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ABSTRACT. Zeckendorf [Ze] proved that every positive integer can be written uniquely as the sum
of non-adjacent Fibonacci numbers. We further explore a two-player Zeckendorf game introduced in
[BEFM1, BEFM2]: Given a fixed integer n and an initial decomposition of n = nF1, players alternate
using moves related to the recurrence relation Fn+1 = Fn + Fn1 , and the last player to move wins. We
improve the upper bound on the number of moves possible and show that it is of the same order in n
as the lower bound; this is an improvement by a logarithm over previous work. The new upper bound
is 3n − 3Z(n) − IZ(n) + 1, and the existing lower bound is sharp at n − Z(n) moves, where Z(n)
is the number of terms in the Zeckendorf decomposition of n and IZ(n) is the sum of indices in the
same Zeckendorf decomposition of n. We also studied four deterministic variants of the game, where
there was a fixed order on which available move one takes: Combine Largest, Split Largest, Combine
Smallest and Split Smallest. We prove that Combine Largest and Split Largest realize the lower bound.
Split Smallest has the largest number of moves over all possible games, and is close to the new upper
bound. For Combine Split games, the number of moves grows linearly with n.

1. INTRODUCTION

1.1. The Zeckendorf Game. The Fibonacci numbers are among the most interesting and famous
sequences; see [Kos] for a collection of some of their properties. We define them by F1 = 1, F2 = 2
and Fn+1 = Fn + Fn−1; with these initial conditions we have Zeckendorf’s Theorem [Ze]: every
positive integer has a unique representation as a sum of non-adjacent Fibonacci numbers.1 For example,

2020 = 1597 + 377 + 34 + 8 + 3 + 1 = F16 + F13 + F8 + F5 + F3 + F1.

There is now an extensive literature on proofs of this theorem and generalizations; see for example [Al,
Br, CFHMN1, CFHMN2, CHHMPV, Day, DDKMMV, Fr, GTNP, Ha, Ho, Ke, Len, MW1, MW2].

Baird-Smith, Epstein, Flint and Miller [BEFM1, BEFM2] create a game based on the Zeckendorf
decompositions. We quote from [BEFM2], describing the game and previous results. We first introduce
some notation. By {1n} or {F1

n} we mean n copies of 1, the first Fibonacci number. If we have
3 copies of F1, 2 copies of F2, and 7 copies of F4, we could write either {F1

3 ∧ F2
2 ∧ F4

7} or
{13 ∧ 22 ∧ 57}.

Definition 1.1 (The Two Player Zeckendorf Game). At the beginning of the game, there is an unordered
list of n 1’s. Let F1 = 1, F2 = 2, and Fi+1 = Fi + Fi−1; therefore the initial list is {F1

n}. On each
turn, a player can do one of the following moves.

(1) If the list contains two consecutive Fibonacci numbers, Fi−1, Fi, then a player can change
these to Fi+1. We denote this move {Fi−1 ∧ Fi → Fi+1}.

(2) If the list has two of the same Fibonacci number, Fi, Fi, then
(a) if i = 1, a player can change F1, F1 to F2, denoted by {F1 ∧ F1 → F2},
(b) if i = 2, a player can change F2, F2 to F1, F3, denoted by {F2 ∧ F2 → F1 ∧ F3}, and

The authors were partially supported by NSF grants DMS1265673 and DMS1561945. We thank the Elite Scholars
Program for facilitating this collaboration, and Micah McClatchey for a careful reading of an earlier version.

1We clearly lose uniqueness if we include F0 = 0 or start F1 = F2 = 1.
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(c) if i ≥ 3, a player can change Fi, Fi to Fi−2, Fi+1, denoted by {Fi ∧ Fi → Fi−2 ∧ Fi+1}.
The players alternative moving. The game ends when one player moves to create the Zeckendorf
decomposition.

The moves of the game are derived from the recurrence, either combining terms to make the next
in the sequence or splitting terms with multiple copies. The game is well-defined and ends after at
most in · n moves, where i is the largest index such that Fi ≤ n. Thus the game takes at most order
n log n moves as the Fibonacci numbers grow exponentially fast.2 The shortest game takes n − Z(n)
moves, where Z(n) is the number of terms in n’s Zeckendorf decomposition; this is realized by using
a Greedy Algorithm (at each turn one must move on the largest possible index). If n > 2 then Player
Two has a winning strategy, although the proof of this is an existence proof and does not construct a
winning strategy.

1.2. Deterministic Zeckendorf Games. As the optimal strategy of the Zeckendorf Game remains
elusive, we study instead four deterministic games. These are defined by specifying the order in which
moves must be done. While there is thus no strategy,3 it is illuminating to study these special cases as
it provides some results that clarify some of the behavior of the general game.

The four games are as follows; for each game we list the order in which the moves must be done.
By adding 1’s we mean the move F1 ∧ F1 → F2.

• Combine largest: adding consecutive indices from largest to smallest, adding 1’s, splitting
from largest to smallest.
• Split largest: splitting from largest to smallest, adding consecutive indices from largest to

smallest, adding 1’s.
• Combine smallest: adding 1’s, adding consecutive indices from smallest to largest, splitting

from smallest to largest.
• Split smallest: splitting from smallest to largest, adding 1’s, adding consecutive indices from

smallest to largest.
The number of moves of a game is the sum of the number of combining moves and the number of

splitting moves. We let MCi denote the number of combining moves at the index i with 2 ≤ i, with of
course MC1 the number of adding 1’s. Similarly the number of splitting moves at i is denoted MSi
for i ≥ 2 (note we are considering adding 1’s as a combining move and not a splitting one; we explain
this choice in Remark 3.4). By an abuse of notation, we also refer to combining moves at i by MCi
and splitting moves at i by MSi.

Our main result is a proof of the conjecture from [BEFM1, BEFM2] that the number of moves in
any game is linear in n.

Theorem 1.2. The number of moves in the longest game is bounded by 3n−3Z(n)−IZ(n)+1, where
Z(n) is the number of terms in the Zeckendorf decomposition of n and IZ(n) is the sum of indices in
n’s Zeckendorf decomposition. As the number of moves is at least n− Z(n), each game takes order n
moves to play.

The previous upper bound (order n log n) was already very close to the known lower bound (order
n), indicating that a new perspective would be needed to close the gap and have them at the same
order of magnitude. We quickly sketch the key ideas, and highlight why we are able to remove the
logarithmic factor. The starting point is the monovariant introduced in [BEFM1, BEFM2], which we

2With our normalization of F1 = 1, F2 = 2 we have Fn is the closet integer to φn+1/
√
5, where φ = (1+

√
5)/2 is the

golden mean.
3Our games are equivalent to the classic card game of War, at least under the assumption that you have no freedom in

how you pick up the cards.
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review and expand on in §2. We use related monovariants to derive a bound growing linearly with n
for a weighted sum of all moves in a game except for splitting F2’s or F3’s. We then prove that the
number of combining moves is independent of how the game is played, and the number of splitting
moves at indices 2 or 3 is related to the number of combining moves at 1 and 2, which we just proved
grows linearly with n and completes the proof.

More is true for our deterministic games. We can rigorously determine the behavior of two of the
games, and conjecture for the other two, with data strongly supporting those claims.

Theorem 1.3. The Combine Largest and Split Largest games also realize the lower bound. Both have
MS(n) = 0 and MC(n) = n− Z(n).

Conjecture 1.4. For Split Smallest, the number of moves grows linearly with n; numerically the con-
stant appears to be the golden mean squared. For Combine Smallest games, the number of moves
grows linearly with n, with the constant appearing to be approximately 1.206.

We end with two conjectures. In [BEFM1, BEFM2], it was conjectured that as n goes to infinity, the
number of moves in a random game when all legal moves are equally likely converges to a Gaussian.
The data suggests the average number of moves is approximately 1.2n.

Conjecture 1.5. The number of splitting moves in a random game converges to a Gaussian, with mean
and variance approximately 0.215n.

Conjecture 1.6. It was conjectured that the longest game on any n is achieved by applying splitting
moves whenever possible. Specifically, the longest possible game applies moves in the following order:
adding 1’s, splitting from smallest to largest, and adding consecutive indices from smallest to largest.
We find another candidate for a longest possible game, with moves in the following order: splitting
from smallest to largest, adding 1’s, and adding consecutive indices, from smallest to largest. This is
the deterministic game Split Smallest.

2. MONOVARIANTS

We use two monovariants in our investigation. The first is obvious, and has not been explicitly
isolated in earlier work.

Monovariant I: the number of terms in the decomposition of n never increases throughout the
game.

The proof is immediate, as we only have two types of moves. One combines two terms into one,
which decreases by 1 the number of terms in the decomposition of n; the other splits a repeated term
into two distinct terms, which does not change the number of summands.

Monovariant II: The sum of the indices indices in the decomposition of n never increases through-
out the game.

This is slightly different than the monovariant used in [BEFM1, BEFM2], where the sum of the
square-root of the indices is studied. The advantage of this quantity is that this sum is strictly decreases,
and must decrease by at least a fixed positive amount which is bounded below by a positive function
of n. Thus one can immediately deduce that the Zeckendorf game terminates. Related monovariants
are used to analyze a related property of Zeckendorf decompositions, both for the Fibonacci and other
recurrences: of all decompositions of an integer n as a sum of Fibonacci numbers, no decomposition
has fewer summands than the Zeckendorf decomposition. In [CHHMPV], the authors find conditions
on recurrence relations where no decomposition has fewer summands than the Generalized Zeckendorf
decomposition.
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For our purposes, however, it is easier to work with Monovariant II. It is straightforward to show
that the sum of the indices never increases. We only have four moves to consider (as moves involving
the index 1 are defined slightly differently, we need to study that case separately).

• Adding consecutive terms: If we replace Fk∧Fk−1 with Fk+1, for k ≥ 2, we replace k+k−1
with k + 1, and the sum of the indices has decreased by k − 2 ≥ 0 (it is positive so long as
k ≥ 3).
• Adding 1’s: If we replace F1 ∧ F1 with F2 there is no change in the sum of the indices, as
1 + 1 = 2.
• Splitting terms: If we replace Fk ∧ Fk with Fk+1 ∧ Fk−2, for k ≥ 3, we replace 2k with
(k + 1) + (k − 2), and the sum of the indices has decreased by 1.
• Splitting 2’s: If we replace 2F2 with F3 ∧F1 then there is no change in the sum of the indices,

as 2 · 2 = 3 + 1.

3. LENGTH OF GAMES

We use the two monovariants introduced in §2 to derive bounds for weighted sums of the number
of each type of move; our theorems are then immediate consequences. We first isolate some lemmas
which will be useful in the proof.

3.1. Preliminary Lemmas. When the game starts, the sum of the indices is n. From [BEFM1,
BEFM2] the game always ends in n’s Zeckendorf decomposition, which by definition has IZ(n)
summands. Let imax(n) be the largest index m such that Fm ≤ n; this will be the largest index in n’s
decomposition, and by Binet’s formula we know

Fm =
1√
5

(
1 +
√
5

2

)m+1

− 1√
5

(
1−
√
5

2

)m+1

=
φm+1

√
5
− (1− φ)m+1

√
5

, (3.1)

where φ is the Golden mean. As the second term above exponentially decays to zero, we have Fm ≈
φm+1/

√
5. Thus the largest index is bounded by blogφ(n

√
5)− 1c+ 1, or

imax(n) ≤ logφ(n
√
5), (3.2)

which is of order logφ(n).

Lemma 3.1. The sum of the indices in n’s decomposition, IZ(n), is bounded by a constant multiple
of log2φ(n):

IZ(n) ≤
(logφ(n

√
5) + 3)2

2
. (3.3)

Proof. As the Zeckendorf decomposition cannot have adjacent summands, the maximum sum of in-
dices is the sum of every other term to imax(n). To be safe, we start with index 2 and end at imax(n)+2;
this negligibly increases the sum as we are only adding one more term, while the sum is on the order
of the square of the largest summand. We have

2 + 4 + · · ·+ (imax(n) + 2) = 2

(
1 + 2 + · · ·+ imax(n) + 2

2

)
= 2

imax(n) + 2

2

imax(n) + 4

2
<

(imax(n) + 3)2

2
. (3.4)

From (3.2) we know imax(n) ≤ logφ(n
√
5); thus

IZ(n) ≤
(logφ(n

√
5) + 3)2

2
, (3.5)
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so IZ(n) is bounded by a constant multiple of log2φ(n). �

We now prove the first of the two useful results on weighted sums of indices.

Lemma 3.2. We have

MC3+2MC4+· · ·+(imax(n)−2))MCimax(n)+MS3+MS4+· · ·+MSimax(n) = n−IZ(n). (3.6)

In particular, for 2 < k ≤ imax(n) we have

MCk ≤
n− IZ(n)
k − 2

. (3.7)

Proof. When the game starts we have n copies of F1, for an index sum of n; the game ends in n’s
Zeckendorf decomposition, with index sum of IZ(n). Thus the change in the index sum, n− IZ(n),
must equal the change from each move. We now compute that change by looking at what happens at
each index.

From §2, the index sum changes by k − 2 when we combine at index k if k ≥ 2. Thus the
contribution from all these moves is (k − 2)Mk; note there is no contribution when k = 2. There is
no change in the index sum from adding 1’s, so MC1 will not appear in the relation; similarly MS2
will not appear as that moves also does not change the index sum. If k ≥ 3 then the splitting move
at k decreases the index sum by 1, so the contribution of all the splitting moves at k is simply MSk.
Combining, we find

MC3+2MC4+3MC5+ · · ·+(imax(n)−2))MCimax(n)+MS3+ · · ·+MSimax(n) = n− IZ(n).
(3.8)

The bound on MCk follows immediately; as we will show later that the number of moves is at most
3n, we can obtain similar linear in n bounds for MC1 and MC2. �

Lemma 3.3. The number of combining moves in a game, MC(n), is independent of how the game is
played, and

MC(n) := MC1 +MC2 + · · ·+MCimax(n) = n− Z(n), (3.9)
where Z(n) is the number of terms in n’s Zeckendorf decomposition.

Proof. As we start with n indices and end with Z(n) indices, the change in indices throughout the
game is n− Z(n). Each splitting move leaves the number of terms in n’s decomposition alone, while
each combining move decreases the number of terms by one; (3.9) follows immediately, and we see in
particular this quantity is independent of how the game is played. �

Remark 3.4. The lemma above is why we view F1 ∧F1 = F2 as a combining move and not a splitting
move F1 ∧ F1 = F2 ∧ F−1. Not only do we not have F−1 as an available summand, but with this
definition all combining moves decrease the number of summands by 1 while each splitting move
leaves the number unchanged.

3.2. Proof of Theorem 1.2. We now prove our main result.

Proof of Theorem 1.2. Lemmas 3.2 and 3.3 almost suffice for the proof, as they provide bounds for
weighted sums of MC1, . . . ,MCimax(n),MS4, . . . ,MSimax(n). From Lemma 3.2 we have

MC3 +2MC4 + · · ·+ (imax(n)− 2))MCimax(n) +MS3 +MS4 + · · ·+MSimax(n) = n− IZ(n),
(3.10)

and thus

MC3 +MC4 + · · ·+MCimax(n) +MS3 +MS4 + · · ·+MSimax(n) ≤ n− IZ(n). (3.11)

Note the sum above misses MC1,MC2 and MS2.
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We can easily bound MC1 +MC2 from Lemma 3.3:

MC(n) := MC1 +MC2 + · · ·+MCimax(n) = n− Z(n); (3.12)

thus MC1 +MC2 ≤ n− Z(n), and adding this to (3.11) yields

MC1 + · · ·+MCimax(n) +MS3 + · · ·+MSimax(n) ≤ 2n− Z(n)− IZ(n). (3.13)

All that remains is to bound MS2. We start the game with n copies of F1, and let δ1 be how many
F1’s we have when the game terminates in n’s Zeckendorf decomposition; clearly δ1 ∈ {0, 1} as we
cannot have a repeated summand from the definition of the Zeckendorf decomposition, and its value is
independent of how the game is played. Every time we combine two 1’s to make a 2 (F1∧F1 = F2) we
decrease the number of F1’s by 2, while every time we combine a 1 and a 2 to make a 3 (F1∧F2 = F3)
we decrease the number of F1’s by 1. These are the only moves that decrease the number of F1’s; the
only moves that increase the number of F1’s are the splitting moves at 1 and 2. Each splitting move at 2
(2F2 = F3 ∧F1) increases the number of F1’s by 1, as does each splitting move at 3 (2F3 = F4 ∧F1).
Thus

n− 2MC1 −MC2 +MS2 +MS3 = δ1, or MS2 +MS3 = 2MC1 +MC2 − n+ δ1. (3.14)

By Lemma 3.3 we can bound MC1 +MC2 by MC(n) ≤ n− Z(n), and thus

MS2 ≤ 2(n− Z(n))− n+ 1 = n− 2Z(n) + 1. (3.15)

Combining our bound for MS2 with what we have established in (3.13) yields

MC1 + · · ·+MCimax(n) +MS1 + · · ·+MSimax(n) ≤ 3n− 3Z(n)− IZ(n) + 1, (3.16)

which is essentially of size 3n as Z(n) is of order logφ(n) and IZ(n) is at most log2φ(n).
This proves the upper bound for any game grows linearly with n; as every game exactly MC(n) =

n− Z(n) combining moves, the lower bound is also linear in n, completing the proof. �

3.3. Analysis of Combine Largest and Split Largest.

Proof of Theorem 1.3. We prove that the Combine Largest and Split Largest games also realize the
lower bound. Remember that for each game the order in which we do moves is as follows:

• Combine largest: adding consecutive indices from largest to smallest, adding 1’s, splitting
from largest to smallest.
• Split largest: splitting from largest to smallest, adding consecutive indices from largest to

smallest, adding 1’s.
The claims follow if we can show in each game we never have a splitting move, as we showed in

Lemma 3.3 that the number of combining moves is always MC(n) = n− Z(n).
We show that for these two games, at any state in the game if F ji is in the current decomposition of

n and i ≥ 2, then j = 1. We proceed by induction. The initial list, our base case, is {Fn1 }, so the claim
is true before the first move. The first move must be adding 1’s: Fn1 → Fn−2

1 ∧ F2. After this move,
the statement is still true. Though not necessary, we can check and see that the claim is still true after
the second and third moves.

We now turn to the inductive step; we may assume that if you look at the decomposition of n then
for any index i if F ji is in the list, then j = 1. Since there is no possible splitting move as each index
appears at most once, our move must be chosen in the following order: adding consecutive terms from
largest to smallest, and adding 1’s.

Case 1: Consecutive Terms: If the list contains two or more pairs of consecutive Fibonacci numbers,
the largest Fi is selected for the combining move. Note we cannot have Fi+1 in our list, as if that were
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the case we would have chosen Fi+1 as the largest term. Thus after this move we still have each index
i ≥ 2 appearing at most once.

Case 2: No Consecutive Terms: If n’s decomposition does not contain consecutive Fibonacci num-
bers, then the only possible move is adding 1’s. Note that we cannot have F2 in our list, as if we did we
would have combined F1 and F2. Thus after combining two 1’s we still do not have any index i ≥ 2
occurring more than once. �

4. CONJECTURES ON THE NUMBER OF MOVES

Conjecture 1.4 states that for Split Smallest, the number of moves grows linearly with n (numerically
the constant appears to be the golden mean squared), while for Combine Smallest games, the number
of moves grows linearly with n (with the constant appearing to be approximately 1.206). We arrived at
these results from analyzing large numbers of games; we provide representative examples in Figures 1
and 2.

1.6002×106 1.6004×106 1.6006×106 1.6008×106 1.6010×106

4.1885×106

4.1890×106

4.1895×106

4.1900×106

4.1905×106

4.1910×106

-330 -320 -310 -300 -290

0.02

0.04

0.06

0.08

FIGURE 1. Results of deterministic game Split Smallest for 1000 consecutive n,
starting at 1,600,000. Left: Plot of the number of moves versus n. Right: Histogram
of number of moves for n minus φ2n, where φ = (1 +

√
5)/2 is the Golden Mean.

1.6002×106 1.6004×106 1.6006×106 1.6008×106 1.6010×106

1.9304×106

1.9306×106

1.9308×106

1.9310×106

1.9312×106

1.9314×106

1.9316×106

-6 -4 -2 0 2 4

0.02

0.04

0.06

0.08

0.10

FIGURE 2. Results of deterministic game Combine Smallest for 1000 consecutive n,
starting at 1,600,000. Left: Plot of the number of moves versus n. Right: Histogram
of number of moves for n minus 1.20647n.

We then looked at random games. By Lemma 3.3 the number of combining moves in a game
depends only on n; thus all that varies is the number of splitting moves. We played 10,000 games with
n equal to one million, and display the results in Figure 3 plotted against a Gaussian. The fit is very
good, providing support for Conjecture 1.5.

158 VOLUME 58, NUMBER 5



DETERMINISTIC ZECKENDORF GAMES
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FIGURE 3. Plot of 10,000 random games with n = 1, 000, 000; the data was stan-
dardized to have mean 0 and variance 1, and we overlay a plot of the standard normal.

Finally, our investigations of the four deterministic games, and Lemma 3.3 which states that all
games have the same number of combining moves, provides support for Conjecture 1.6. The move
counts from the two deterministic algorithms in the conjecture were identical for all n < 1, 600, 000.

We wrote a Java program to explore Zeckendorf games, available at
https:

//web.williams.edu/Mathematics/sjmiller/public_html/math/papers/ZGame.zip.

In enumerating all games with n ≤ 150 we found the two deterministic games of Conjecture 1.6
always had the largest number of moves among all games for a given n.

5. FUTURE WORK

There are many questions related to the Zeckendorf game which can be investigated; several of these
will be done by students of Miller in the 2020 PolymathREU. These include the following.

• The lower and upper bound on game lengths differ by essentially a factor of 3; what is true
about the number of moves in most games or in a random game?
• From [BEFM1, BEFM2] we know that if n > 2 then Player Two has a winning strategy; what

is it?
• What if there are p players; what can you say about winning strategies for various n and p?
• The number of combining moves is always n − Z(n), while the number of splitting moves

appears to grow linearly with n, at approximately 1.206n; prove the latter.
• For each of the four deterministic games, how long do they take and who wins as a function of
n?

Studies of Zeckendorf game can be extended in many more ways. This paper covered the Zeck-
endorf Game quite extensively. We proposed the approach to study combining/adding moves and
splitting moves separately, the improved upper bounds was found on the number of moves in any
game, in the end a few deterministic algorithms were analyzed. We leave the general Player 2 winning
strategy for future research.
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