
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In [Wall], Wall raised the question whether the equality k(p) = k(p2) holds for the classical
Fibonacci sequence and some prime number p? At this time, no such primes exist for classical
Fibonacci sequence. The question for general Fibonacci sequences, as defined in these notes,
has an affirmative answer for many examples (see section 5).

3. Real quadratic p-rational fields

In this section we give a characterization of the p-rationality of real quadratic fields in terms
of values of the associated L-functions at odd negative integers. In fact, the p-rationality of
totally real abelian number fields K is intimately related to special values of the associated
zeta functions ζK . The relation is as follows. For any finite set Σ of primes of K, we denote
by GΣ(K) the Galois group of the maximal pro-p-extension of K which is unramified outside
Σ. Let S be the finite set of primes Sp ∪ S∞, where S∞ is the set of infinite primes of K
and Sp is the primes above p in K. It is known that the group GSp(K) is a free pro-p-group
on r2 + 1 generators if and only if the second Galois cohomology group H2(GSp(K),Z/pZ)
vanishes. This vanishing is related to special values of the zeta function ζK via the conjecture
of Lichtenbaum. More precisely, let GS be the Galois group of the maximal extension of K
which is unramified outside S. The main conjecture of Iwasawa theory (now a theorem of
Wiles [W90]) relates the order of the group H2(GS ,Zp(i)), for even integers i, to the p-adic
valuation of ζK(1− i) by the p-adic equivalence:

wi(K)ζK(1− i) ∼p |H2(GS ,Zp(i))|, (3.1)

where for any integer i, wi(F ) is the order of the group H0(GF ,Qp/Zp(i)), and ∼p means
having the same p-adic valuation, see e.g [Kol]. Moreover, the group H2(GS ,Zp(i)) vanishes
if and only if H2(GS ,Z/pZ(i)) vanishes. Let µp be the group of p-th roots of unity. The
periodicity of the groups H2(GS ,Z/pZ(i)) modulo δ = [K(µp) : K] gives that

H2(GS ,Z/pZ(i)) ∼= H2(GS ,Z/pZ(i+ jδ)),

for any integer j. In addition, since p is odd, the vanishing of the group H2(GS ,Z/pZ(i))
is equivalent to the vanishing of the group H2(GSp(K),Z/pZ(i)). Number fields such that
H2(GSp(K),Z/pZ(i)) = 0 are called (p, i)-regular [A]. In particular, the field K is p-rational
if and only if wp−1(K)ζK(2 − p) ∼p 1. This leads to the following characterization of the
p-rationality of totaly real number fields.

Proposition 3.1. Let p be an odd prime number which is unramified in an abelian totally real
number field K. Then we have the equivalence

K is p-rational ⇔ L(2− p, χ) is a p-adic unit, (3.2)

where χ is ranging over the set of irreducible characters of Gal(K/Q).

Proof. First, the zeta function ζK decomposes in the following way:

ζK(2− p) = ζQ(2− p)×
∏
χ 6=1

L(2− p, χ).

Second, it is known that ζQ(2 − p) is of p-adic valuation −1 and that wp−1(K) has p-adic
valuation 1, giving that wp−1(K)ζQ(2− p) ∼p 1. Then from (3.1) we obtain the formula∏

χ 6=1

L(2− p, χ) ∼p |H2(GS ,Zp(p− 1))|.
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Since, for every character χ 6= 1, the value L(2 − p, χ) is a p-integer [Wa, Corollary 5.13], we
have H2(GS ,Zp(p− 1)) = 0 if and only if for every χ 6= 1, L(2− p, χ) is a p-adic unit. Further-
more, the vanishing of the group H2(GS ,Zp(p− 1)) is equivalent to the vanishing of the group
H2(GS ,Z/pZ(p− 1)), which turns out to be equivalent to the vanishing of H2(GSp(K),Z/pZ)
(by the above mentioned periodicity statement). This last vanishing occurs exactly when the
field K is p-rational. �

In the particular case of a real quadratic field K = Q(
√
d), we have the decomposition

ζK(2− p) = ζQ(2− p)L(2− p, (d· )),

where (d· ) is the quadratic character associated to the field K = Q(
√
d).

Corollary 3.2. For every odd prime number p - d, we have the equivalence

Q(
√
d) is p-rational ⇔ L(2− p, (d· )) 6≡ 0 (mod p). (3.3)

The properties of special values of p-adic L-functions tells us that the p-rationality is related
to the class number and the p-adic regulator. More precisely, letK be a totally real number field
of degree g. Under the Leopoldt conjecture, class field theory gives thatGSp(K)ab ∼= Zr2+1

p ×TK ,
where TK is the Zp-torsion of GSp(K)ab. Then the field K is p-rational precisely when TK = 0
[M-N, Théorème et Definition 1.2]. Moreover, the order of TK satisfies

|TK |∼p w(K(µp))
∏
v|p

(1−N(v)−1) · Rp(K).hK√
|dk|

, (3.4)

([Coa, app]), where hK is the class number, Rp(K) is the p-adic regulator, N(v) is the absolute
norm of v, w(K(µp)) = |µ(K(µp))| the number of roots of unity of K(µp) and dK is the dis-
criminant of the number fieldK. Hence for every odd prime number p such that (p, dKhK) = 1,
the field K fails to be p-rational if and only if vp(Rp(K)) > g − 1.

Under the light of the above discussion, for a real quadratic field Q(
√
d) we have the equiv-

alence:

Q(
√
d) is p− rational ⇔ Rp(Q(

√
d)) 6≡ 0 (mod p2). (3.5)

Recall that Rp(Q(
√
d)) = logp (εd), where εd is a fundamental unit of K and logp is the p-adic

logarithm.

4. A Wieferich phenomenon for p-rational fields

In 1909 Arthur Wieferich proved that if a prime number p satisfies

2p−1 − 1

p
6≡ 0 (mod p), (4.1)

then the first case of Fermat’s last theorem is true at p. This was generalized by many authors,
allowing 2 to be replaced by other primes. The only known primes satisfying (4.1) are 1093
(Meissner in 1913) and 3511 (Beeger in 1922), the next one, if any, must exceed 6.7× 1015.

Since Fermat’s last theorem is proved in general, the motivation for going further disap-
peared, but the problem of understanding the distribution of primes for which (4.1) holds
remains open, and seems to be interesting in itself. Here we mention two meaningful results
about these primes, the first one is due to Heath-Brown [Heath], and the second is a result of
Silverman [Si]. For this, we give the following general definition.
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Definition 4.1. For a nonzero integer a and a prime p not dividing a, we form the "Fermat
quotient"

qp(a) :=
ap−1 − 1

p
(mod p). (4.2)

We say that p is a Wieferich prime of basis a if we have qp(a) ≡ 0 (mod p) and non-Wieferich
otherwise.

The theorem of Heath-Brown establishes an equidistribution result for the Fermat quotients.

Theorem 4.2. [Heath, Theorem 2] Let p be an odd prime number. The values qp(a) are
uniformaly distributed modulo p for 1 ≤ a < p.

The result of Silverman gives a lower bound for the number of non-Wieferich primes for a fixed
basis. More precisely, we have:

Theorem 4.3. [Si, Theorem 2] Let a be an integer such that a 6= ±1. If the abc-conjecture is
true, then

|{p ≤ X : qp(a) 6≡ 0 (mod p)}|�a log (X).

Silverman observed that the statement of this result also holds for commutative algebraic
groups over Q. In particular, for the group of points of an elliptic curve over Q. For our
purposes we consider groups of units of real quadratic fields and study the Wieferich primes
for elements of infinite order in such groups and relate these primes to the primes for which
the quadratic field is p-rational.

For this, let d > 0 be a fundamental discriminant and let ε be a unit of infinite order in the
quadratic field Q(

√
d).

Definition 4.4. A rational odd prime p is said to be Wieferich of basis ε if the congruence
εp

r−1 − 1

p
≡ 0 (mod p)

holds, where r is the residue degree of p in the quadratic field Q(
√
d).

Otherwise, the prime number p is said to be non-Wieferich of basis ε.

The recent works of Boeckle et al. [B-G-K-K] also relate p-rationality to Wieferich phenom-
enon. C. Maire and M. Rougnant [M-R], assuming the abc-conjecture for number fields, obtain
the analogue of Silverman bound.

For a quadratic field K = Q(
√
d) we denote by εd and hd the fundamental unit and the

class number of K respectively.

Proposition 4.5. Let p be an odd prime number such that p - dhd. Then the field Q(
√
d) is

p-rational if and only if p is a non-Wieferich prime of basis εd.

Proof. To characterize the p-rationality of real quadratic fields in terms of non-Wieferich
primes, we use the equality

logp ((εp
r−1
d − 1) + 1) = (εp

r−1
d − 1)− 1

2
(εp

r−1
d − 1)2 + ... (4.3)

where logp is the p-adic logarithm and as before r is the residue degree of p in the quadratic
field Q(

√
d). We denote Od for the ring of integers of Q(

√
d).

Note that if p is inert, then (Od/pOd)× is a cyclic group of order p2 − 1, but if p splits into
two prime ideals, (Od/pOd)× is a product of two cyclic groups of order p−1. Then, these facts
and (4.3) show that

Rp(K) ≡ pκ (mod p2),
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where Rp(K) = logp (εd) and κ is an element of Od. Hence, we have the equivalence

εp
r−1

d −1

p 6≡ 0 (mod p) ⇔ Rp(K) 6≡ 0 (mod p2). (4.4)

Then combining this last equivalence with the equivalence (3.5) we obtain the desired result. �

This proposition leads us to relate the p-rationality of real quadratic fields to congruences of
generalized Fibonacci numbers, hence to periods of Fibonacci numbers modulo p and p2. This
will be the subject of the next section.

5. Periods and p-rationality

In this section, we associate to a real quadratic field Q(
√
d) a Fibonacci sequence (Fn)n

defined as follows: F0 = 0, F1 = 1 and

Fn+1 = (εd − εd)Fn −NQ(
√
d)(ε)Fn−1.

Proof of Theorem 1.1. Using Theorem 3.4 of [B], it suffices to prove the following equivalence,

k(p) 6= k(p2) if and only if Fp−( d
p

) 6≡ 0 (mod p2). (5.1)

Suppose that k(p) = k(p2). Since k(p) | p − (dp), we obtain Fp−( d
p

) ≡ 0 (mod p2). Then we
have

Fp−( d
p

) 6≡ 0 (mod p2) ⇒ k(p) 6= k(p2).

We suppose now that k(p) 6= k(p2), and assume to the contrary that Fp−( d
p

) ≡ 0 (mod p2).

Then we have k(p2) | p− (dp), which contradicts the fact that k(p2) = pk(p). �

For the classical Fibonacci sequence, i.e. the sequence associated to the quadratic field
Q(
√

5), D.D. Wall asked in [Wall] the question whether they exist primes p such that k(p) =
k(p2). Up to 1015, such primes do not exist. It is likely to conjecture that the field Q(

√
5)

is p-rational for every prime number p. For other real quadratic fields, we have examples of
primes p for which the equality k(p) = k(p2) holds. This is the case for Q(

√
2) and the primes

p = 13 and p = 103. The computations suggest that the set of primes for which the equality
holds is small, i.e. it has density zero in the set of all primes. This is in accordance with a
conjecture of Gras which asserts that a number field K is p-rational for almost all primes p,
except possibly a set of primes of density zero.

We could compute for a given real quadratic field K = Q(
√
d) (d < 103) the set of primes

p < 109 for which K is not p-rational, hence k(p) = k(p2) for the corresponding Fibonacci
sequence. We list here some examples. The computations are performed by pariGP program
and are based on the computation of the fundamental units and the congruence modulo p of
the associated Fermat quotient.
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Discriminant Primes
5
8 13, 31, 1546463
12 103
13 241
17
21 46179311
24 7, 523
28
29 3, 11
33 29, 37, 6713797
37 7, 89,257, 631
40 191, 643, 134339, 25233137
41 29, 53, 7211
44
53 5
56 6707879, 93140353
57 59, 28927, 1726079, 7480159
60 181, 1039, 2917, 2401457
61

For higher dimensional totally real number fields, it would be of interest to obtain analogous
characterizations of the p-rationality, for example for bi-quadratic and cubic totally real fields.
In the case of imaginary quadratic fields, the methods used here don’t apply, since the p-
rationality of such fields is related only to the p-divisibility of their class numbers (cf. [G]).
Another problem that could be considered is the following. Consider a set of local conditions,
i.e. conditions on the ramification, the decomposition and the inertia of a finite set of primes.
For a prime number p, can one find a real quadratic field with these local conditions and whose
Fibonacci sequence satisfies k(p) 6= k(p2)?
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