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Abstract. For an irrational number α let 〈iα〉 denote the fractional part of iα where i is
any integer. The three distance theorem states that any t points 〈iα〉, 1 ≤ i ≤ t, partition the
unit interval into gaps of at most three distinct lengths. We know that the process of splitting
gaps for increasing t swings like an escalating pendulum in the unit interval and we show that
the margins are determined by the denominators of the convergents of the continued fraction
representation of α.

Moreover, for a positive real number ξ the points (〈iα〉, i/ξ) provide a strip of a lattice.
The main result states that the smallest distance between lattice points is determined by
a denominator of a principal convergent. Regarding this and the second smallest distance,
lattices are classified into a landscape of phyllotactic patterns.

1. Introduction

We consider distances between regular points in the unit interval and between lattice points.
Why? There are several answers:

• we better understand Liang’s method for proving the three distance theorem indepen-
dent of continued fractions,
• the metaphor of an escalating pendulum with residual lengths becoming infinitesimal
small provides an enticing approach to continued fractions,
• the margins are closely related to the denominators of the convergents (see Lemma 3.5),
• the smallest distance between lattice points is closely related to the denominator of
a principal convergent (see Theorem 4.2, which solves a problem proposal of the 19th

International Fibonacci Conference),
• the classification of lattices by pairs of numbers corresponding to the first and second
smallest distance provides an interesting fractal structure (see Figure 1),
• we propose a method for calculating the transition from one pair to another.

Concerning the three distance theorem, we recommend [1] and [6]. Lattices as a model of
phyllotaxis are described in [2], as well as in the encouraging introduction to Turing’s collected
works on morphogenesis [10]. Recent results are presented in [9] and [12].

Throughout this paper α is an irrational number. The fractional part of a real number x is
denoted by 〈x〉, i.e., if bxc denotes the largest integer not exceeding x, then 〈x〉 = x−bxc. We
implicitly use the fact that if x is not an integer, then 〈−x〉 = 1− 〈x〉.

If t is a positive integer, then 〈tα〉 splits the unit interval [0, 1) into a left part [0, 〈tα〉)
and a right part [〈tα〉, 1). Obviously, 〈tα〉 is the length of the left part. Whereas, by the fact
mentioned above, 〈−tα〉 is the length of the right part.

This work was supported by my family. We thank the participants of the 19th International Fibonacci
Conference for useful comments on an earlier version. We thank the referees most sincerely.
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2. Previous Results

From [4] we know two things. One thing is how the three distance theorem evolves as a
swinging process of refinement. The other thing relates the first thing to continued fractions.

2.1. The specified three distance theorem.
For a positive integer t, the points 〈iα〉, 1 ≤ i ≤ t, partition the unit interval [0, 1) into

t+ 1 gaps, i.e., left-closed and right-open intervals between neighboring points. The marginal
numbers lt on the left and rt on the right are defined by

〈ltα〉 = min
1≤i≤t

〈iα〉 and 〈rtα〉 = max
1≤i≤t

〈iα〉, respectively.

As α is irrational, these numbers are unique. The marginal lengths λt and %t are defined by
λt = 〈ltα〉 and %t = 1− 〈rtα〉, respectively.

Definition 2.1. Let α be irrational. For a positive integer t we define the quadruple of marginal
numbers and lengths Q(t) = (lt, rt, λt, %t).

We collect some facts from [4] that we will often use in the remainder of the paper: [4,
Lemma 1] asserts that λt 6= %t. The specified three distance theorem states that the lengths of
the t+ 1 gaps are λt, %t, and if a third length occurs, then it is the sum λt + %t of the marginal
lengths. We can take s to be the number such that s = lt + rt. By [4, assertion (5)], we know
that s > t. If t increases, then the partition of the unit interval is refined by splitting largest
gaps. By [4, assertion (7)], s determines the next length foreshortening, more precisely, we
write two sentences:

Q(u) = Q(t) for all u such that t ≤ u < s, (2.1)

Q(s) =

{
(lt, s, λt, %t − λt) if %t > λt,

(s, rt, λt − %t, %t) else.
(2.2)

In other words, the larger marginal gap will be foreshortened by the smaller one.

2.2. The escalating pendulum.
Let n ≥ 1. Given positive real numbers µn−2 and µn−1 such that µn−2 > µn−1, we can

always divide an interval of length µn−2 into smaller intervals of length µn−1 and get a positive
integer quotient bn and a remainder of length µn such that µn−1 > µn. Starting from µ−1 = 1
and µ0 = 〈α〉, positive integers bn and residual lengths µn are defined recursively:

bn = bµn−2/µn−1c and µn = µn−2 − bnµn−1.

If we add b0 = bαc and if [b0, b1, b2, . . .] denotes an infinite continued fraction (cf. [11]), then [4,
Proposition 1] tells us that α = [b0, b1, b2, . . .]. Hence, the above definition provides an enticing
approach to continued fractions. Especially, we could call bn a partial quotient.

Revisiting the unit interval, we know that µ0 is the length of the interval [0, 〈α〉) on the left
and that µ1 is the length of the interval [b1〈α〉, 1) on the right, since µ1 = 1− b1〈α〉. Now let
n ≥ 2 be even. Then µn is the remainder on the left of [0, µn−2) divided from the right into
smaller intervals of length µn−1. Similarly, if n ≥ 3 is odd, then µn is the remainder on the
right of [1−µn−2, 1) divided from the left into smaller intervals of length µn−1. ThatÂťs what
we call “the continued fraction pendulum.”
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3. New Results

The complication is to connect the marginal lengths of Q(t) and the residual lengths of the
pendulum! Well, the ideas of principal and intermediate convergents will help, when they are
applied to residual lengths.

3.1. Principal and intermediate residual lengths.
Recall that an infinite continued fraction representation [b0, b1, b2, . . .] for an irrational num-

ber α is useful because its initial segments provide rational approximations to the number.
These rational numbers are called the principal convergents of the continued fraction. Starting
from q−1 = 0 and q0 = 1, the denominators of the principal convergents are defined recursively:

qn = qn−2 + bnqn−1 for n ≥ 1.

Of course, q1 = b1. As b1 like any subsequent partial quotient is positive, it follows q0 ≤ q1.
Note that q1 < q2 < q3 < . . . The denominators of the intermediate convergents are defined as
follows:

qn,i = qn−2 + iqn−1 for positive integers n and i < bn.

The denominators of the principal convergents could be included symbolically by means of
qn = qn,bn for n ≥ 1. For the proper intermediate case that 1 ≤ i < bn, we are sure that
qn,i < qn,i+1. Our terminology is shortened to “qn or qn,i is a denominator” with the words “of
a principal or intermediate convergent” implicitly understood. Similarly, we say that “qn is a
principal denominator”. In the sequel, the symbols qn and qn,i always denote denominators of
a given irrational number α.

By the way, the denominators are independent of b0 or, equivalently, they only depend on
the fractional part 〈α〉. Furthermore, the partial quotients and denominators of 〈α〉 and 〈−α〉
are almost the same but shifted by one.

Note that qn,1 < . . . < qn,bn < qn+1,1 increases stepwise by qn−1. Let t be a positive integer.
As q1,1 = 1, it turns out that

qn,i ≤ t < qn,i + qn−1 for unique positive integers n and i ≤ bn. (3.1)

The induced segmentation of positive integers is helpful in the proof of Lemma 3.4.
Here we define the intermediate residual lengths:

µn,i = µn−2 − iµn−1 for positive integers n and i < bn.

A residual length µn could be included symbolically by means of µn = µn,bn . From now on, µn
is called a principal residual length and the term “residual length” will cover both principal and
intermediate residual lengths. We see that µn−2 > µn,1 > . . . > µn,bn decreases stepwise by
µn−1. At the same time, if bn > 1 then µn,bn−1 > µn−1. We conclude that there is a decreasing
sequences of bn − 1 proper intermediate residual lengths between µn−2 and µn−1 for n ≥ 1.

Definition 3.1. Let α be irrational and [b0, b1, b2, . . .] its continued fraction representation.
For positive integers n and i ≤ bn we define the quadruple Qn,i of denominators and residual

lengths via Qn,i =

{
(qn−1, qn,i, µn−1, µn,i) if n is odd,
(qn,i, qn−1, µn,i, µn−1) else.

We can easily see that both the sets of denominators {qn−1, qn,i} and residual lengths
{µn−1, µn,i} are the same whether or not n is odd.
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3.2. Quadruple equations.
By means of the next lemmas we want to show that for t ≥ 1 the marginal numbers and

lengths of Q(t) correspond to a quadruple of denominators and residual lengths.

Lemma 3.2. Let α be irrational and [b0, b1, b2, . . .] its continued fraction representation. If n
is a positive integer such that Q(qn,1) = Qn,1 then

Q(qn,i) = Qn,i for all i such that 1 ≤ i ≤ bn.

Proof. Let n be a positive integer such that Q(qn,1) = Qn,1. The consequent is shown by
induction on i, case i = 1 being given. For the induction step, assume Q(qn,i) = Qn,i and let
i+ 1 ≤ bn. Thus, i < bn and, hence, µn,i > µn−1. Put z = qn,i and our assumption states

(lz, rz, λz, %z) =

{
(qn−1, qn,i, µn−1, µn,i) if n is odd,
(qn,i, qn−1, µn,i, µn−1) else.

Put s = lz + rz and note that s = qn,i + qn−1. By (2.2),

Q(s) =

{
(qn−1, s, µn−1, µn,i − µn−1) if n is odd,
(s, qn−1, µn,i − µn−1, µn−1) else.

Since i < bn, we also have qn,i + qn−1 = qn,i+1 and µn,i − µn−1 = µn,i+1. Therefore,

Q(s) =

{
(qn−1, qn,i+1, µn−1, µn,i+1) if n is odd,
(qn,i+1, qn−1, µn,i+1, µn−1) else.

The latter proves Q(qn,i+1) = Qn,i+1 and completes the induction step. �

Lemma 3.3. Let α be irrational and [b0, b1, b2, . . .] its continued fraction representation. For
positive integers n and i ≤ bn, we have Q(qn,i) = Qn,i.

Proof. By Lemma 3.2, it suffices to show Q(qn,1) = Qn,1. The latter is shown by induction on
n ≥ 1. For n = 1, on the one hand, Q(q1,1) = (1, 1, 〈α〉, 1− 〈α〉), since q1,1 = 1. On the other
hand, Q1,1 = (q0, q1,1, µ0, µ1,1), as 1 is odd. Thus, Q(q1,1) = Q1,1. For the induction step, we
assume Q(qn,1) = Qn,1. By Lemma 3.2, Q(qn) = Qn,bn , i.e., for z = qn it holds

(lz, rz, λz, %z) =

{
(qn−1, qn, µn−1, µn) if n is odd,
(qn, qn−1, µn, µn−1) else.

Put s = lz + rz and note that s = qn + qn−1 and µn−1 > µn. By (2.2),

Q(s) =

{
(s, qn, µn−1 − µn, µn) if n is odd,
(qn, s, µn, µn−1 − µn) else.

By qn + qn−1 = qn+1,1 and µn−1 − µn = µn+1,1, it follows

Q(s) =

{
(qn+1,1, qn, µn+1,1, µn) if n+ 1 is even,
(qn, qn+1,1, µn, µn+1,1) else.

The latter yields Q(qn+1,1) = Qn+1,1. So the induction step is completed and Q(qn,1) = Qn,1
holds for all n ≥ 1. �

Lemma 3.4. Let α be irrational and [b0, b1, b2, . . .] its continued fraction representation. For
positive integers t, n, and i ≤ bn, we have Q(t) = Qn,i if and only if qn,i ≤ t < qn,i + qn−1.

Proof. For the “if”-part let t, n, and i ≤ bn be positive integers such that qn,i ≤ t < qn,i + qn−1.
By Lemma 3.3, we get Q(qn,i) = Qn,i. Put z = qn,i so that Q(z) = Qn,i, i.e.,

(lz, rz, λz, %z) =

{
(qn−1, qn,i, µn−1, µn,i) if n is odd,
(qn,i, qn−1, µn,i, µn−1) else.
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Put s = lz + rz and note that s = qn,i + qn−1. Since z ≤ t < s, by (2.1), Q(t) = Q(z), so
Q(t) = Qn,i as desired.

For the “only if”-part let Q(t) = Qn,i. By (3.1), qm,j ≤ t < qm,j + qm−1 for unique positive
integers m and j ≤ bm. By the “if”-part, we get Q(t) = Qm,j , so we get Qn,i = Qm,j . So
{qn−1, qn,i} = {qm−1, qm,j} and {µn−1, µn,i} = {µm−1, µm,j}. A moment’s thought shows
that each of the latter equations implies n = m and i = j. Finally, we rewrite qn,i ≤ t <
qn,i + qn−1. �

3.3. Key findings.
The following lemmas are useful for the proof of our main theorem. The first key result links

residual lengths and denominators.

Lemma 3.5. Let α be irrational and [b0, b1, b2, . . .] its continued fraction representation. For
positive integers n and i ≤ bn we have

µn,i = 〈(−1)nqn,iα〉.

Moreover, the equation µn = 〈(−1)nqnα〉 holds for all n ≥ 0.

Proof. Let n ≥ 1 and 1 ≤ i ≤ bn. By Lemma 3.3, for t = qn,i we get Q(t) = Qn,i, i.e.,

(lt, rt, λt, %t) =

{
(qn−1, qn,i, µn−1, µn,i) if n is odd,
(qn,i, qn−1, µn,i, µn−1) else.

As λt = 〈ltα〉 and %t = 1− 〈rtα〉, it follows either
µn−1 = 〈qn−1α〉 and µn,i = 1− 〈qn,iα〉 if n is odd, or
µn,i = 〈qn,iα〉 and µn−1 = 1− 〈qn−1α〉 if n is even.

Thus, µn−1 = 〈(−1)n−1qn−1α〉 and µn,i = 〈(−1)nqn,iα〉. By these two things, the “moreover”-
part and the general equation are proved. �

Reversion of the “moreover”-part yields that if n ≥ 0, then

〈qnα〉 =

{
µn if n is even,
1− µn else.

In the case of the golden ratio Φ = [1, 1, 1, . . .], we rewrite:

〈Fn+1Φ〉 =

{
Φ−(n+1) if n is even,
1− Φ−(n+1) else,

using qn = Fn+1 and µn = Φ−(n+1) where (Fn)n≥0 is the sequence of Fibonacci numbers
0, 1, 1, 2, 3, 5, . . . Substituting n+ 1 by n provides a solution to [5, exercise 31]:

〈FnΦ〉 =

{
Φ−n if n is odd,
1− Φ−n else.

Notably, the latter is generalized by our reversion of the “moreover”-part. We may also observe
that this exhibits a parallel between the proof of Theorem 4.2 and the proof of the special case
for α = Φ in [3].
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The second key result concerns the minimal marginal length.

Lemma 3.6. Let α be irrational and t a positive integer. If n ≥ 0 satisfies qn ≤ t < qn+1 then
min(λt, %t) = µn.

Proof. Let t ≥ 1 and n ≥ 0 such that qn ≤ t < qn+1. Of course, qn ≤ t < qn+1,1 or
qn+1,i ≤ t < qn+1,i+1 for some 1 ≤ i < bn+1 . By Lemma 3.4, in the first case, Q(t) = Qn,bn and
so {λt, %t} = {µn−1, µn} and, in the second case, Q(t) = Qn+1,i and so {λt, %t} = {µn, µn+1,i}.
As µn < µn−1 and µn < µn+1,i for 1 ≤ i < bn+1, we conclude min(λt, %t) = µn. �

4. Distances between lattice points

As is well known, the appearance of the Fibonacci numbers in criss-crossing spiral patterns
of phyllotaxis (e.g. capitulum of a sunflower) is due to the golden divergence angle. The so-
called cylindrical model (e.g. for a pineapple) requires two parameters: a real number α that
determines the divergence angle 2πα and a positive real number ξ that determines the density
or vertical compression. Following Coxeter [2], we consider the unrolled cylinder as a strip over
the unit interval with lattice points (〈iα〉, i/ξ).

Definition 4.1. For real numbers α and ξ we define δ(ξ, 0) = 1 and δ(ξ, i) =
√
〈iα〉2 + (i/ξ)2

for non-zero integers i.

Let t be a positive integer. Then δ(ξ, t) is the distance between the point (〈tα〉, t/ξ) and the
left-hand end-point of the unit interval (0, 0). Whereas, δ(ξ,−t) is the distance between the
same point (〈tα〉, t/ξ) and the right-hand end-point of the unit interval (1, 0), since 〈−tα〉 =
1− 〈tα〉. Moreover, δ(ξ, 0) = 1 is the distance between (0, 0) and (1, 0).

One more helpful fact is that δ(ξ, i) ≥ |i|/ξ, and this one ensures that there is a smallest
distance by means of δ(ξ, w) = mini∈Z δ(ξ, i) for some integer w. Likewise, a simple algorithm
ranks δ(ξ,Z). The first and second rank characterize the criss-crossing pattern of the lattice.
Usually, their signs can be ignored. As an illustration, for α ∈ (0, 0.5) and ξ ∈ (2.71, 1618.2) the
transitions of absolute first and second rank are shown in Figure 1. For α ∈ (0.5, 1) the figure
is mirror-inverted. The blue curves show transitions of the absolute first rank and expand the
classical “Van Iterson Diagram”, cf. [8, Fig. 5].

Following [2, FIG. 3. Klein’s geometrization of the continued fraction for
√

2], Rothen and
Koch provide a geometric argument for [7, rule 3.5.2] which corresponds to our main result:

Theorem 4.2. Let α be irrational, ξ a positive real number, and w a non-zero integer such
that δ(ξ, w) = mini∈Z δ(ξ, i). Then |w| is a denominator of a principal convergent, i.e., |w|= qn
for some n ≥ 0.

Proof. The assumptions of the theorem being given, we put k = |w|. We suppose k 6= qn for
all n ≥ 0 and deduce a contradiction. As k is positive and q0 = 1 ≤ q1 < q2 < q3 < . . ., we find
an unique m ≥ 0 such that qm < k < qm+1. Of course, 〈kα〉 ≥ λk and 〈−kα〉 ≥ %k. Hence,
〈wα〉 ≥ min(λk, %k). By Lemma 3.6, min(λk, %k) = µm. Therefore, 〈wα〉 ≥ µm. Furthermore,
by w2 = k2 > q2m, we derive 〈wα〉2 + (w/ξ)2 > µ2m + (qm/ξ)

2, so δ(ξ, w) >
√
µ2m + (qm/ξ)2.

By Lemma 3.5, µm = 〈(−1)mqmα〉. Thus,
√
µ2m + (qm/ξ)2 = δ(ξ, (−1)mqm) and we conclude

δ(ξ, w) > δ(ξ, (−1)mqm) which contradicts our assumption that δ(ξ, w) = mini∈Z δ(ξ, i). �

Theorem 4.2 provides a necessary but not a sufficient condition, as we find divergences (e.g.
Example 4.3) where single principal denominators are skipped, i.e., for all ξ > 0 neither δ(ξ, qn)
nor δ(ξ,−qn) is the smallest distance.
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Figure 1. Classification of lattices with divergence α on x-axis and density ξ
as ln(ln(ξ) on y-axis where e(e

y) corresponds to ξ ≈ 5.2 for y = 0.5, ξ ≈ 15.2
for y = 1, ξ ≈ 88.4 for y = 1.5, and ξ ≈ 1618.2 for y = 2. Blue curves show
the transitions of absolute first rank, e.g. from large blue N=1 to large blue
M=2. Bifurcation opens a blue-rimmed area for large blue N+M=3. Green
curves decompose blue-rimmed areas by the transitions of absolute second rank,
e.g. from small black M=2 to small black N+M=3. The inner green “drops”
are areas where the second rank is twice the first rank - that is, they consist of
lattices with stripe patterns similar to the vertical stripes of dense lattices with
rational divergence.

Example 4.3. As is well known,
√

3 is represented by the continued fraction [1, 1, 2, 1, 2, . . .]
which is periodic. We consider α = 2−

√
3 ≈ 0.268 which is represented by [0, 3, 1, 2, 1, 2, . . .].

The principal denominators are 1, 3, 4, 11, 15, 41, . . . The transitions of mini∈Z δ(ξ, i) have been
calculated for increasing ξ by the algorithm underlying Figure 1. There are transitions from 1
to 4, from 4 to 15, and from 15 to 56. So they tell us that the principal denominators 3, 11 and
41 are skipped.

If qn is not skipped, then a more sophisticated method for finding a skipped principal denom-
inators compares the transitions ξn,m between qn and qm for m > n. The transition between
qn and qm solves the equation δ(ξ, (−1)nqn) = δ(ξ, (−1)mqm) which, essentially by Lemma 3.5,
leads to ξn,m =

√
q2m−q2n
µ2n−µ2m

. The latter term looks like a “reciprocity law”. If ξn,n+2 < ξn,n+1

then qn+1 is skipped. This is a compelling ansatz for further investigations, in particular, for
finding new integer sequences. Invitingly, it has been applied for finding 106 and 33102 as
skipped principal denominators of π = [3, 7, 15, 1, 292, 1, . . .].
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