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Abstract. We present a quite curious generalization of multi-step Fibonacci numbers. For
any positive rational q, we enumerate binary words of length n whose maximal factors of
the form 0a1b satisfy a = 0 or aq > b. When q is an integer we rediscover classical multi-
step Fibonacci numbers: Fibonacci, Tribonacci, Tetranacci, etc. When q is not an integer,
obtained recurrence relations are connected to certain restricted integer compositions. We
also discuss Gray codes for these words, and a possibly novel generalization of the golden
ratio.

1. Introduction

Multi-step generalization of Fibonacci numbers can be traced back to the works of Miles [12]
and 14-year old Feinberg [6]. A lot of different studies about these numbers appear after,
including the works of Flores [8], Miller [14], Dubeau [4] and Wolfram [17]. A bunch of
combinatorial objects are enumerated by these numbers. For instance, the Knuth’s exercise [11,
p. 286] shows that the set of length n binary words avoiding k consecutive 1s is enumerated
by k-bonacci numbers respecting an = an−1 + an−2 + · · ·+ an−k, with initial conditions a0 =
1, a−1 = 1, and aj = 0 for any j < −1.

Independently, in two recent papers [1, 5], a new (as far as we know) kind of restricted
binary words enumerated by generalized Fibonacci numbers was considered. For any n ∈ N,
Baril, Kirgizov and Vajnovszki [1] defined a set Wq,n, parameterized by a positive natural
number q, as follows:

Definition 1.1. Wq,n is the set binary words of length n such that for every maximal consec-

utive subword (factor) of the form 0a1b which satisfies a > 0 we have aq > b, where x` denotes
a factor of length ` consisting only of symbols x. Figure 1 presents some examples.

Eğecioğlu and Iršič deal in [5] with a graph whose vertex set corresponds to the words from
W1,n starting with zero. Two vertices are adjacent in this graph if and only if the corresponding
words differ at only one position.

In this short paper, we extend the above definition ofWq,n for the case where q is a positive
rational number, provide generating functions and give a method to construct linear recurrence
relation for the sequence (|Wq,n|)n≥0 with 0-or-1 coefficients.

2. Set construction and generating function

For q ∈ Q+, the set Wq =
⋃

n∈NWq,n is constructed as follows:

Wq =
∞⋃
k=0

{1k} ∪Wq · Sq, where Sq =
∞⋃
i=0

{

1+
⌊

i
q

⌋
zeros︷ ︸︸ ︷

0 . . . 001 . . . 11︸ ︷︷ ︸
i ones

} (2.1)

and Wq · Sq corresponds to a set of all possible concatenations of elements from Wq and
Sq (in this order). Table 1 shows shortest elements of Sq for different values of q. A

DECEMBER 2022 187



THE FIBONACCI QUARTERLY

0
1

00
10
11

000
001
100
110
111

0000
0001 1001
0010 1100
1000 1110

1111

...

(a) W1,n enumerated by Fibonacci.
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(b) W2,n enumerated by Tribonacci.

Figure 1. Sets Wq,n for small values of n and q.

word 111000010000110010 ∈ W1,18 decomposes as 111 0 0 001 0 00011 001 0, but a word
111000010000110010 ∈ W2,18 decomposes as 111 0 0 0 01 0 0 0011 0 01 0, and 11100001000011
0010 /∈ W1/2 because the factor 001 is not in S1/2 and the word cannot be constructed.

S1/2 S2/3 S1 S2 S3/2
0 0 0 0 0

0001 001 001 01 01
0000011 000011 00011 0011 0011

0000000111 00000111 0000111 00111 000111
0000000001111 00000001111 000001111 0001111 0001111

0000000000011111 0000000011111 00000011111 00011111 000011111
· · · · · · · · · · · · · · ·

Table 1. Shortest elements from sets Sq.

Let Sq(x) =
∑∞

n=0 snx
n and Wq(x) =

∑∞
n=0wnx

n be generating functions for Sq and Wq,
with respect to the word length, marked by x. Coefficients sn and wn are the numbers
of words of length n from sets Sq and Wq. Using the classical symbolic method to derive

formulas for generating functions (see Flajolet-Sedgewick book [7]), we see that
⋃∞

k=0{1k} has

the generating function 1
1−x , and Eq. (2.1) gives Wq(x) = 1

1−x +Wq(x)Sq(x), so

Wq(x) =
1(

1− Sq(x)
)
(1− x)

. (2.2)

In the following we consider a more refined (bivariate) version of these generating functions
with respect to the number of zeros and ones. We note, with a slight abuse of notation,

Wq(y, z) =

∞∑
r=0

∞∑
i=0

wr,iz
ryi, (2.3)

where wr,i is the number of words inWq having exactly r zeros and i ones. It is easy to see that
Wq(x) is retrieved from Wq(y, z) by replacing both y and z by x, that is Wq(x) = Wq(x, x).

The bivariate generating function Sq(y, z) is defined in a similar way. In this setting,
⋃∞

k=0{1k}
has the generating function 1

1−y , and instead of Eq. (2.2) we have

Wq(y, z) =
1(

1− Sq(y, z)
)
(1− y)

. (2.4)

Now, we construct the set of suffixes Sq(y, z) and derive its generating function Sq(y, z).
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Definition 2.1. Let q = c
d be a positive rational number represented by the irreducible fraction

(e.g. 4 = 4
1), a word factor 0d1c is called a spawning infix. The generating function with respect

to the number of zeros (marked by z) and the number of ones (marked by y) for the spawning
infix 0d1c is zdyc. (We intentionally write zd before yc. According to our idea, this should
reflect the structure of the factors: zeros appear before ones.)

Definition 2.2. A polynomial

Pq= c
d
(y, z) =

c−1∑
i=0

z
1+

⌊
i
q

⌋
yi

is called a model polynomial of a positive rational number q represented by the irreducible
fraction q = c

d .

For instance, P 2
3
(y, z) = z+ z2y, P 3

2
(y, z) = z+ zy+ z2y2, and P1/k(x) = z for any k ∈ N+.

Figure 2 presents a graphical interpretation of model polynomials.

z z2yP
q=

3

4

(y, z) = + + z3y2

Starting line Starting line Starting line

z z2yP
q=

3
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(y, z) = + + z4y2
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z

z z z
z

z
z

z zz
zz

z

Figure 2. A graphical representation of model polynomial Pq= 3
4

= z + z2y +

z3y2. For j > 0, a term ziyj in a model polynomial means that one must make
i arc-steps of the angle 2qπ in order to cross the starting line j times.

Lemma 2.3. Let q ∈ Q+ be represented by the irreducible fraction c
d . The generating function

Sq(y, z) =
∑∞

r=0

∑∞
i=0 sr,iz

ryi where sr,i is the number of words of the form 0r1i, where r =
1 + bi/qc is

Sq= c
d
(y, z) =

Pq(y, z)

1− zdyc
.
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Proof. Let us construct the set Sq in relation (2.1) iteratively. First add the word 0 and

all words of the form 01+bi/qc1i for i ∈ [1, c − 1]. These words correspond to the terms of
the model polynomial Pq(y, z). Other words of Sq are obtained by iteratively injecting the

spawning infix 0d1c just after the rightmost 0 in already generated words. Using the classical
symbolic method [7] we see that 1

1−zdyc generates a sequence of infix additions. By construction

sr,i is either 0 or 1. �

To illustrate Lemma 2.3 we take q = 3/2. In this case, the model polynomial is

P 3
2
(y, z) = z + zy + z2y2,

the corresponding words are

0, 01, 0011,

and the spawning infix is 00111. Adding the infix just after the rightmost 0 we obtain

000111, 0001111, 000011111.

And repeating this operation, we get

00000111111, 000001111111, 00000011111111, 0000000111111111, . . .

Finally, we obtain the set S 3
2
.

Theorem 2.4. Let q ∈ Q+ be represented by the irreducible fraction q = c
d . The generating

function Wq(y, z) =
∑∞

r=0

∑∞
i=0wr,iz

ryi where wr,i is number of words from Wq of length r+ i
containing exactly r zeros and i ones is

Wq(y, z) =
1− zdyc

(1− y)
(
1− zdyc − Pq(y, z)

) .
Proof. It follows directly from Lemma 2.3 and Equation (2.4). �

Evaluating Wq(x, x) we get the generating function Wq(x) = 1−xc+d

(1−x)
(
1−xc+d−Pq(x,x)

) where x

marks the length.
The total number of 0s (in other words, the popularity of 0s) in all words from Wq=1,n is

enumerated by a shift of the sequence A6478 in Sloane’s On-line Encyclopedia of Integer Se-

quences [15]. The corresponding generating function is obtained by evaluating ∂W1(x,xz)
∂z |z=1.

It is quite unexpected, but the sequence A6478 enumerates also the edges in the Fibonacci
hypercube considered by Rispoli and Cosares [16]. A Fibonacci hypercube is a polytope de-
termined by the convex hull of the Fibonacci cube which in turn is defined by Hsu in [10] as
the graph whose vertices correspond to binary words of size n avoiding two consecutive 1s
and where two vertices are connected if and only if the corresponding words differ at only one
position. Is it possible to give some kind of a nice bijective construction between the edges of
Fibonacci Hypercube and the 0s in words from Wq=1,n? As far as we could check, no other
sequences in OEIS [15] correspond to the popularity of 0s (or 1s) for other values of q.
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3. Linear recurrence with 0-1 coefficients

We shall prove the following result.

Theorem 3.1. Let a positive rational number q be represented by the irreducible fraction c
d .

The number of n-length binary words from Wq,n, denoted by wn, can be expressed as

wn =
∑
j∈J

wn−j + wn−(c+d), (3.1)

where J is the set of powers from the model polynomial Pq= c
d
(x, x). For example, when q = 3

2 ,

we have P 3
2
(x, x) = x+ x2 + x4, and J = {1, 2, 4}.

Initial conditions w0, w1, · · · , wc+d−1 are obtained by setting wn = 0 for n < 0, unrolling
Equation (3.1) from left to right, while adding an extra 1 for every wi for 0 ≤ i < c+ d.

Proof. Consider the following map ψ (first defined in [1]) acting on binary words

ψ(1k) = 1k+c+d;

ψ(v1`) = v0d1c1`, if v ends with 0.

We first show that ψ induces a bijection from Wq,k to the subset of words from Wq,k+c+d

ending by at least c 1s. The map ψ inserts the spawning suffix 0d1c just after the rightmost 0
in a word having at least one 0. This does not change the property characterizing the words
in Wq (see Definition 1.1). If there are no 0s in a word from Wq,k, this word is extended by
adding c+ d 1s at the end. And again it does not change the characterizing property of Wq.
Given the above analysis, it easy to see that ψ applied to any word in Wq,n gives us a word in
Wq,n+c+d and this application is bijective.

As follows from Equation (2.1), any word fromWq,n is either 1n or have a form ps, where s =

01+bi/qc1i is a word in Sq for certain i ≥ 0, such that n ≥ 1+bi/qc+ i and p ∈ Wq,n−(1+bi/qc+i).
When n ≥ c+ d there are c+ 1 cases:

(case 1) The words of Wq,n ending with 0 are obtained by adding 0 at the right end of
words fromWq,n−1. This corresponds to the first term, z, of the model polynomial Pq= c

d
(y, z) =∑c−1

i=0 z
1+bi/qcyi.

(case k, 1 < k < c) The words of Wq,n ending with k 1s are obtained by adding the suffix

01+bk/qc1k at the right end of words from Wq,n−(1+bk/qc+k). This corresponds to the term

z1+bk/qcyk of the model polynomial Pq(y, z).
(case c + 1) The words of Wq,n ending with at least c 1s are obtained from the words of

Wq,n−(c+d) by applying ψ.
Considering cardinalities of the sets, these c + 1 cases give us the claimed recurrence re-

lation (3.1). To construct initial conditions Wq,0,Wq,1,Wq,2, . . .Wq,c+d−1, we use the same
process as in previously considered cases, assuming that Wq,m contains no words for every

m < 0, and adding an extra word 1k into every set Wq,k with 0 ≤ k < c+ d, so Wq,0 contains
only the empty word 10. �

Table 2 presents some sequences. Remark, that recurrence relations for sequences (|Wq,n|)n≥0
are equal to the recurrence relations for certain restricted integer compositions (ordered par-
titions). For some values of q the sequence (|Wq,n|)n≥0 corresponds exactly to a shift of a
sequence enumerating restricted compositions (see q = 1/5 in Table 2). For other values of q
the initial conditions differ from those of integer compositions. Consider, for instance, the case
q = 3/5. The recurrence relation is wn = wn−1 + wn−3 + wn−6 + wn−8. The same recurrence
holds for the sequence enumerating the compositions of n ≥ 2 into 1s, 3s, 6s and 8s, but the
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initial conditions are different. The sequence of compositions starts with 1, 2, 3, 4, 7, 11, 17,
27, while the sequence (|W3/5,n|)n≥0 begins with 1, 2, 3, 5, 8, 12, 19, 30.

q Sequence Recurrence relation OEIS (with shifts)

1/5 1, 2, 3, 4, 5, 6, 7, 9, 12, 16, 21, 27, ... wn = wn−1 + wn−6 Compositions (or-
dered partitions) of

n into 1s and 6s.

A5708
1/4 1, 2, 3, 4, 5, 6, 8, 11, 15, 20, 26, 34, ... wn = wn−1 + wn−5 C. into 1s and 5s.

A3520
1/3 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, ... wn = wn−1 + wn−4 C. into 1s and 4s.

A3269

2/5 1, 2, 3, 4, 6, 9, 13, 18, 26, 38, 55, 79, ... wn = wn−1 + wn−4 + wn−7 C. into 1s, 4s and 7s.
Not in OEIS.

1/2 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, ... wn = wn−1 + wn−3 Narayana’s cows,

A930
3/5 1, 2, 3, 5, 8, 12, 19, 30, 46, 72, 113, 176, ... wn = wn−1 + wn−3 + wn−6 + wn−8 NEW

2/3 1, 2, 3, 5, 8, 12, 19, 30, 47, 74, 116, 182, ... wn = wn−1 + wn−3 + wn−5 C. into 1s, 3s and 5s,

A60961
3/4 1, 2, 3, 5, 8, 13, 21, 33, 53, 85, 136, 218, ... wn = wn−1 + wn−3 + wn−5 + wn−7 C. into 1s, 3s, 5s and

7s, A117760

4/5 1, 2, 3, 5, 8, 13, 21, 34, 55, 88, 142, 229, ... wn = wn−1 + wn−3 + wn−5 + wn−7 + wn−9 NEW
1 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ... wn = wn−1 + wn−2 Fibonacci numbers,

A45
5/4 1, 2, 4, 7, 13, 23, 42, 75, 136, 244, 441, 794, ... wn = wn−1 + wn−2 + wn−4 + wn−6 + wn−8 + wn−9 NEW

4/3 1, 2, 4, 7, 13, 23, 42, 75, 136, 245, 443, 799, ... wn = wn−1 + wn−2 + wn−4 + wn−6 + wn−7 NEW

3/2 1, 2, 4, 7, 13, 23, 42, 76, 138, 250, 453, 821, ... wn = wn−1 + wn−2 + wn−4 + wn−5 NEW
5/3 1, 2, 4, 7, 13, 24, 44, 81, 148, 272, 499, 916, ... wn = wn−1 + wn−2 + wn−4 + wn−5 + wn−7 + wn−8 NEW

2 1, 2, 4, 7, 13, 24, 44, 81, 149, 274, 504, 927, ... wn = wn−1 + wn−2 + wn−3 Tribonacci numbers,

A73
5/2 1, 2, 4, 8, 15, 29, 56, 107, 206, 396, 761, 1463, ... wn = wn−1 + wn−2 + wn−3 + wn−5 + wn−6 + wn−7 NEW

3 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, 1490, ... wn = wn−1 + wn−2 + wn−3 + wn−4 Tetranacci numbers,

A78
4 1, 2, 4, 8, 16, 31, 61, 120, 236, 464, 912, 1793, ... wn = wn−1 + wn−2 + wn−3 + wn−4 + wn−5 Pentanacci numbers,

A1591
5 1, 2, 4, 8, 16, 32, 63, 125, 248, 492, 976, 1936, ... wn = wn−1 + wn−2 + wn−3 + wn−4 + wn−5 + wn−6 Hexanacci numbers,

A1592

· · · · · · · · · · · ·
Table 2. Cardinalities of Wq,n≥0 for some values of q.

4. Gray codes

A k-Gray code, named after Gray’s work [9], for a set A of words of length n is an ar-
rangement of all words of A in such a way that any two consecutive words differ at most in
k positions. As follows from a result of [1] (which applies to the rational case also), a 3-Gray
code exists for every Wq,n with n ≥ 0 and any positive rational q.

For some values of q and n no 1-Gray code can exist, for example when q = 2/3 we have 12
words, 7 with odd number of 1s : 00001, 00100, 00010, 10000, 11001, 11100, 11111; and 5 with
even number of 1s 00000, 10010, 10001, 11000, 11110. It easy to check that there is no 1-Gray
in this case.

In general the question whether a 1-Gray code exists for a given q is a challenging one. The
Eğecioğlu-Iršič conjecture [5] is essentially about the existence of a 1-Gray code forW1,n, n ≥ 0.
A paper [1] offers a proof for this conjecture by presenting a sophisticated recursive construc-
tion. Here is an example for the words of length 5 and q = 1: 11111, 11110, 11100, 11000,
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11001, 10001, 10000, 10010, 00010, 00011, 00001, 00000, 00100. As mentioned in [1], exper-
imental investigations for small values, 0 ≤ n ≤ 5 and q ∈ {2, 3, 4, 5}, suggest the following
conjecture.

Conjecture 4.1 (Baril, Kirgizov, Vajnovszki). Let q ∈ N+ and n ≥ 0 be given. Then, a
1-Gray code exists for Wq,n.

5. Generalized golden ratio

The generalized golden ratio is defined as ϕk = limn→∞ an+1/an, where an+1 and an are
two adjacent k-bonacci numbers. The golden ratio is ϕ2 = (1 +

√
5)/2, and ϕ3 = (1 +

3
√

19 + 3
√

33+
3
√

19− 3
√

33)/3 is known as the Tribonacci constant. The Tetranacci constant
ϕ4 have quite a large expression in radicals. In general, ϕk is expressed as the largest root of
the polynomial xk − xk−1 − · · · − x− 1. See Wolfram’s paper [17] for full details. In the same
paper, Wolfram conjectured that there is no expression in radicals for k ≥ 5. By computing
the Galois group, with the help of the computer algebra system Magma [2], he confirmed the
conjecture for 5 ≤ k ≤ 11. Martin [13] proved the case of even or prime k. Furthermore, Cipu
and Luca [3] demonstrated the impossibility of the construction of ϕk by ruler and compass
for k ≥ 3. As far as we can tell, the question whether there is an expression in radicals remains
open for odd non-prime k > 11. Dubeau [4] proved that ϕk approaches 2 when k →∞.

By constructing and enumerating the setWq,n of restricted binary words of length n, param-
eterized by a positive rational value q, in this paper we provide a generalization of multi-step
Fibonacci numbers. For integer q we have ϕq+1 = limn→∞ |Wq,n+1|/|Wq,n|. Non-integer q,
in some way, allows us to see what happens with the generalized golden ratio, when its pa-
rameter becomes non-integer. As the generating functions are rational in our case, classical
analytic combinatorics method can be used to find the limit. It equals to 1/β, where β
the smallest by modulus root of the denominator of the corresponding generating function

Wq= c
d
(x) = 1−xc+d

(1−x)
(
1−xc+d−Pq(x,x)

) (see Thm. 2.4). Figure 3 presents some numerical estima-

tions for the function q 7→ limn→∞ |Wq,n+1|/|Wq,n|, where q takes rational values from [0, 2.02]
with step 1/50.

Question 5.1. (related to Wolfram’s conjecture) For which rational values of q there is an
expression in radicals for ϕq+1 = limn→∞ |Wq,n+1|/|Wq,n| ?

Remark, that the set Wq,n is well-defined even if we extend the domain of the parameter q
to all positive real numbers. We have three related conjectures in this realm:

Conjecture 5.2. Let r ∈ R+ be given. Then, limn→∞ |Wr,n+1|/|Wr,n| exists and is finite.

Conjecture 5.3. The function r 7→ limn→∞ |Wr,n+1|/|Wr,n| is increasing over the interval
[0,+∞) and discontinuous at every positive rational r.
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Figure 3. Numerical estimation of limn→∞ |Wq,n+1|/|Wq,n| for several values
of r ∈ [0, 2.02], using a step 0.02.
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Constanţa, 9.1 (2001), 27–38.

[4] F. Dubeau. On r-generalized Fibonacci numbers, The Fibonacci Quarterly, 27.3 (1989), 221–229.
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