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PROBLEMS PROPOSED IN THIS ISSUE

H-765 Proposed by D. M. Batinetu-Giurgiu, Bucharest and Neculai Stanciu,
Buzau, Romania.
Prove that for positive integer n and m > 0 we have'
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H-766 Proposed by H. Ohtsuka, Saitama, Japan.
Let n=m+ 2. For m > 1, prove that
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H-767 Proposed by H. Ohtsuka, Saitama, Japan.

Prove that
: 2 2 24 )2 —
nhm F3 —i—JF4 +\/F8 + + 1/ F5n = 3.
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H-768 Proposed by H. Ohtsuka, Saitama, Japan.
Let (Z denote the Fibonomial coefficient. For n > 1, prove that
F
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SOLUTIONS

Integer Parts of Reciprocals of Tails of Infinite Products with Fibonacci Numbers

H-734 Proposed by H. Ohtsuka, Saitama, Japan.
(Vol. 51, No. 1, February 2013)
For n > 3 find closed form expressions for

() N (S ()

k=n

Here, |z] be the largest integer less than or equal to x.

Solution by the proposer.

We need the following lemma.

Lemma 1. For n > 3, we have
(1) Fono—1 F,—-1_ F,1—-1

< X ;

?n—Z FFn 1 ?n—l
(2) n—2 > n X n—1 :
Fn—2+1 Fn Fn—1+1
FoF, 11 - F? -1 o Fnt1Fn —

FoF, 1 F? Fon F,

FoF,_1 F2—1 o FnnaFn
FoFo1+1 F?2 Foi1Fy+1°
FoFo1 =2 _ F2—1 y BB =2
FoF, 1 —1 F?2 Fy1F, -1’
FoF, 1 —1 - F? -1 o FoniFn—1

FnFn—l F,% Fn+1Fn

! (if n is odd);

(if n is even).

Proof. We will only prove (1) since all other verifications are similar. We have
Fn—Z(Fn - 1)(Fn—l - 1) - FnFn—l(Fn—2 - 1)
=F, o+ F, —F, 1F, 92— F,F, »
= n—2+F3_1 —F,F, o :Fn—2+(_1)n > 0.

Therefore, we obtain the desired inequality (1). O
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(i) Using Lemma 1 (1), we have
Fog=1 _Fo=1 Foa—1_Fo=1 Fyi—1 F-1

X X X
Fn—2 o Fn Fn—l o Fn Fn+1 Fn
Bzl Fua=l Fue-l Fa-l_ 7 -1
E, Fn+1 Fn+2 Fn+1 ken Fk

Using Lemma 1 (2), we have
Fn_9 F,—-1 Fo_1 F,—-1 « Foy1—1 E,

X > X
Fn—2+1 Fn Fn—1+1 Fn Fn+1 Fn+1
Fo—1 Fu1—-1 Fuo—1 F, o F, —1
> n x n+1 % n+2 % n+1 >“'>H k )
E, Fn+1 Fn+2 Fn+1 +1 ken Fk
Therefore,
1 s 1 1
1-— < 1-— <1l-
Fn—z_kl;[n< Fk> Fro+1
That is,

Thus, for n > 3, we obtain
0 1 -1
(1 -11 (1 - E) = F,_o.
k=n

(ii) Case 1. n > 3 is odd. Using Lemma 1 (3) and (4), we obtain the following inequality in
the same manner as (i):

E,F, 1 —1 ﬁ F2-1 F,Fo s
F,F, 1 il Fl? F,F, 1+1
Therefore,
1 > ( 1 > 1
1-— < 1-=)]<1l—- =\
F,F, 1 kl;In F]? F,F,_1+1
That is,

—1
o0
1
F.F,_4 < (1 - H (1 ﬁ>> < FyFp_1+1.
k=n k
(5)

Case 2. n > 4 is even. Using Lemma 1 (5) and (6), we obtain the following inequality in the

same manner as (i):
o0

FoF,1—2 I F2-1 _ b -1
FF, -1 7 FpFpa

k=n

Therefore,
o

1 1 1
- < 1—— ) <1- .
FoF,1—1 kH < F,f) FnFo

=n
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That is,

-1
o0
1
FoFp—1< (1 -1I (1 - ﬁ>> < FoFp_y.
k

k=n
Therefore, we obtain

00 -1
1— H 1— 1 _ F.,F,—1 if n=1 (mod2), n>3;
ke F]? C\FaFaa -1 i n=1 (mod 2), n > 4.

Proposer’s note: For m > 2 and n > 2, we obtain the following identity in the same manner:

0o -1
1
<1 T K)) = o = St

k=n
Also solved by Paul S. Bruckman.

On a Power Series with Binomial Coefficients

H-735 Proposed by Paul S. Bruckman, BC.
(Vol. 51, No. 2, May 2013)

— (2
Let Fp,(z) = Z< n;m)wn7 where m is any real number and |z| < 1/4. Also let
n=0
() = (1 — 4z)Y/2. For brevity, write F,,, = Fy,(z), 6§ = 6(z). Prove the following:
1 (1-10)
(&) FO_@’ 1= 2260

F, P\
(b) for all real m, N - <F(1)> :

"2k 4+m)\ [2n -2k —m
f 11 1 =4" =0,1,2,....
(c) for a ream,];)( ) >< & ) , n 1,2,

Solution by Angel Plaza, Gran Canaria, Spain.

1. /(2 1
(a) Fp = i is nz:: <:> " = \/ﬁ’ which is given as identity (2.5.1) in [1].
1—40 2 1 1-+v1-4
= ( ) is equivalent to Z ( n >;p" TV T Then
220 = n 2x4/1 — dx

1 1 N1 n1“2nn_l
RHS = 2w<\/1—4w 1>_2wn§::1<n>w 2§::<>

_ 242\ o= G )

=5 () - e

:i<2n+1> 2" = LHS.
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FA™ 1 F
(b) By (a), we have to show that for all m, F,, = Fy <Fl> , where Fy = —— L =
0

V1—4dx’ Fy
1—+1—4z

o . That is

i<2n+m>xn ﬁ(l—@)m’

- 2
=0 n X

which is identity (2.5.15) in [1].

(c) Let A(z) be the generating function of the LHS. That is

=T S () ()

n>0
2k +m\ 2n =2k —m\ ,_;
() 2 )
k>0 n—k>0
1 <1—\/1—43:>m 1 <1—\/1—4$>_m
VI -4z 2 VI—dz 2 ’
1
14’

which is precisely the generating function of the RHS, 4™. Note that we have used the identity
(2.5.15) in [1].

REFERENCES
[1] H. S. Wilf, Generatingfunctionology, 2nd. edition, (1992).

Also solved by Kenneth B. Davenport and the proposer.

On the Sum of the Cubes of the Tribonacci Numbers

H-736 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 51, No. 2, May 2013)
The Tribonacci numbers 1), satisfy Ty = 0, Ty = T5 = 1, Ty = Ty + Ty + T, for
n > 0. Find an explicit formula for the sum > p_, T5.

Solution by the proposer.
Let S, =Y 7, T2. We need the following lemma.

Lemma 2. We have
n

(i) Z(Tng‘H + TkTI?—i—l) = TnTh+1Tnt2;

k=1
n
(ii) Z(T/3+1Tk+2 + Te1 T4 o) = T TngoTngs — 2;
kﬁl
(i) Y TETero = Sn+ TnTns1Tnrz — TnTioy,;
k=1
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n
(iv) =6 Th1Ti o = 29 + An,
k=1
where

Ay = -T2, — T2 = 3T,T2, — 3T2Tys1 — 3Tn1 T2y — 3T Tnsa + 7.

Proof. (i) We have

n

n n
Y (LT + TiTin) = Y TeToor (Th 4+ Tisr) = Y TeTea (Tra — Teon)
k=1 k=1 k=1

n
= Z(Tka+lTk+2 — T 1T Ty1) = T Ty 1 Trga.
=1

(ii) We have

> (T Tere + Tier1Tiys) = > (TEThar + TeTi1) = TuraToraTurs — 2, (by (i)
k=1 =2

(iii) We have

n n

n n
S TiThso =Y TR Doy + Te+ Toct) = 3T+ > (TeThsr + Thr I7)
k=1 k=1 k=1 k=1

n
= S+ Y (TiTiwr + TiTi) = TuTiy = Su+ Tl Tugz — Ty (by (i)).
k=1

(iv) We have

n

0= Z ((Th + Ti-1)® = (Thy2 — Ti1))

k=1
n

n n
=3 (T oThir + TiTho1) =3 (Thya Ty — TeTi) + > (TP + Ty = T o + Ty
k=1 k=1 k=1

n
=6 ZT]€2+2T]“+1 + 2S5, + An,.
k=1

Let e =Ty, y =Tk11, 2 = Tgyro. We have
23 P+ 22 4 32y + 3xy® 4 3272 + 322% + 32+ 3yt + 6yz = (z+y+2)% (1)
23+ 2 4+ 23 2%y 4 22y + 2% — 22 — 22 — 2ayz =1 (2)
(see [1]). Multiplying (2) by 3 and adding the resulting identity to (1), we get
423 4+ Ty + 423 + 922y + 92y + 6222 + 3y?z — 3y2? = T,S’Jrg + 3.
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From the above identity, we have

n

n
S UTE+ 7T +ATE o — TP 3) + 9 (TThsn + TuT7 )
k=1 =1

n n n
+6) TPTerr +3 (T Theo + TopaTiye) — 6 Th1Tiyy = 3n.
k=1 k=1 k=1

Using Lemma 2 (i), (ii), (iii) and (iv), we have
n
(12T + 7Ty + AT 5 — T 5)
k=1
+ 15T, T 1Tns2 + 3Tns1 Tng2Trgs — 61, T2y + Ap — 6 = 3n. (3)

Here,
n

D (2TE + 7T +ATR 5 — Tidy ) = 228, + 1073, +3T3, — T3, 5 — 5.
k=1

Therefore, (3) is
228, =To, 5 — 20, o — 1072, + Tp + 9T, T2 4 + 312 T4
— 15T, T 1Thso — 3T 41 Tn+2(Thts — Trnyo — Thy1) + 3n + 4.
Since

- 3Tn+1Tn+2 (Tn+3 - Tn+2 - Tn+1) = _3TnTn+1Tn+27
we obtain

1
Sy = E(Tg’ g — 203, — 1072 + T3 + 9T, T2, + 3T2T i1 — 18T, T 1Ty + 30 + 4).

REFERENCES

[1] M. Elia, Derived sequences, the tribonacci recurrence and cubic forms, The Fibonacci Quarterly 39.2
(2001), 107-115.

A Lucas Type Congruence with Fibonomials

H-737 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 51, No. 2, May 2013)

n
Let < k:) denote the Fibonomial coefficient. For an odd prime p and a positive integer n,
F

Solution by Christian Ballot, Caen, France.
With m :=n — 1, define the rational polynomial

(n—1)(p—1)
2

(—1) (mod FI?L;,,).
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Expanding P(x) yields

F2 LiL; gty
P =t S b e S D S YT
mp 0<i<j<p FiFj Lgﬂp i=1 ki
All coefficients, except that of 2P~1, are 0 (mod FI?) Indeed, F,'jbp is divisible by FI? for k > 2
and F), is prime to Ly, H‘;’-’__ll F;. Moreover, S := Zfz_ll Lﬁ =0 (mod F,) because

p—1 p—1
F,_;L;+ F;L,_; 2F,
25 =5 (1 L) Y B ity K 20,
Z F Fp A ; EFp—i ZZ:; EFp—i
All forthcoming sums and products are for indices ¢ running from 1 to p — 1. As

2F; = FL; + FjL;

we find that
2 ] Fonpri = [ [ 2Fmpvi = [ [(FopLi + Lo Fi) = L5, PO [ .

(r0)) Ml (m)p‘lp(n.

D — 1 r H Fz 2

Since L2 — 5F? = 4(—1)*, we see that (Ly,,/2)P~1 = ((—1)7”)1)Tl (mod F?). To establish
the congruences modulo L,, note that L, divides L,,, if and only if m is odd and L, divides
Fonp if m is even. Thus, all coefficients of (Ly,,/2)P~*P(z) are 0 (mod L,) except possibly
and respectively the constant term (F,,,/2)P~![] L;/F;, if m is odd, and the leading term
(me/2)p_1 if m is even. If m is odd, then, as 2(—1)in_i = L,L; — 5F,F;, we find that

H -1 Lo-i _ o1 1]‘[ L=t (1)"7 [[(-5F,) (mod L,).

Hence

Therefore,

p—1

(1) B2 [ = (-5F2,/0)"F (-5F2/0)"F = (-)™)'F (-1)F (amod L,),
which yields the congruence. If m is even, then a simple induction using the identity
Loy, = L —2(=1)"
gives that Ly, = 2 (mod Ly). Thus, (Lmp/2)P~! = 1 (mod L,), which, as F, and L, are
coprime, fully lands the H-737 problem.
Also solved by the proposer.

Errata: In problem H-763, in the denominator of the RHS of (i), “(n + 2)”should be
“(n4+1)” and in the denominator RHS of (iv), “n?(n + 1)?7, should be “n3(n + 1)3”.

Late Acknowledgement: Kenneth B. Davenport solved H-733.
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