
PROBLEM SESSION

Problem 1: Half-companion Pell Numbers

Proposed by aBa Mbirika, University of Wisconsin-Eau Claire, mbirika@uwec.edu

It is well known that the only Fibonacci numbers Fn which are perfect powers ab for a, b ∈ N
and b > 1 are Fn = 1, 8, and 144. Likewise, it is known that the only Lucas numbers which
are perfect powers are Ln = 1 and 4. Similarly, the only Pell numbers P0 = 0, P1 = 1, Pn+2 =
2Pn+1 + Pn which are perfect powers are Pn = 1 and 169.

We may also define the half-companion (or associated) Pell numbersQ′0 = 1, Q′1 = 1, Q′n+2 =
2Q′n+1+Q′n. In other words, Q′n = Qn/2, where Qn is the sequence of companion Pell numbers
(otherwise referred to as the Pell-Lucas numbers).

We thus ask for a classification of the half-companion Pell numbers Q′n which are perfect
powers ab for a, b ∈ N and b > 1.

Problem 2: Generalizing Continued Fractions

Proposed by Giuliano Romeo, Politecnico di Torino, giuliano.romeo@polito.it

A continued fraction can be defined as

a0 +
1

a1 +
1

a2 +
1

. . .

where ai ∈ Z+.
The following two results hold in the field of real numbers.

(1) The continued fraction expansion is finite if and only if the number is a rational.
(2) The continued fraction expansion is eventually periodic if and only if the number is a

quadratic irrational.

It is natural to generalize continued fractions over the field of p-adic numbers Qp. While
there exist algorithms for generating continued fractions, in the p-adic case there don’t exist
any satisfying (2). For example, the p-adic continued fraction expansion [b0, b1, . . .] of α0 ∈ Qp

provided by Browkin is obtained by iterating the following steps for all n ≥ 0:

bn = s(αn)

αn+1 =
1

αn − bn
where s : Qp → Q is the function that replaces the role of the floor function in the classical
continued fractions over R. This algorithm satisfies (1), but not (2).

Is there an algorithm for generating p-adic continued fractions which satisfies both (1) and
(2)?
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Problem 3: Partition Related Functions

Proposed by Faye Jackson, University of Michigan, alephnil@umich.edu

A partition of a natural number n is an increasing sequence of natural numbers λ =

(λ1, . . . , λk) such that n =
k∑
i=1

λi. Let

T (r, t, n) =
∑
λ`n

#{λj : λj ≡ r (mod t)}.

As a matter of convenience we always take the representative r to satisfy 1 ≤ r ≤ t. Beckwith
and Mertens proved that as r, s→∞,

T (r, t, n)

T (s, t, n)
→ 1.

Furthermore, for n sufficiently large, if 1 ≤ r < s ≤ t then T (r, t, n) ≥ T (s, t, n).
What can be said about the functions

D×k (r, t, n) =
∑
λ`n

∀λj , k-λj

#{λj : λj ≡ r (mod t)},

and is there a combinatorial proof for the biases? Is there a combinatorial proof of the in-
equality T (r, t, n) ≥ T (s, t, n) when 1 ≤ r < s ≤ t?

Problem 4: Fibonacci, Lucas and Primes

Proposed by Rigoberto Florez, The Citadel, rflorez1@citadel.edu

Are there infinitely many prime numbers of the form Fr +Lr±1? Or equivalently, Fk +Lk+1

or Fk + Lk−1?
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