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Abstract. In 2013, Joerg Arndt recorded that the Fibonacci numbers count integer com-
positions where the first part is greater than the second, the third part is greater than the
fourth, etc. We provide two combinatorial proofs that verify his observation. Also, we gener-
alize the descent condition and establish families of recurrence relations. Compositions with
parts restricted to 1 and 2 play an important role.

1. Introduction

Joerg Arndt observed the following occurrence of the Fibonacci numbers counting a subset
of integer compositions. This appears as a comment in the On-Line Encyclopedia of Integer
Sequences [2, A000045].

An integer composition of a positive integer n is an ordered collection of parts (c1, c2, . . . , ct)
such that

∑
ci = n. When listing compositions with single-digit parts, we often use the

condensed representation c1c2 · · · ct. Let C(n) be the set of all compositions of n. We define
Arndt’s compositions in terms of pairwise descending parts.

Definition 1.1. Let A(n) ⊂ C(n) be the compositions such that c2i−1 > c2i for each positive
integer i. If the number of parts is odd, then the final inequality is vacuously true.

See Table 1 for examples. Arndt recorded that a(n) = |A(n)| = fn, the nth Fibonacci
number defined by f0 = 0, f1 = 1, and fn = fn−1 +fn−2 for n ≥ 2, but did not provide a proof
(and, per personal communication in April 2022, does not recall how he made the connection).

We establish Arndt’s observation in two ways and analyze the generalization to compositions
where the restriction is modified to c2i−1 > c2i + k for any nonnegative integer k. We will use
the following restricted type of compositions which are also counted by the Fibonacci numbers.

Definition 1.2. Let C12(n) ⊂ C(n) be the compositions with parts restricted to the set {1, 2}.

It is well known that |C12(n)| = fn+1; to see that C12(n− 1) ∪ C12(n− 2) ∼= C12(n), add a
part 1 at the end of the compositions in C12(n−1) and add a part 2 at the end of compositions
in C12(n− 2). The relation of these compositions to what we now call the Fibonacci numbers

n A(n) a(n)
1 1 1
2 2 1
3 3, 21 2
4 4, 31, 211 3
5 5, 41, 32, 311, 212 5
6 6, 51, 42, 411, 321, 312, 213, 2121 8
7 7, 61, 52, 511, 43, 421, 412, 322, 313, 3121, 214, 2131, 21211 13

Table 1. Arndt’s compositions for small values of n.
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was known to scholars of ancient India [3]. These compositions are also the workhorses of
Benjamin and Quinn’s combinatorial proofs of many Fibonacci identities [1].

2. Proofs of Arndt’s observation

We show the connection of Arndt’s compositions and the Fibonacci numbers in two ways.
First, we establish that they satisfy the same recurrence with the same initial values. Second,
we show that they are in bijection with C12(n − 1). Both proofs are combinatorial. Both
approaches are used in the next section.

Theorem 2.1. a(n) = fn for each positive integer n.

Proof. We proceed by induction. From Table 1, we see that A(1) and A(2) are both singleton
sets, matching a(1) = a(2) = 1 = f1 = f2.

We establish a bijection A(n− 1) ∪A(n− 2) ∼= A(n).
Given a composition c = (c1, . . . , ct) ∈ A(n− 1), let

c 7→

{
(c1, . . . , ct + 1) if t is odd,

(c1, . . . , ct, 1) if t is even.

Intuitively, we are increasing the greatest possible odd index part by 1, whether it is last part
of c (odd length) or follows the last part of c (even length). Clearly the image is a composition
of n. Note that the image has odd length in either case, so the descent condition is maintained
and the image is in A(n).

These images of A(n− 1) in A(n) are distinct as images of odd length compositions have a
final part at least 2 while images of even length compositions have final part 1.

Given a composition c = (c1, . . . , ct) ∈ A(n− 2), let

c 7→

{
(c1, . . . , ct + 1, 1) if t is odd,

(c1, . . . , ct−1 + 1, ct + 1) if t is even.

Descriptively, this adds a 1 to the last two possible positions starting with the greatest positive
odd index part. Clearly the image is a composition of n. Note that the image has even length
in either case. The descent condition is maintained since, for t odd, ct + 1 > 1 and, for t even,
ct−1 > ct implies ct−1 + 1 > ct + 1. Therefore the image is in A(n).

These images of A(n− 2) in A(n) are distinct as images of odd length compositions have a
final part 1 while the images of even length compositions have final part at least 2.

Also, the images from A(n− 1) in A(n) and from A(n− 2) in A(n) are distinct since they
have odd length versus even length, respectively.

The reverse map is clear by considering the parity of the length of the element of A(n) and
then whether the last part is 1 or greater. More explicitly,

(c1, . . . , ct) 7→

{
(c1, . . . , ct − 1) if t is odd,

(c1, . . . , ct−1 − 1, ct − 1) if t is even,

where the final 0 is omitted whenever ct = 1.
Since a(n− 1) = fn−1 and a(n− 2) = fn−2 by assumption, we conclude that a(n) = fn. �

For example, the image of A(6) in A(7) described in the proof is

6 7→ 7, 411 7→ 412, 321 7→ 322, 312 7→ 313, 213 7→ 214; 51 7→ 511, 42 7→ 421, 2121 7→ 21211
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while the image of A(5) in A(7) is

5 7→ 61, 311 7→ 3121, 212 7→ 2131;

41 7→ 52, 32 7→ 43.

The second conclusion of the following corollary gives an unusual combinatorial verification
of the identity fn = fn−2 + 2fn−3 + fn−4.

Corollary 2.2. For n > 1, in A(n) there are fn−1 compositions with odd length and fn−2
compositions with even length. For n > 3, in A(n) there are 2fn−3 compositions whose last
part is 1 and fn−2 + fn−4 compositions whose last part is at least 2.

Proof. The first statement follows from the notes in the theorem proof that, in A(n), images
of A(n− 1) have odd length and images of A(n− 2) have even length.

By the descriptions of the images in the theorem proof, the compositions of A(n) with last
part 1 come from compositions in A(n − 1) with even length and compositions in A(n − 2)
with odd length. By the first statement of the corollary, the sizes of those sets are each fn−3.
The complementary set of compositions in A(n) whose last part is at least 2 comes from the
fn−2 compositions in A(n − 1) with odd length and the fn−4 compositions in A(n − 2) with
even length. �

Now we establish the connection between Arndt’s compositions and compositions whose
parts are restricted to 1 and 2.

Theorem 2.3. A(n) ∼= C12(n− 1).

Proof. Given c = (c1, . . . , ct) ∈ A(n), convert each pair of parts (c2i−1, c2i) into (1c2i−1−c2i , 2c2i),
where superscripts denote repetition, a composition in C12(c2i−1 + c2i). Concatenating these
gives an image c′ ∈ C12(n). Visually, this uses the “bar graph” representation of a composition
with each part ci represented by a column of ci boxes. The operation reads two bars of height
c2i−1 and c2i from top to bottom by row length.

Since c1 > c2, the corresponding c′ ∈ C12(n) begins with a run of 1s of length at least 1;
removing the initial 1 gives the final image in C12(n− 1). See Figure 1 for an example.

For the reverse map, given a composition in C12(n − 1), add an additional part 1 at the
beginning. The resulting composition in C12(n) can be broken into runs of the form (1a, 2b)
for positive integers a and b, except that the final b could be 0, i.e., the last part of the
composition could be a 1. The subsequence (1a, 2b) corresponds to the 2-part composition
(a + b, b) ∈ A(a + 2b); since a > 0, we have a + b > b as required. Concatenating the pairs
(and possibly a final singleton) gives a composition in A(n).

It is clear that the two maps are inverses, establishing the bijection. �
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Figure 1. (6, 2, 4, 3, 3) ∈ A(18) corresponds to (1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 1) ∈ C12(17).
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For example, the element by element correspondence between A(7) and C12(6) described in
the proof is

7 7→ 16, 511 7→ 11121, 421 7→ 1221, 412 7→ 11211, 322 7→ 2211,

313 7→ 12111, 214 7→ 214, 21211 7→ 2121;

61 7→ 142, 52 7→ 1122, 43 7→ 222, 3121 7→ 1212, 2131 7→ 2112,

where, looking ahead to Corollary 3.6, the compositions of A(7) are organized by length parity.

3. Generalizing Arndt’s compositions

Arndt’s compositions A(n) require a descent from each c2i−1 to c2i for each i. We generalize
these compositions by requiring a greater decrease.

Definition 3.1. Given a nonnegative integer k, let A(n, k) ⊂ C(n) be the compositions such
that c2i−1 > c2i + k for each positive integer i. If the number of parts is odd, then the final
inequality is vacuously true.

The Arndt compositions A(n) are the same as A(n, 0). Table 2 shows some examples for
small k.

In this section, we establish a recurrence relation for a(n, k) = |A(n, k)| and show that these
compositions are in bijection to certain subsets of C12(n− k − 1).

Theorem 3.2. Given a positive integer k, for all n > k + 3,

a(n, k) = a(n− 1, k) + a(n− 2, k)− a(n− 3, k) + a(n− k − 3, k).

Proof. We establish a bijection

A(n, k) ∪A(n− 3, k) ∼= A(n− 1, k) ∪A(n− 2, k) ∪A(n− k − 3, k).

Given c = (c1, . . . , ct) ∈ A(n, k), let

c 7→

{
(c1, . . . , ct − 1) if t is odd,

(c1, . . . , ct−1 − 1, ct − 1) if t is even,

where the final 0 is omitted whenever ct = 1. From A(n, k), the odd length compositions go
into A(n− 1, k) while the even length compositions go into A(n− 2, k).

Given c = (c1, . . . , ct) ∈ A(n− 3, k), let

c 7→


(c1, . . . , ct + 1) if ct < k and t is odd,

(c1, . . . , ct, 1) if ct < k and t is even,

(c1, . . . , ct − k) if ct ≥ k,

where the final 0 is omitted whenever ct = k. The compositions in A(n− 3, k) with last part
less than k go into A(n− 2, k) while the others go into A(n− k − 3, k).

k A(7, k)
0 7, 61, 52, 511, 43, 421, 412, 322, 313, 3121, 214, 2131, 21211
1 7, 61, 52, 511, 421, 412, 313
2 7, 61, 52, 511, 412
3 7, 61, 511

Table 2. Compositions A(7, k) for small values of k.
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Note that the image c′ ∈ A(n − 2, k) of c = (c1, . . . , ct) ∈ A(n, k) and the image d′ ∈
A(n−2, k) of d = (d1, . . . , ds) ∈ A(n−3, k) are distinct: If ct > 1, then c′ and d′ have different
length parity. If ct = 1, then c′ = (c1, . . . , ct−1 − 1) with last part at least k + 1 while d′ is
(d1, . . . , ds + 1) or (d1, . . . , ds, 1) with last part at most k in either case.

Thus these maps give an injection from A(n, k) ∪A(n− 3, k) to A(n− 1, k) ∪A(n− 2, k) ∪
A(n− k − 3, k).

We now describe the reverse map to complete the bijection.
Given c = (c1, . . . , ct) ∈ A(n− 1, k), let

c 7→

{
(c1, . . . , ct + 1) if t is odd,

(c1, . . . , ct, 1) if t is even.

Note that all compositions from A(n−1, k) go into A(n, k). Further, the images of A(n−1, k)
in A(n, k) are distinct since odd length compositions have images with final part at least 2
while even length compositions have images with final part 1.

Given c = (c1, . . . , ct) ∈ A(n− 2, k), let

c 7→


(c1, . . . , ct + 1, 1) if t is odd and ct > k,

(c1, . . . , ct − 1) if t is odd and ct ≤ k,

(c1, . . . , ct−1 + 1, ct + 1) if t is even,

where the final 0 is omitted whenever t is odd and ct = 1.
From A(n − 2, k), the odd length compositions with last part greater than k and the even

length compositions go into A(n, k), while the odd length compositions with last part at most
k go into A(n− 3, k).

Given c = (c1, . . . , ct) ∈ A(n− k − 3, k), let

c 7→

{
(c1, . . . , ct + k) if t is odd,

(c1, . . . , ct, k) if t is even.

Note that all compositions from A(n − k − 3, k) go into A(n − 3, k). Further, the images of
A(n−k−3, k) in A(n−3, k) are distinct since odd length compositions have images with final
part at least k + 1 while even length compositions have images with final part k.

Moreover, the images from A(n − 1, k) in A(n, k) and from A(n − 2, k) in A(n, k) are
distinct since they have odd length versus even length, respectively. Finally, the image c′ ∈
A(n − k − 3, k) of c = (c1, . . . , ct) ∈ A(n − 2, k) and the image d′ ∈ A(n − k − 3, k) of
d = (d1, . . . , ds) ∈ A(n−k−3, k) are distinct: If ct > 1, then c′ = (c1, . . . , ct−1) with last part
at most k − 1 while d′ is (d1, . . . , ds + k) or (d1, . . . , ds, k) with last part at least k in either
case. If ct = 1, then c′ = (c1, . . . , ct−1) with even length while d′ has odd length.

Therefore, the map from A(n− 1, k)∪A(n− 2, k)∪A(n− k− 3, k) to A(n, k)∪A(n− 3, k)
is an injection and the desired bijection is established. �

For example, the correspondence between A(9, 2)∪A(6, 2) and A(8, 2)∪A(7, 2)∪A(4, 2) is

9 7→ 8, 711 7→ 71, 621 7→ 62, 612 7→ 611, 522 7→ 521, 513 7→ 512, 414 7→ 413;

81 7→ 7, 72 7→ 61, 63 7→ 52; 51 7→ 511; 411 7→ 412; 6 7→ 4.

Similar to Corollary 2.2, the map of Theorem 3.2 gives the following final result.

Corollary 3.3. The number of odd length compositions in A(n, k) is a(n− 1, k). The number
of even length compositions in A(n, k) is then a(n, k)− a(n− 1, k).
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Finally, we show that the compositions A(n, k) are in bijection to particular subsets of
C12(n− k − 1).

Definition 3.4. Given a nonnegative integer k, let Ck
12(n) denote that subset of C12(n) where

each internal run of 1s has length at least k+1. In other words, given c = (c1, . . . , ct) ∈ Ck
12(n),

a run of 1s starting with c1 or ending with ct may be shorter, but any run of 1s between two
2s must have length greater than k.

We can write C12(n) = C0
12(n). For positive k, the set Ck

12(n) can be described in terms
of forbidden subwords: C1

12(n) consists of the compositions in C12(n) that avoid (2, 1, 2) and
C2
12(n) are the compositions of C12(n) that avoid both (2, 1, 2) and (2, 1, 1, 2), etc. The sequence
|C1

12(n)| is [2, A130137] with an equivalent forbidden word interpretation; |C2
12(n)| is the

positive version of [2, A107332].

Theorem 3.5. A(n, k) ∼= Ck
12(n− k − 1).

Proof. The same map in the proof of Theorem 2.3 works here. Given c = (c1, . . . , ct) ∈ A(n, k),
since c2i−1 > c2i + k for each i, the same conversion into C12(n) has each run of 1s, except
possibly the last, with length at least k + 1. Removing the initial k + 1 parts 1 leaves a
composition in Ck

12(n− k− 1). In the reverse map, given a composition in Ck
12(n− k− 1), add

k + 1 parts 1 at the beginning and proceed as before. �

Examples are essentially subsets of the A(7) and C12(6) example above. For instance, for
A(7, 1) and C1

12(5) we have

7 7→ 15, 511 7→ 1121, 421 7→ 221, 412 7→ 1211, 313 7→ 2111; 61 7→ 1112, 52 7→ 122,

while for A(7, 2) and C2
12(4) the element by element correspondence is

7 7→ 14, 511 7→ 121, 412 7→ 211; 61 7→ 112, 52 7→ 22.

Related to the first statement of Corollary 2.2, we have the following result.

Corollary 3.6. For nonnegative k, the number of compositions in A(n, k) with odd length
equals the number of compositions in Ck

12(n−k−1) whose last part is 1. Therefore the number
of compositions in A(n, k) with even length equals the number of compositions in Ck

12(n−k−1)
whose last part is 2.

Proof. This follows directly from the correspondence used in Theorems 2.3 and 3.5. �

In future work, we plan to expand Definition 3.1 to negative values of k and explore con-
nections to Carlitz compositions.
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