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PROBLEMS PROPOSED IN THIS ISSUE

H-765 Proposed by D. M. Bătineţu-Giurgiu, Bucharest and Neculai Stanciu,
Buzău, Romania.

Prove that for positive integer n and m > 0 we have:
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H-766 Proposed by H. Ohtsuka, Saitama, Japan.
Let n = m+ 2. For m ≥ 1, prove that
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H-767 Proposed by H. Ohtsuka, Saitama, Japan.
Prove that
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H-768 Proposed by H. Ohtsuka, Saitama, Japan.

Let

(

n

k

)

F

denote the Fibonomial coefficient. For n ≥ 1, prove that
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SOLUTIONS

Integer Parts of Reciprocals of Tails of Infinite Products with Fibonacci Numbers

H-734 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 51, No. 1, February 2013)

For n ≥ 3 find closed form expressions for

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Here, bxc be the largest integer less than or equal to x.

Solution by the proposer.

We need the following lemma.

Lemma 1. For n ≥ 3, we have

(1)
Fn−2 − 1

Fn−2
<

Fn − 1

Fn
× Fn−1 − 1
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Proof. We will only prove (1) since all other verifications are similar. We have

Fn−2(Fn − 1)(Fn−1 − 1)− FnFn−1(Fn−2 − 1)

= Fn−2 + Fn−1Fn − Fn−1Fn−2 − FnFn−2

= Fn−2 + F 2
n−1 − FnFn−2 = Fn−2 + (−1)n ≥ 0.

Therefore, we obtain the desired inequality (1). �
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(i) Using Lemma 1 (1), we have
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Using Lemma 1 (2), we have
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Thus, for n ≥ 3, we obtain
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(ii) Case 1. n ≥ 3 is odd. Using Lemma 1 (3) and (4), we obtain the following inequality in
the same manner as (i):
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Case 2. n ≥ 4 is even. Using Lemma 1 (5) and (6), we obtain the following inequality in the
same manner as (i):
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That is,
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Proposer’s note: For m ≥ 2 and n ≥ 2, we obtain the following identity in the same manner:
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Also solved by Paul S. Bruckman.

On a Power Series with Binomial Coefficients

H-735 Proposed by Paul S. Bruckman, BC.
(Vol. 51, No. 2, May 2013)

Let Fm(x) =

∞
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)

xn, where m is any real number and |x| < 1/4. Also let

θ(x) = (1− 4x)1/2. For brevity, write Fm = Fm(x), θ = θ(x). Prove the following:
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Solution by Ángel Plaza, Gran Canaria, Spain.
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xn = LHS.
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(b) By (a), we have to show that for all m, Fm = F0

(
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)m

, where F0 =
1√
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,
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which is identity (2.5.15) in [1].

(c) Let A(x) be the generating function of the LHS. That is
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∑
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which is precisely the generating function of the RHS, 4n. Note that we have used the identity
(2.5.15) in [1].

References

[1] H. S. Wilf, Generatingfunctionology, 2nd. edition, (1992).

Also solved by Kenneth B. Davenport and the proposer.

On the Sum of the Cubes of the Tribonacci Numbers

H-736 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 51, No. 2, May 2013)

The Tribonacci numbers Tn satisfy T0 = 0, T1 = T2 = 1, Tn+3 = Tn+2 + Tn+1 + Tn for
n ≥ 0. Find an explicit formula for the sum

∑n
k=1 T

3
k .

Solution by the proposer.

Let Sn =
∑n

k=1 T
3
k . We need the following lemma.

Lemma 2. We have

(i)
n
∑

k=1

(T 2
kTk+1 + TkT

2
k+1) = TnTn+1Tn+2;

(ii)
n
∑

k=1

(T 2
k+1Tk+2 + Tk+1T

2
k+2) = Tn+1Tn+2Tn+3 − 2;

(iii)
n
∑

k=1

T 2
kTk+2 = Sn + TnTn+1Tn+2 − TnT

2
n+1;
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(iv) −6

n
∑

k=1

Tk+1T
2
k+2 = 2Sn +An,
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An = −T 3
n+2 − T 3

n − 3TnT
2
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nTn+1 − 3Tn+1T
2
n+2 − 3T 2

n+1Tn+2 + 7.

Proof. (i) We have

n
∑

k=1

(T 2
kTk+1 + TkT

2
k+1) =

n
∑

k=1

TkTk+1(Tk + Tk+1) =
n
∑

k=1

TkTk+1(Tk+2 − Tk−1)

=
n
∑

k=1

(TkTk+1Tk+2 − Tk−1TkTk+1) = TnTn+1Tn+2.
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2
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2
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(iii) We have
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n
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2
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(iv) We have

0 =
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∑

k=1

(

(Tk + Tk−1)
3 − (Tk+2 − Tk+1)

3
)

= 3
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∑
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∑
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∑
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k+2Tk+1 + 2Sn +An.

�

Let x = Tk, y = Tk+1, z = Tk+2. We have

x3 + y3 + z3 + 3x2y + 3xy2 + 3x2z + 3xz2 + 3y2z + 3yz2 + 6xyz = (x+ y + z)3; (1)

x3 + 2y3 + z3 + 2x2y + 2xy2 + x2z − xz2 − 2yz2 − 2xyz = 1 (2)

(see [1]). Multiplying (2) by 3 and adding the resulting identity to (1), we get

4x3 + 7y3 + 4z3 + 9x2y + 9xy2 + 6x2z + 3y2z − 3yz2 = T 3
k+3 + 3.
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From the above identity, we have

n
∑

k=1

(4T 3
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2
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∑
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∑
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2
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n
∑
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Tk+1T
2
k+2 = 3n.

Using Lemma 2 (i), (ii), (iii) and (iv), we have

n
∑

k=1

(12T 3
k + 7T 3

k+1 + 4T 3
k+2 − T 3

k+3)

+ 15TnTn+1Tn+2 + 3Tn+1Tn+2Tn+3 − 6TnT
2
n+1 +An − 6 = 3n. (3)

Here,
n
∑

k=1

(12T 3
k + 7T 3

k+1 + 4T 3
k+2 − T 3

k+3) = 22Sn + 10T 3
n+1 + 3T 3

n+2 − T 3
n+3 − 5.

Therefore, (3) is

22Sn = T 3
n+3 − 2T 3

n+2 − 10T 3
n+1 + T 3

n + 9TnT
2
n+1 + 3T 2

nTn+1

− 15TnTn+1Tn+2 − 3Tn+1Tn+2(Tn+3 − Tn+2 − Tn+1) + 3n + 4.

Since

−− 3Tn+1Tn+2(Tn+3 − Tn+2 − Tn+1) = −3TnTn+1Tn+2,

we obtain

Sn =
1

22
(T 3

n+3 − 2T 3
n+2 − 10T 3

n+1 + T 3
n + 9TnT

2
n+1 + 3T 2

nTn+1 − 18TnTn+1Tn+2 + 3n+ 4).

References

[1] M. Elia, Derived sequences, the tribonacci recurrence and cubic forms, The Fibonacci Quarterly 39.2

(2001), 107–115.

A Lucas Type Congruence with Fibonomials

H-737 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 51, No. 2, May 2013)

Let

(

n

k

)

F

denote the Fibonomial coefficient. For an odd prime p and a positive integer n,

prove that
(

np− 1

p− 1

)

F

≡ (−1)
(n−1)(p−1)

2 (mod F 2
pLp).

Solution by Christian Ballot, Caen, France.

With m := n− 1, define the rational polynomial

P (x) :=

p−1
∏

i=1

(

x+
Fmp

Lmp

Li

Fi

)

.
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Expanding P (x) yields

P (x) = xp−1 +
Fmp

Lmp

p−1
∑

i=1

Li

Fi
xp−2 +

F 2
mp

L2
mp

∑

0<i<j<p

LiLj

FiFj
xp−3 + · · ·+ F p−1

mp

Lp−1
mp

p−1
∏

i=1

Li

Fi
.

All coefficients, except that of xp−1, are 0 (mod F 2
p ). Indeed, F

k
mp is divisible by F 2

p for k ≥ 2

and Fp is prime to Lmp
∏p−1

i=1 Fi. Moreover, S :=
∑p−1

i=1
Li

Fi
≡ 0 (mod Fp) because

2S =

p−1
∑

i=1

(

Li

Fi
+

Lp−i

Fp−i

)

=

p−1
∑

i=1

Fp−iLi + FiLp−i

FiFp−i
=

p−1
∑

i=1

2Fp

FiFp−i
.

All forthcoming sums and products are for indices i running from 1 to p− 1. As

2Fi+j = FiLj + FjLi

we find that

2p−1
∏

Fmp+i =
∏

2Fmp+i =
∏

(FmpLi + LmpFi) = Lp−1
mp P (1)

∏

Fi.

Therefore,
(

np− 1

p− 1

)

F

=

∏

Fmp+i
∏

Fi
=

(

Lmp

2

)p−1

P (1).

Since L2
k − 5F 2

k = 4(−1)k, we see that (Lmp/2)
p−1 ≡

(

(−1)m
)

p−1
2 (mod F 2

p ). To establish
the congruences modulo Lp, note that Lp divides Lmp if and only if m is odd and Lp divides
Fmp if m is even. Thus, all coefficients of (Lmp/2)

p−1P (x) are 0 (mod Lp) except possibly
and respectively the constant term (Fmp/2)

p−1
∏

Li/Fi, if m is odd, and the leading term
(Lmp/2)

p−1, if m is even. If m is odd, then, as 2(−1)iLp−i = LpLi − 5FpFi, we find that

∏ Li

Fi
=
∏ Lp−i

Fi
= (2p−1(−1)

∑
i)−1

∏ 2(−1)iLp−i

Fi
≡ 2−p+1(−1)

p−1
2

∏

(−5Fp) (mod Lp).

Hence,

(−1)
p−1
2 (Fmp/2)

p−1
∏ Li

Fi
≡ (−5F 2

mp/4)
p−1
2 (−5F 2

p /4)
p−1
2 ≡

(

(−1)m
)

p−1
2 (−1)

p−1
2 (mod Lp),

which yields the congruence. If m is even, then a simple induction using the identity

L2k = L2
k − 2(−1)k

gives that Lmp ≡ 2 (mod Lp). Thus, (Lmp/2)
p−1 ≡ 1 (mod Lp), which, as Fp and Lp are

coprime, fully lands the H-737 problem.

Also solved by the proposer.

Errata: In problem H-763, in the denominator of the RHS of (i), “(n + 2)”should be
“(n+ 1)” and in the denominator RHS of (iv), “n2(n+ 1)2”, should be “n3(n+ 1)3”.

Late Acknowledgement: Kenneth B. Davenport solved H-733.
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