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Abstract. This article is a survey on results and topics related to the occurrences of the
Fibonacci numbers in the Markoff sequence.

1. Introduction

The Markoff equation is given by
x2 + y2 + z2 = 3xyz (1.1)

in positive integers x ≤ y ≤ z. A Markoff number is any positive integer which is a component
of some solution triple to the Markoff equation. The first few Markoff numbers are

1, 2, 5, 13, 29, 34, 89, 169, 194, 233, 433, 610, . . .

appearing as the maximal coordinates of the Markoff triples
(1, 1, 1), (1, 1, 2), (1, 2, 5), (1, 5, 13), (2, 5, 29), (1, 13, 34), (1, 34, 89),
(2, 29, 169)(5, 13, 194), (1, 89, 233), (5, 29, 433), (1, 233, 610), . . . .

The Fibonacci sequence {Fm}m≥0 starts as F0 = 0, F1 = 1 and satisfies the recurrence
Fm+2 = Fm+1 + Fm for all m ≥ 0. Its first few terms are

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, . . . .

We call the numbers appearing in both sequences above the Markoff-Fibonacci numbers.
The Markoff equation is one of the most fascinating equations, not only because of the

beautiful structure of its set of solution triples, but also because of its astonishing connections
to numerous areas (see [16] and the references there).

Cassini’s identity for the Fibonacci numbers with even indices states that

F 2
2n + 1 = F2n−1F2n+1,

which gives (F2n+1 − F2n−1)2 = F2n−1F2n+1 − 1. On simplification we get
1 + F 2

2n−1 + F 2
2n+1 = 3F2n−1F2n+1 (1.2)

and hence (1, F2n−1, F2n+1) is a Markoff triple for all n ≥ 0. Thus all odd indexed Fibonacci
numbers are Markoff numbers.

Both the Markoff and the Fibonacci sequences are endowed with a plethora of identities
and structure, making the study of the Markoff-Fibonacci numbers especially enjoyable. For
instance, (1.2) is an identity for Fibonacci numbers that probably would not appear on most
lists of properties for this popular sequence.

2. The Markoff and the Markoff-Rosenberger equations

In this section we present a brief background for the two equations in question. We also
present an elementary proof of an old fact on the coefficient 3 in the Markoff equation that
does not seem to be available in the literature.
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Figure 1. The Markoff tree rule.

2.1. The Markoff tree. Markoff showed a simple way to generate all Markoff numbers that
may then be represented by a tree. The two triples (1, 1, 1) and (1, 1, 2) are called singular
Markoff triples. All other ordered triples (a, b, c) satisfy a < b < c, and are called non-singular.

Given a Markoff triple (a, b, c), it is easy to see that there is exactly one other Markoff triple
with a and b as two components. To see this, suppose that (a, b, x) is a Markoff triple. Then
a2 + b2 + x2 = 3abx, which is a quadratic in x, and hence we obtain two solutions, x = c and
x = 3ab− c. We have thus found a new triple (a, b, 3ab− c). In the same manner, fixing a and
c, or b and c, we obtain the triples (a, c, 3ac− b) and (b, c, 3bc− a). Thus, from a non-singular
Markoff triple (a, b, c) we obtain three Markoff triples, called the neighbours of (a, b, c). For
example, the neighbours of the triple (1, 2, 5) are (1, 1, 2), (1, 5, 13) and (2, 5, 29).

All the non-singular Markoff triples may be represented on a tree, where each vertex denotes
a Markoff triple. If two Markoff triples are neighbours, then there is an edge between the two
vertices that represent these triples. Given that each non-singular Markoff triple has three
neighbours, three edges intersect at any vertex of the tree. Each vertex therefore is the point
of intersection of three regions, where the three regions represent the three numbers of the
Markoff triple represented by this vertex. Figure 1 shows the two neighbours (a, b, c) and
(a, b, 3ab − c). Starting from the Markoff triple (1, 2, 5) we may then construct the Markoff
tree (Figure 2) using the rule given in Figure 1.

Observe that the lower branch of the Markoff tree consists of the odd indexed Fibonacci
numbers while the upper branch has all the odd indexed Pell numbers.

A well known tantalising claim is the Markoff conjecture.

Conjecture 2.1. If c is a Markoff number and (a, b, c) and (a′, b′, c) are two Markoff triples
such that a ≤ b ≤ c and a′ ≤ b′ ≤ c, then a = a′ and b = b′.

In other words, given a Markoff number c, there is exactly one ordered triple with maximal
element equal to c. On the Markoff tree the conjecture simply says that no Markoff number
appears more than once.

2.2. Why the coefficient 3? During the problem session of the 19th International Fibonacci
Conference, a question arose of whether the number 3 in the Markoff equation could be replaced
by any other number. This question has often been asked by admirers of the Markoff equation,
and one response points to the article by Hirzebruch and Zagier [7, page 162]. The proof
given in [7] while not elementary, does not use any deep theorems. Moreover, the authors
therein [7, pages vii and 162] remark that while they digress to give a proof to illustrate their
techniques, this result may easily be proved in an elementary fashion using the method of
descent. Hurwitz in [8] looks at the general equation x2

1 + x2
2 + . . . x2

n = xx1x2 . . . xn, and
shows that xx3 . . . xn ≤ n, which proves that there are no solutions for n < x. For the Markoff
equation (n = 3) this gives us that the coefficient 3 may be replaced only by 1 (we show below
that 2 is not possible). Baragar [2, Lemma 0.1] gives a different proof of Hurwitz’s result
stated above. Both these proofs use the idea of neighbouring solutions. Our proof below uses
the method of descent on neighbouring solutions, which we think is worthwhile to record, since
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Figure 2. The Markoff tree.

it is precisely what Markoff used to generate the tree with all solution triples (as explained by
Cassels in [3, pages 27-28]).

Let us consider the equation
x2 + y2 + z2 = nxyz (2.1)

where n is a positive integer. Suppose that (x, y, z) with x ≤ y ≤ z is a solution triple. Observe
from (2.1) that if x = y = z, then n = 1 or 3. Otherwise, we have z > 1 and nxyz < 3z2 and
thus

nxy < 3z. (2.2)
It is easy to verify (in an identical manner to finding the neighbours of a Markoff triple, as
seen in Section 2.1) that (x, y, nxy − z) is also a solution triple. We will now show that
z′ = nxy − z < z. Re-writing (2.1) as

x2 + y2 = z(nxy − z) (2.3)

we see that z′ > 0. Next, dividing (2.1) by xyz, we have

n = x

yz
+ y

xz
+ z

yx

<
3
2 + z

yx

224 VOLUME 58, NUMBER 5



THE MARKOFF-FIBONACCI NUMBERS

since x
yz + y

xz < 3
2 (as z > 1). It follows that nxy − z < 3

2xy < 9z
2n using (2.2), and thus if

n > 4, we have z′ < z. We have shown above that if we have an ordered solution (x, y, z) with
maximal element z > 1 and n > 4, then the triple (x, y, nxy− z) has maximal element smaller
than z. This leads us by descent to the solution (1, 1, 1) and hence n = 3. Thus equation (2.1)
has no solution for n > 4.

In the case when n = 4, looking at (2.1) modulo 4, we note that x, y and z are all even.
Hence (

x

2

)2
+

(
y

2

)2
+

(
z

2

)2
= xyz = 8x

2
y

2
z

2
which is not possible, as we have shown above that for n > 4 there are no solutions.

In a similar manner we can eliminate the case n = 2 and we are left with the cases n = 1
or n = 3.

If n = 1, then looking at (2.1) modulo 3, it is easy to see that x, y and z are divisible by 3.
Dividing the equation by 9, we see that (x/3, y/3, z/3) is a solution of the Markoff equation.
Conversely, if (x, y, z) is solution of the Markoff equation, then (3x, 3y, 3z) is a solution of
(2.1) with n = 1. Hence, there is a one to one correspondence between the solutions of (2.1)
with n = 1 and n = 3.

2.3. The Markoff-Rosenberger equation. Rosenberger generalized the Markoff equation
to

ax2 + by2 + cz2 = dxyz (2.4)
where a, b and c are positive integers that divide d.

As with the Markoff equation the solution triples form a tree, where each solution triple
(x, y, z) has the following three neighbours:(

x, y,
d

c
xy − z

)
,

(
x,

d

b
xz − y, z

)
,

(
d

a
zy − x, y, z

)
. (2.5)

Note that as the Markoff-Rosenberger equation lacks the symmetry of the Markoff equation,
we cannot permute the three components of a solution triple to get another solution.

Rosenbeger [14] proved that (2.4) has non-trivial solutions if and only if (a, b, c, d) is one of
the following:

{(1, 1, 1, 1), (1, 1, 1, 3), (1, 1, 2, 4), (1, 2, 3, 6), (1, 1, 2, 2), (1, 1, 5, 5)}. (2.6)

He showed that every solution triple is connected via the neighbour rule (2.5) to a fundamental
solution triple. Moreover, Rosenberger also listed these fundamental solutions. The first
equation in (2.6) has the fundamental solution (3, 3, 3). The second (the Markoff equation),
the third and the fourth equation have the fundamental solution (1, 1, 1). For (a, b, c, d) =
(1, 1, 2, 2) the fundamental solution triple is (2, 2, 2), and the last equation given in (2.6) has
the fundamental solution triples (1, 2, 1) and (2, 1, 1).

3. Current results

In this section we present the results in the literature on the topic in discussion.
Soon after Luca and Srinivasan published their paper [12], there was a burst of activity

in the area, where these ideas were extended and improved, to apply to other sequences and
equations. We present below all the results on the topic that we were able to uncover and do
hope that there are no omissions.

DECEMBER 2020 225



THE FIBONACCI QUARTERLY

(1) Luca and Srinivasan [12]: Markov equation with Fibonacci components.
The authors proved that the only Markoff triples with all Fibonacci components

are given by (1, F2n−1, F2n+1) where n ≥ 0 is an integer. Using the Binet formula for
each component of a Markoff-Fibonacci triple (Fi, Fj , Fn) and the Markoff equation,
they showed that i = 2, 3, 5, 7. Then for each i using properties of the Markoff and
Fibonacci numbers, they were able to show the desired result.

(2) Kafle, Srinivasan and Togbe [9]: Markoff equation with Pell components.
This paper follows closely (1) above.

(3) Rayaguru, Sahukar and Panda [13]: Markov equation with components of some binary
recurrence sequences.

The authors here prove independently the same results as in (2) above using similar
methods.

(4) Tengely [17]: Markoff-Rosenberger triples with Fibonacci components.
The author lists the finite number of solution triples with all Fibonacci components

for the Markoff-Rosenbeger equations other than the Markoff equation. He first bounds
i as in (1) above. Then he bounds n− j similarly and examines equation (2.4) for each
case given in (2.6), and for each value of i and n − j. Using modular considerations
and by reducing the equation to a quartic genus 1 curve, he is able to finish his proof
using Magma for obtaining integral points on this curve.

(5) Altassan and Luca [1]: Markov type equations with solutions in Lucas sequences.
These authors study equation (2.4) without any conditions on a, b, c, d other than

that they are positive integers. They look for solution triples (ui, uj , un) from the
Lucas sequence defined as un = run−1 + sun−2, where u0 = 0, u1 = 1 with r ≥ 1 and
s = ±1. Their main theorem bounds i, n− j and r. As a result they are able to show
that for the Markoff equation the solution triples must be the Markoff-Fibonacci or
Markoff-Pell triples. They also show that for the other Markoff-Rosenberger equations
there are only a finite number of solution triples. The methods used are elementary
relying mainly upon the Binet formula.

(6) Kafle, Srinivasan and Togbe [10]: Markoff-Rosenberger triples with Pell components.
The authors give a proof similar to the one in (1), using only the properties of the

Pell numbers, and generalizing a property of the Markoff equation to work for the
Markoff-Rosenberger equations.

(7) Hashim, Szalay and Tengely [6]: Markoff-Rosenberger triples and generalized Lucas
sequences.

The authors apply the methods in (4) above, to generalized Lucas sequences defined
as un = pun−1 − qun−2, where (u0, u1) = (0, 1) or (2, p), and show that if (ui, uj , un)
is a solution triple to any Markoff-Rosenberger equation (2.4), other than the Markoff
equation, then i is bounded above. They then apply this bound to two sequences, the
Balancing numbers and the Jacobsthal numbers, and give the finite list of solution
triples with all components from the said sequences.

(8) Gómez, Gómez and Luca [5]: Markov triples with k-generalized Fibonacci components.
The authors use properties of the k-generalized Fibonacci sequence to show that

there are no other solution triples from this sequence, besides the Markoff-Fibonacci
ones.

(9) Luca [11]: Markov triples with two Fibonacci components.
In this delightful paper, the methods used outshine the main result proved. The

author shows that there are only a finite number of Markoff triples with two Fi-
bonacci components, other than the Markoff-Fibonacci triples (on the lower branch
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of the Markoff tree), and the ones arising as offshoots from these triples, namely,
(5, 13, 194), (13, 34, 1325), (34, 89, 9077), . . . . If two components of a Markoff triple are
Fm and Fn with m < n, then Fn appears k steps down a branch of the Markoff tree at
Fm. Using linear forms in logarithms, the author first shows that if m and n−m are
sufficiently large, then k is bounded. Next, using the subspace theorem he shows that
k = 1 or 2, and finally using the Corvaja-Zannier machinery he proves some amazing
identities connecting Fm and Fn to conclude the proof.

4. Some open questions

One of the first questions that comes to mind is whether any even indexed Fibonacci number
appears as a component of a Markoff triple. While all the odd indexed Fibonacci numbers
sit on the lower branch of the Markoff tree, the even indexed ones do not seem to appear
anywhere on the tree. As far as the author is aware this question has not been answered in
print.

Observe that it follows immediately from the Markoff conjecture that there are no Markoff
triples with an odd indexed Fibonacci component, other than (1, F2n−1, F2n+1). Recall that
the Markoff conjecture states that there are no repeats in the Markoff tree. Hence the odd
indexed Fibonacci numbers that appear on the lower branch will not be found anywhere else
on the tree.

The Markoff-Fibonacci and the Markoff-Pell triples appear on the lower and upper branch
of the Markoff tree. One may look at other branches on the Markoff tree. For example, if we
look at the branch at a = 5, we get Markoff triples with minimal element 5, such as (5, 29, 433),
(5, 433, 6466) and so on. The sequence of Markoff numbers at this branch is

· · · 2897, 194, 13, 29, 433, 6466, . . . .

This sequence an has the recurrence relation
a0 = 1, a1 = 2, an+2 = 15an−1 − an−2.

The question here is whether there are Markoff triples with all components coming from
the sequence an above, other than (5, an, an+1).

This question is clearly not as appealing as our original one on Markoff-Fibonacci triples,
as the sequence an does not share the same fame as that of the Fibonacci sequence. However,
the author feels that the answer could perhaps lead us to new ways of thinking of the Markoff
conjecture. Indeed the Markoff conjecture is precisely about looking for repeated occurences
on the Markoff tree.

The results on the Markoff-Rosenberger triples with Fibonacci (or Pell) components in the
case when (a, b, c) 6= (1, 1, 1), lack the charm of Markoff-Fibonacci triples, in that there are
only a finite number of these, while the Markoff-Fibonacci numbers light up a whole (infinite)
branch of the tree.

It may be more interesting (as in the case of the Markoff tree) to look at other branches on
a Markoff-Rosenberger tree, where we already have an infinite set of triples. For example, for
the Markoff-Rosenberger equation corresponding to (a, b, c, d) = (1, 1, 2, 4), the sequence

1, 3, 11, 41, 153, . . .

appears on the branch with the third component equal to 1. They arise from the solution
triples

(1, 1, 1), (1, 3, 1), (11, 3, 1), (11, 41, 1), . . .

which are obtained by using the formula (2.5) alternatively for y and x.
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The sequence mentioned above is defined as
b0 = 1, b1 = 1, bn = 4bn−1 − bn−2

and has numerous interesting interpretations that one may read in sequence A001835 in [15].
One such property stated there is that it is the number of ways of packing a 3 × 2(n − 1)
rectangle with dominoes. Our interpretation here, of the sequence arising from components of
solution triples of the Markoff-Rosenberger equation does not appear in A001835 in [15] and
it would certainly be interesting to analyse how these different interpretations are connected.
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