ADVANCED PROBLEMS AND SOLUTIONS

EDITED BY
FLORIAN LUCA

Please send all communications concerning ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWATERSRAND, WITS 2050, JOHANNESBURG, SOUTH AFRICA or by e-mail at the address florian.luca@wits.ac.za as files of the type tex, dvi, ps, doc, html, pdf, etc. This department especially welcomes problems believed to be new or extending old results. Proposers should submit solutions or other information that will assist the editor. To facilitate their consideration, all solutions sent by regular mail should be submitted on separate signed sheets within two months after publication of the problems.

PROBLEMS PROPOSED IN THIS ISSUE

H-765 Proposed by D. M. Bătinețu-Giurgiu, Bucharest and Neculai Stanciu, Buzău, Romania.

Prove that for positive integer \(n \) and \(m > 0 \) we have:

(i) \[
\frac{L^4_n}{L_nL_{n+1}} + \frac{L^4_{n+1}}{L_{n+1}L_{n+3}} + \frac{L^4_n + L^4_n}{L_{n+3}L_n} \geq \frac{2}{3}L^2_{n+4};
\]

(ii) \[
\left(\sum_{k=1}^{n} \frac{F^2m+4}{F^2m} \right) \left(\sum_{k=1}^{n} \frac{1}{F^2m} \right) \geq F^2mF^2_{n+1};
\]

(iii) \[
\left(\sum_{k=1}^{n} \frac{L^2m+4}{L^2m} \right) \left(\sum_{k=1}^{n} \frac{1}{L^2m} \right) \geq (L_nL_{n+1} - 1)^2;
\]

(iv) \[
\left(\sum_{k=1}^{n} \frac{F^m+2}{F^m} \right) \left(\sum_{k=1}^{n} \frac{1}{F^m} \right) \geq (F_{n+2} - 1)^2;
\]

(v) \[
1 + \frac{n}{F^{m+1}} \geq F_{n+2} \quad \text{and} \quad 3 + \frac{n}{L^{m+1}} \geq L_{n+2}.
\]

H-766 Proposed by H. Ohtsuka, Saitama, Japan.

Let \(n = m + 2 \). For \(m \geq 1 \), prove that

\[
\sum_{h=1}^{m} \sum_{i=1}^{h} \sum_{j=1}^{i} \sum_{k=1}^{j} F^4_k = \frac{4F^4_n + n^4 - 5n^2}{100}.
\]

H-767 Proposed by H. Ohtsuka, Saitama, Japan.

Prove that

\[
\lim_{n \to \infty} \sqrt{F^2_2 + \sqrt{F^2_4 + \sqrt{F^2_8 + \cdots}}} = 3.
\]
H-768 Proposed by H. Ohtsuka, Saitama, Japan.

Let \(\binom{n}{k}_F \) denote the Fibonomial coefficient. For \(n \geq 1 \), prove that

\[
\begin{align*}
(i) \quad & \sum_{k=0}^{n} F_{2(n-k)} \binom{2n}{k}_F = \frac{F_{2n+1}(F_{2n+2}+1)}{F_{2n+3}} - \frac{F_{n+1}F_{n+3}}{F_{2n+3}} \binom{2n}{n}_F; \\
(ii) \quad & \sum_{k=0}^{n} F_{2(n-k)} \binom{2n}{k}_F = \frac{F_{2n+1}^2}{F_{2n+2}} - \frac{F_{n+1}^2}{F_{n+1}} \binom{2n}{n}_F.
\end{align*}
\]

SOLUTIONS

H-734 Proposed by H. Ohtsuka, Saitama, Japan.

(Vol. 51, No. 1, February 2013)

For \(n \geq 3 \) find closed form expressions for

\[
\left[\left(1 - \prod_{k=n}^{\infty} \left(1 - \frac{1}{F_k} \right) \right)^{-1} \right] \quad \text{and} \quad \left[\left(1 - \prod_{k=n}^{\infty} \left(1 - \frac{1}{F_k^2} \right) \right)^{-1} \right].
\]

Here, \(\lfloor x \rfloor \) be the largest integer less than or equal to \(x \).

Solution by the proposer.

We need the following lemma.

Lemma 1. For \(n \geq 3 \), we have

\[
\begin{align*}
(1) \quad & \frac{F_{n-2} - 1}{F_{n-2}} < \frac{F_{n-1} - 1}{F_{n-1}} \times \frac{F_{n-1} - 1}{F_{n-1}}; \\
(2) \quad & \frac{F_{n-1} + 1}{F_{n-2}} > \frac{F_{n-1} + 1}{F_{n-1}}; \\
(3) \quad & \frac{F_nF_{n-1} - 1}{F_nF_{n-1}} < \frac{F_n^2 - 1}{F_n^2} \times \frac{F_{n+1}F_n - 1}{F_{n+1}F_n} \quad \text{(if \(n \) is odd)}; \\
(4) \quad & \frac{F_nF_{n-1} - 2}{F_nF_{n-1}} > \frac{F_n^2 - 1}{F_n^2} \times \frac{F_{n+1}F_n - 2}{F_{n+1}F_n}; \\
(5) \quad & \frac{F_nF_{n-1} - 1}{F_nF_{n-1}} < \frac{F_n^2 - 1}{F_n^2} \times \frac{F_{n+1}F_n - 1}{F_{n+1}F_n}; \\
(6) \quad & \frac{F_nF_{n-1} - 1}{F_nF_{n-1}} > \frac{F_n^2 - 1}{F_n^2} \times \frac{F_{n+1}F_n - 1}{F_{n+1}F_n} \quad \text{(if \(n \) is even)}.
\end{align*}
\]

Proof. We will only prove (1) since all other verifications are similar. We have

\[
\begin{align*}
F_{n-2}(F_n - 1)(F_{n-1} - 1) - F_nF_{n-1}(F_{n-2} - 1) &= F_{n-2} + F_{n-1}F_n - F_{n-1}F_{n-2} - F_nF_{n-2} \\
&= F_{n-2} + F_{n-1}F_n - F_{n-1}F_{n-2} - F_nF_{n-2} \\
&= F_{n-2} + F_{n-1}F_n - F_{n-1}F_{n-2} = F_{n-2} + (-1)^n \geq 0.
\end{align*}
\]

Therefore, we obtain the desired inequality (1). \(\square\)
(i) Using Lemma 1 (1), we have
\[
\frac{F_{n-2} - 1}{F_{n-2}} \leq \frac{F_{n-1} - 1}{F_n} \times \frac{F_{n-1} - 1}{F_{n-1}} \leq \frac{F_{n-1} - 1}{F_{n+1}} \times \frac{F_{n+1} - 1}{F_{n+2}} \times \frac{F_{n+1} - 1}{F_{n+1}} \leq \cdots \leq \prod_{k=n}^{\infty} \frac{F_k - 1}{F_k}.
\]
Using Lemma 1 (2), we have
\[
\frac{F_{n-2}}{F_{n-2} + 1} > \frac{F_{n-1}}{F_n} > \frac{F_{n-1}}{F_{n-1} + 1} > \frac{F_{n-1} - 1}{F_{n+1}} \times \frac{F_{n+1} - 1}{F_{n+2}} \times \frac{F_{n+1} - 1}{F_{n+1} + 1} \cdots > \prod_{k=n}^{\infty} \frac{F_k - 1}{F_k}.
\]
Therefore,
\[
1 - \frac{1}{F_{n-2}} \leq \prod_{k=n}^{\infty} \left(1 - \frac{1}{F_k}\right) < 1 - \frac{1}{F_{n-2} + 1}.
\]
That is,
\[
F_{n-2} \leq \left(1 - \prod_{k=n}^{\infty} \left(1 - \frac{1}{F_k}\right)\right)^{-1} < F_{n-2} + 1.
\]
Thus, for \(n \geq 3\), we obtain
\[
\left\lfloor \left(1 - \prod_{k=n}^{\infty} \left(1 - \frac{1}{F_k}\right)\right)^{-1} \right\rfloor = F_{n-2}.
\]

(ii) Case 1. \(n \geq 3\) is odd. Using Lemma 1 (3) and (4), we obtain the following inequality in the same manner as (i):
\[
\frac{F_n F_{n-1} - 1}{F_n F_{n-1}} < \prod_{k=n}^{\infty} \frac{F_k^2 - 1}{F_k} < \frac{F_n F_{n-1} - 1}{F_n F_{n-1} + 1}.
\]
Therefore,
\[
1 - \frac{1}{F_n F_{n-1}} < \prod_{k=n}^{\infty} \left(1 - \frac{1}{F_k^2}\right) < 1 - \frac{1}{F_n F_{n-1} + 1}.
\]
That is,
\[
F_n F_{n-1} < \left(1 - \prod_{k=n}^{\infty} \left(1 - \frac{1}{F_k^2}\right)\right)^{-1} < F_n F_{n-1} + 1.
\]
Case 2. \(n \geq 4\) is even. Using Lemma 1 (5) and (6), we obtain the following inequality in the same manner as (i):
\[
\frac{F_n F_{n-1} - 2}{F_n F_{n-1} - 1} < \prod_{k=n}^{\infty} \frac{F_k^2 - 1}{F_k} < \frac{F_n F_{n-1} - 1}{F_n F_{n-1}}.
\]
Therefore,
\[
1 - \frac{1}{F_n F_{n-1} - 1} < \prod_{k=n}^{\infty} \left(1 - \frac{1}{F_k^2}\right) < 1 - \frac{1}{F_n F_{n-1}}.
\]
That is,

\[F_n F_{n-1} - 1 < \left(1 - \prod_{k=n}^{\infty} \left(1 - \frac{1}{F_k^2} \right) \right)^{-1} < F_n F_{n-1}. \]

Therefore, we obtain

\[\left(1 - \prod_{k=n}^{\infty} \left(1 - \frac{1}{F_k^2} \right) \right)^{-1} = \begin{cases} F_n F_{n-1} & \text{if } n \equiv 1 \pmod{2}, \; n \geq 3; \\ F_n F_{n-1} - 1 & \text{if } n \equiv 1 \pmod{2}, \; n \geq 4. \end{cases} \]

Proposer’s note: For \(m \geq 2 \) and \(n \geq 2 \), we obtain the following identity in the same manner:

\[\left(1 - \prod_{k=n}^{\infty} \left(1 - \frac{1}{F_{mk}} \right) \right)^{-1} = F_{mn} - F_{m(n-1)}. \]

Also solved by Paul S. Bruckman.

On a Power Series with Binomial Coefficients

H-735 Proposed by Paul S. Bruckman, BC.

(Vol. 51, No. 2, May 2013)

Let \(F_m(x) = \sum_{n=0}^{\infty} \binom{2n + m}{n} x^n \), where \(m \) is any real number and \(|x| < 1/4 \). Also let

\(\theta(x) = (1 - 4x)^{1/2} \). For brevity, write \(F_m = F_m(x) \), \(\theta = \theta(x) \). Prove the following:

(a) \(F_0 = \frac{1}{\theta}, \; F_1 = \frac{(1-\theta)}{2x\theta} \);

(b) for all real \(m \), \(F_m^m = \left(\frac{F_1}{F_0} \right)^m \);

(c) for all real \(m \), \(\sum_{k=0}^{n} \binom{2k + m}{k} \binom{2n - 2k - m}{n - k} = 4^n, \; n = 0, 1, 2, \ldots. \)

Solution by Ángel Plaza, Gran Canaria, Spain.

(a) \(F_0 = \frac{1}{\theta} \) is \(\sum_{n=0}^{\infty} \binom{2n}{n} x^n = \frac{1}{\sqrt{1 - 4x}} \), which is given as identity (2.5.1) in [1].

\(F_1 = \frac{(1-\theta)}{2x\theta} \) is equivalent to \(\sum_{n=0}^{\infty} \binom{2n + 1}{n} x^n = \frac{1 - \sqrt{1 - 4x}}{2x\sqrt{1 - 4x}} \). Then

\[RH\ S = \frac{1}{2x} \left(\frac{1}{\sqrt{1 - 4x}} - 1 \right) = \frac{1}{2x} \sum_{n=1}^{\infty} \binom{2n}{n} x^n = \frac{1}{2} \sum_{n=1}^{\infty} \binom{2n}{n} x^{n-1} \]

\[= \frac{1}{2} \sum_{n=0}^{\infty} \binom{2n + 2}{n + 1} x^n = \sum_{n=0}^{\infty} \binom{2n + 1}{n + 1} x^n + \frac{1}{2} \sum_{n=0}^{\infty} \binom{2n + 1}{n} x^n \]

\[= \sum_{n=0}^{\infty} \binom{2n + 1}{n} x^n = LHS. \]
(b) By (a), we have to show that for all \(m\), \(F_m = F_0 \left(\frac{F_1}{F_0} \right)^m\), where \(F_0 = \frac{1}{\sqrt{1 - 4x}}\) and \(F_1 = 1 - \sqrt{1 - 4x}\). That is
\[
\sum_{n=0}^{\infty} \binom{2n + m}{n} x^n = \frac{1}{\sqrt{1 - 4x}} \left(\frac{1 - \sqrt{1 - 4x}}{2x} \right)^m,
\]
which is identity (2.5.15) in [1].

(c) Let \(A(x)\) be the generating function of the LHS. That is
\[
A(x) = \sum_{n \geq 0} x^n \sum_{k=0}^{n} \binom{2k + m}{k} \binom{2n - 2k - m}{n - k}
= \sum_{k \geq 0} \binom{2k + m}{k} x^k \sum_{n-k \geq 0} \binom{2n - 2k - m}{n - k} x^{n-k}
= \frac{1}{\sqrt{1 - 4x}} \left(\frac{1 - \sqrt{1 - 4x}}{2x} \right)^m \frac{1}{\sqrt{1 - 4x}} \left(\frac{1 - \sqrt{1 - 4x}}{2x} \right)^{-m},
\]
which is precisely the generating function of the RHS, \(4^n\). Note that we have used the identity (2.5.15) in [1].

References

Also solved by Kenneth B. Davenport and the proposer.

On the Sum of the Cubes of the Tribonacci Numbers

H-736 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 51, No. 2, May 2013)

The Tribonacci numbers \(T_n\) satisfy \(T_0 = 0\), \(T_1 = T_2 = 1\), \(T_{n+3} = T_{n+2} + T_{n+1} + T_n\) for \(n \geq 0\). Find an explicit formula for the sum \(\sum_{k=1}^{n} T_k^3\).

Solution by the proposer.

Let \(S_n = \sum_{k=1}^{n} T_k^3\). We need the following lemma.

Lemma 2. We have

(i) \(\sum_{k=1}^{n} (T_k^2 T_{k+1} + T_k T_{k+1}^2) = T_n T_{n+1} T_{n+2}\);

(ii) \(\sum_{k=1}^{n} (T_{k+1}^2 T_{k+2} + T_{k+1} T_{k+2}^2) = T_{n+1} T_{n+2} T_{n+3} - 2\);

(iii) \(\sum_{k=1}^{n} T_k^2 T_{k+2} = S_n + T_n T_{n+1} T_{n+2} - T_n^2 T_{n+1}\);
(iv) \(-6 \sum_{k=1}^{n} T_{k+1}T_{k+2} = 2S_n + A_n,\)

where

\[A_n = -T_{n+2}^3 - T_n^3 - 3T_nT_{n+1}^2 - 3T_nT_{n+1}^2 - 3T_{n+1}T_{n+2}^2 + 7. \]

Proof. (i) We have

\[\sum_{k=1}^{n} (T_{k+1}^2 + T_k^2) = \sum_{k=1}^{n} T_k(T_{k+1} + T_{k+1}) = \sum_{k=1}^{n} T_k(T_{k+2} - T_{k-1}) \]
\[= \sum_{k=1}^{n} (T_{k+1}T_{k+2} - T_{k-1}T_{k+1}) = T_nT_{n+1}T_{n+2}. \]

(ii) We have

\[\sum_{k=1}^{n} (T_{k+1}^2 + T_k^2) = \sum_{k=2}^{n} (T_k^2 + T_{k+1}^2) = T_{n+1}T_{n+2}T_{n+3} - 2, \] (by (i)).

(iii) We have

\[\sum_{k=1}^{n} T_k^2T_{k+2} = \sum_{k=1}^{n} T_k(T_{k+1}^2 + T_{k+1}^2) = \sum_{k=1}^{n} T_k^3 + \sum_{k=1}^{n} (T_k^2T_{k+1}^2 + T_{k+1}^2T_k^2) \]
\[= S_n + \sum_{k=1}^{n} (T_k^2T_{k+1}^2 + T_{k+1}^2T_k^2) - T_nT_{n+1}^2 = S_n + T_nT_{n+1}T_{n+2} - T_nT_{n+1}^2, \] (by (i)).

(iv) We have

\[0 = \sum_{k=1}^{n} ((T_k + T_{k-1})^3 - (T_{k+2} - T_{k+1})^3) \]
\[= 3 \sum_{k=1}^{n} (T_k^2T_{k+1}^2 + T_k^2T_{k-1}^2) - 3 \sum_{k=1}^{n} (T_{k+2}^2T_{k+1}^2 - T_{k+1}^2T_{k-1}^2) + \sum_{k=1}^{n} (T_k^3 + T_{k-1}^3 - T_{k+2}^3 + T_{k+1}^3) \]
\[= 6 \sum_{k=1}^{n} T_k^2T_{k+1}^2 + 2S_n + A_n. \]

Let \(x = T_k, y = T_{k+1}, z = T_{k+2}.\) We have

\[x^3 + y^3 + z^3 + 3x^2y + 3xy^2 + 3xz^2 + 3x^2z + 3y^2z + 3yz^2 + 6xyz = (x + y + z)^3; \] (1)
\[x^3 + 2y^3 + z^3 + 2x^2y + 2xy^2 + 2x^2z - xz^2 - 2y^2z - 2xyz = 1 \] (2)

(see [1]). Multiplying (2) by 3 and adding the resulting identity to (1), we get

\[4x^3 + 7y^3 + 4z^3 + 9x^2y + 9xy^2 + 6x^2z + 3y^2z - 3yz^2 = T_{k+3}^3 + 3. \]
THE FIBONACCI QUARTERLY

From the above identity, we have
\[
\sum_{k=1}^{n} \left(4T_{3k}^3 + 7T_{3k+1}^3 + 4T_{3k+2}^3 - T_{3k+3}^3 \right) + 9 \sum_{k=1}^{n} \left(T_{2k}^2 T_{k+1}^2 + T_k^2 T_{k+1}^2 \right)
\]
\[+ 6 \sum_{k=1}^{n} T_k^2 T_{k+2} + 3 \sum_{k=1}^{T_{k+1}} \left(T_{k+1}^2 T_{k+2} + T_{k+1}^2 T_{k+2} \right) - 6 \sum_{k=1}^{T_{k+1}} T_{k+1}^2 T_{k+2} = 3n.\]

Using Lemma 2 (i), (ii), (iii) and (iv), we have
\[
\sum_{k=1}^{n} \left(12T_{3k}^3 + 7T_{3k+1}^3 + 4T_{3k+2}^3 - T_{3k+3}^3 \right)
\]
\[+ 15T_n T_{n+1} T_{n+2} + 3T_{n+1} T_{n+2} T_{n+3} - 6T_n T_{n+1}^2 + A_n - 6 = 3n. \tag{3}\]

Here,
\[
\sum_{k=1}^{n} \left(12T_{3k}^3 + 7T_{3k+1}^3 + 4T_{3k+2}^3 - T_{3k+3}^3 \right) = 22S_n + 10T_{n+1}^3 + 3T_{n+2}^3 - T_{n+3}^3 - 5.
\]

Therefore, (3) is
\[
22S_n = T_{n+3}^3 - 2T_{n+2}^3 - 10T_{n+1}^3 + T_n^3 + 9T_n T_{n+1}^2 + 3T_{n+1}^2 T_n + 15T_n T_{n+1} T_{n+2} - 3T_{n+1} T_{n+2} (T_{n+3} - T_{n+2} - T_{n+1}) + 3n + 4.
\]

Since
\[- 3T_{n+1} T_{n+2} (T_{n+3} - T_{n+2} - T_{n+1}) = -3T_n T_{n+1} T_{n+2},\]

we obtain
\[
S_n = \frac{1}{22} (T_{n+3}^3 - 2T_{n+2}^3 - 10T_{n+1}^3 + T_n^3 + 9T_n T_{n+1}^2 + 3T_{n+1}^2 T_n - 18T_n T_{n+1} T_{n+2} + 3n + 4).
\]

References

A Lucas Type Congruence with Fibonomials

H-737 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Let \(\binom{n}{k}_F \) denote the Fibonomial coefficient. For an odd prime \(p \) and a positive integer \(n \), prove that
\[
\binom{np - 1}{p - 1}_F \equiv (-1)^{(n-1)(p-1)/2} \pmod{F_p^2 L_p}.
\]

Solution by Christian Ballot, Caen, France.

With \(m := n - 1 \), define the rational polynomial
\[
P(x) := \prod_{i=1}^{p-1} \left(x + \frac{F_{mp} L_i}{L_{mp} F_i} \right).
\]
Expanding $P(x)$ yields

$$P(x) = x^{p-1} + \frac{F_{mp}}{L_{mp}} \sum_{i=1}^{p-1} \frac{L_i}{F_i} x^{i-2} + \frac{F_{mp}}{L_{mp}^2} \sum_{0<i<j<p} \frac{L_iL_j}{F_iF_j} x^{i+j-3} + \cdots + \frac{F_{mp}^{p-1}}{L_{mp}^p} \prod_{i=1}^{p-1} \frac{L_i}{F_i}.$$

All coefficients, except that of x^{p-1}, are $0 \pmod{F_p^2}$. Indeed, F_{mp}^k is divisible by F_p^2 for $k \geq 2$ and F_p is prime to $L_{mp} \prod_{i=1}^{p-1} F_i$. Moreover, $S := \sum_{i=1}^{p-1} \frac{F_{p-i}L_i + F_p}{F_{p-i}} \equiv 0 \pmod{F_p}$ because

$$2S = \sum_{i=1}^{p-1} \left(\frac{L_i}{F_i} + \frac{L_{p-i}}{F_{p-i}} \right) = \sum_{i=1}^{p-1} \frac{F_{p-i}L_i + F_p}{F_iF_p} = \sum_{i=1}^{p-1} \frac{2F_p}{F_iF_{p-i}}.$$

All forthcoming sums and products are for indices i running from 1 to $p-1$. As $2F_{i+j} = F_iL_j + F_jL_i$ we find that

$$2^{p-1} \prod F_{mp+i} = \prod 2F_{mp+i} = \prod (F_{mp}L_i + L_{mp}F_i) = L_{mp}^{p-1}(1) \prod F_i.$$

Therefore,

$$\left(\frac{np-1}{p-1} \right)_F = \prod \frac{F_{mp+i}}{F_i} = \left(\frac{L_{mp}}{2} \right)^{p-1}(1).$$

Since $L_k^2 - 5F_k^2 = 4(-1)^k$, we see that $(L_{mp}/2)^{p-1} \equiv (-1)^{m} \left(\frac{p-1}{2} \right) \pmod{F_p^2}$. To establish the congruences modulo L_p, note that L_p divides L_{mp} if and only if m is odd and L_p divides F_{mp} if m is even. Thus, all coefficients of $(L_{mp}/2)^{p-1} P(x)$ are $0 \pmod{L_p}$ except possibly and respectively the constant term $(L_{mp}/2)^{p-1} \prod L_i/F_i$, if m is odd, and the leading term $(L_{mp}/2)^{p-1}$, if m is even. If m is odd, then, as \(2(-1)^iL_{p-i} = L_pL_i - 5F_pF_i, \) we find that

$$\prod \frac{L_i}{F_i} = \prod \frac{L_{p-i}}{F_i} = (2^{p-1}(-1)^{\sum i})^{-1} \prod \frac{2(-1)^iL_{p-i}}{F_i} = 2^{-p+1}(-1)^{\frac{p-1}{2}} \prod (-5F_p) \pmod{L_p}.$$

Hence,

$$(-1)^{\frac{p-1}{2}}(L_{mp}/2)^{p-1} \prod \frac{L_i}{F_i} \equiv (-5F_{mp}^2/4)^{\frac{p-1}{2}}(-5F_p^2/4)^{\frac{p-1}{2}} \equiv ((-1)^{m})^{\frac{p-1}{2}}(-1)^{\frac{p-1}{2}} \pmod{L_p},$$

which yields the congruence. If m is even, then a simple induction using the identity

$$L_{2k} = L_k^2 - 2(-1)^k$$

gives that $L_{mp} \equiv 2 \pmod{L_p}$. Thus, $(L_{mp}/2)^{p-1} \equiv 1 \pmod{L_p}$, which, as F_p and L_p are coprime, fully lands the H-737 problem.

Also solved by the proposer.

Errata: In problem H-763, in the denominator of the RHS of (i), “$(n + 2)$” should be “$(n + 1)$” and in the denominator RHS of (iv), “$n^2(n + 1)^2$” should be “$n^3(n + 1)^3$”.

Late Acknowledgement: Kenneth B. Davenport solved H-733.