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elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results.”

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1231 Proposed by Kenny B. Davenport, Dallas, PA.

Find the closed form expressions for the sums
∞
∑

n=1

(

2n

n

)

nFn

8n
, and

∞
∑

n=1

(

2n

n

)

nLn

8n
.

B-1232 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania, and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.

Let en =
(

1 + 1
n

)n
. Prove that

(

n
∑

i=1

eiF
2
i

)





n
∑

j=1

F 2
j

ej



 ≤ (e+ 2)2

8e
F 2
nF

2
n+1,

for any positive integer n.
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B-1233 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

For any positive integer n, prove that
n
∑

k=1

F2k2F2k = F 2
n(n+1), and

n
∑

k=1

F2F 2
k
F2F2k

= F 2
2FnFn+1

.

B-1234 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National Uni-
versity, Ivano-Frankivsk, Ukraine.

Let n ≥ 3 be an odd integer. Find the real solutions of the following system of equations:

x31 + x1 + x2 = F1x
2
1 + F3,

x52 + x2 + x3 = F2x
4
2 + F4,

...

x2n−1
n−1 + xn−1 + xn = Fn−1x

2n−2
n−1 + Fn+1,

x2n+1
n +

Fn+2 − 1

Fn
xn + x1 = Fnx

2n
n + Fn+2.

B-1235 Proposed by Kenny B. Davenport, Dallas, PA.

Prove that, for any integer n ≥ 1,
n
∑

k=1

Fk−1FkFk+1 =
1

3

(

F 3
n−1 + F 3

n + F 3
n+1 −

F3n−1 + 3

2

)

.

SOLUTIONS

A Lucas Inequality

B-1194 (Corrected) Proposed by D. M. Bătineţu-Giurgui, Matei Basarab Na-
tional College, Bucharest, Romania, and Neculai Stanciu, George Emil
Palade School, Buzău, Romania.
(Vol. 55.3, August 2017)

Prove that
L1

(L2
1 + L2

2 + 2)m+1
+

L2

(L2
1 + L2

2 + L2
3 + 2)m+1

+ · · ·+ Ln

(L2
1 + L2

2 + · · ·+ L2
n+1 + 2)m+1

≥ Ln+2 − 3

(3Ln+2)m+1
.

for any positive integers n and m.

Solution by Wei-Kai Lai, University of South Carolina Salkehatchie, Walterboro,
SC.

Since
∑n

i=1 L
2
i = LnLn+1 − 2, the proposed inequality can be written as

L1

(L2L3)m+1
+

L2

(L3L4)m+1
+ · · ·+ Ln

(Ln+1Ln+2)m+1
≥ Ln+2 − 3

(3Ln+2)m+1
.
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We use induction to prove the above inequality. When n = 1, L1

(L2L3)m+1 = 1
12m+1 = L3−3

(3L3)m+1 ,

the above claim is true. Assume that the inequality is true when n = k for some arbitrary but
fixed integer k ≥ 1. Then,

L1

(L2L3)m+1
+

L2

(L3L4)m+1
+ · · ·+ Lk+1

(Lk+2Lk+3)m+1
≥ Lk+2 − 3

(3Lk+2)m+1
+

Lk+1

(Lk+2Lk+3)m+1
.

It suffices to prove that

Lk+2 − 3

(3Lk+2)m+1
+

Lk+1

(Lk+2Lk+3)m+1
≥ Lk+3 − 3

(3Lk+3)m+1
,

or equivalently,
Lm+1
k+3 (Lk+2 − 3) + 3m+1Lk+1 ≥ Lm+1

k+2 (Lk+3 − 3).

The last inequality can be rearranged further to

(Lm+1
k+3 − Lm+1

k+2 )(Lk+2 − 3) ≥ Lk+1(L
m+1
k+2 − 3m+1) = (Lk+3 − Lk+2)(L

m+1
k+2 − 3m+1),

or

Lm
k+3 + Lm−1

k+3 Lk+2 + · · ·+ Lk+2L
m−1
k+2 + Lm

k+2 ≥ Lm
k+2 + Lm−1

k+1 · 3 + · · ·+ Lk+2 · 3m−1 + 3m,

which is clearly true when k ≥ 1. Therefore, according to the principle of mathematical
induction, the claimed inequality is true for all positive integers n.

Editor’s Notes: This problem is similar to Problem B-1173(ii).

Also solved by Kenny B. Davenport, I. V. Fedak, Dmitry Fleischman, and the
proposer.

A Problem with Many Solutions

B-1211 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 55.3, August 2017)

For n ≥ 1, prove that

F 3
n−1 +

n
∑

k=1

F 3
k =

F3n−1 + 1

2
.

Solution 1 by Donghae Lee (student), Masan Jeil Girls’ Middle School and In-
stitute of Gifted Education in Science, Kyungnam University, Changwon, South
Korea.

We use induction. For n = 1, the equality clearly holds. Assume it holds for some integer
n ≥ 1, we want to show that

F 3
n +

n+1
∑

k=1

F 3
k =

F3n+2 + 1

2
.

Thus, it is enough to prove that
(

F 3
n +

n+1
∑

k=1

F 3
k

)

−
(

F 3
n−1 +

n
∑

k=1

F 3
k

)

=
F3n+2 + 1

2
− F3n−1 + 1

2
,

which is equivalent to

F 3
n + F 3

n+1 − F 3
n−1 =

F3n+2 − F3n−1

2
=

F3n+1 + F3n − F3n−1

2
= F3n.
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Using the identity Fk = FiFk+1−i + Fi−1Fk−i, we obtain

F3n = Fn+1F2n + FnF2n−1

= Fn+1(FnFn+1 + Fn−1Fn) + Fn(F
2
n + F 2

n−1)

= Fn(F
2
n+1 + Fn+1Fn−1 + F 2

n−1) + F 3
n

= (Fn+1 − Fn−1)(F
2
n+1 + Fn+1Fn−1 + F 2

n−1) + F 3
n

= F 3
n+1 − F 3

n−1 + F 3
n ,

and the proof is completed.

Solution 2 by David Galante (student) and Ángel Plaza (jointly), Universidad de
Las Palmas de Gran Canaria, Spain.

The proposed identity may be written for n ≥ 0 as

F 3
n +

n+1
∑

k=1

F 3
k =

F3n+2 + 1

2
.

We will show that the sequences on both sides of the equation have the same generating
function.

Let F (x) the generating function corresponding to the left side of the equation, and g(x)
the generating function of

{

F 3
n

}

n≥0
. It is well-known [1, equation (4.12)] that

g(x) = x(1−2x−x2)
(1+x−x2)(1−4x−x2)

. Thus, the generating function of
{
∑n

k=0 F
3
k

}

n≥0
is h(x) = g(x)

1−x , and

consequently the generating function of
{
∑n+1

k=1 F
3
k

}

n≥0
is h(x)

x . Therefore,

F (x) = g(x) +
h(x)

x
=

1− 2x− x2

(1− x)(1− 4x− x2)
.

For the right side sequence, we use the following result [1, equation (4.18)]:

∞
∑

n=0

Fkn+rx
n =

Fr + (−1)rFk−rx

1− Lkx+ (−1)kx2
.

So, the generating function of
{

F3n+2

}

n≥0
is 1+x

1−4x−x2 , and therefore, the generating function

corresponding to the right side is

G(x) =
1

2

(

1 + x

1− 4x− x2
+

1

1− x

)

=
1− 2x− x2

(1− x)(1− 4x− x2)
.

Since F (x) = G(x), the conclusion follows.

Editor’s Notes: Several solvers used the formulas
n
∑

k=1

F 3
k =

F3n+2 + 6(−1)n+1Fn−1 + 5

10
or

n
∑

k=1

F 3
k =

F 3
n+2 − 3F 3

n+1 + 3(−1)nFn + 2

4

to complete their proofs. The equality F 3
n+1 + F 2

n − F 3
n−1 = F3n can be generalized to [2,

Identity 45, page 89]

Fr+1Fs+1Ft+1 + FrFsFt − Fr−1Fs−1Ft−1 = Fr+s+t.
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Also solved by Paola Andrea Velásquez Barrientos (student), Brian D. Beasley,
Bruno Berselli, Brian Bradie, Charles K. Cook, Kenny B. Davenport, Steve
Edwards, I. V. Fedak, Dmitry Fleischman, Wei-Kai Lai and John Risher (stu-
dent) (jointly), Kathleen E. Lewis, Carlos Alexander Montoya Sanchez (student),
Raphael Schumacher (student), Dong-chan Shin (student), Jason L. Smith, Albert
Stadler, David Terr, and the proposer.

A Cyclic Sum in Disguise

B-1212 Proposed by D. M. Bătineţu-Giurgui, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade School,
Buzău, Romania.
(Vol. 55.3, August 2017)

Prove that

F 4
n + 1

F 2
n − Fn + 1

+

n−1
∑

k=1

F 4
k + F 4

k+1

F 2
k − FkFk+1 + F 2

k+1

> 2FnFn+1

for any positive integer n.

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.

Let x and y be positive integers. Then,

x2 − xy + y2 =

(

x− 1

2
y

)2

+
3

4
y2 > 0,

and
x4 + y4

x2 − xy + y2
− (x2 + y2) =

xy(x− y)2

x2 − xy + y2
≥ 0,

so that
x4 + y4

x2 − xy + y2
≥ x2 + y2,

with equality holding if and only if x = y. Using this inequality and F1 = 1, it follows that

F 4
n + 1

F 2
n − Fn + 1

+

n−1
∑

k=1

F 4
k + F 4

k+1

F 2
k − FkFk+1 + F 2

k+1

=
F 4
n + F 4

1

F 2
n − FnF1 + F 2

1

+

n−1
∑

k=1

F 4
k + F 4

k+1

F 2
k − FkFk+1 + F 2

k+1

≥ F 2
n + F 2

1 +

n−1
∑

k=1

(F 2
k + F 2

k+1)

= 2

n
∑

k=1

F 2
k

= 2FnFn+1.

Equality holds for n = 1 (as F1 = F1 = 1), and for n = 2 (as F1 = F2 = 1), but the inequality
is strict for n > 2.
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Editor’s Notes: Plaza observed that the result can be extended to n ≥ 2 distinct positive
real numbers:

n
∑

k=1

cyclic

a4k + a4k+1

a2k − akak+1 + a2k+1

> 2

n
∑

k=1

a2k.

Also solved by Kenny B. Davenport, I. V. Fedak, Dmitry Fleischman, Wei-Kai
Lai and John Risher (student) (jointly), Hideyuki Ohtsuka, Ángel Plaza, and the
proposer.

An Intriguing Telescoping Product

B-1213 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National Uni-
versity, Ivano-Frankivsk, Ukraine.
(Vol. 55.3, August 2017)

For every positive integer n, prove that

F1

F3
· F5

F7
· · · · · F4n−3

F4n−1
> 4

√

1

F1 + F5 + · · ·+ F8n+1
,

and

F2

F4
· F6

F8
· · · · · F4n−2

F4n
< 4

√

2

F3 + F7 + · · ·+ F8n+3
.

Solution by the proposer.

If k < m, then for every positive integer p, we find, by means of Binet’s formula, or by
applying Identity 2 in [1, page 87],

FkFm+p − Fk+pFm = (−1)k+1FpFm−k.

Hence, Fk

Fm
> Fk+p

Fm+p
if k is odd, and Fk

Fm
< Fk+p

Fm+p
if k is even. Thus,

F1

F3
· F5

F7
· · · · · F4n−3

F4n−1
>

F2

F4
· F6

F8
· · · · · F4n−2

F4n
,

F1

F3
· F5

F7
· · · · · F4n−3

F4n−1
>

F3

F5
· F7

F9
· · · · · F4n−1

F4n+1
,

F1

F3
· F5

F7
· · · · · F4n−3

F4n−1
>

F4

F6
· F8

F10
· · · · · F4n

F4n+2
.

Therefore,
(

F1

F3
· F5

F7
· · · · · F4n−3

F4n−1

)4

>
F1F2

F4n+1F4n+2
=

1
∑4n+1

k=1 F 2
k

.

The first inequality follows from

4n+1
∑

k=1

F 2
k = F 2

1 + (F 2
2 + F 2

3 ) + · · ·+ (F 2
4n + F 2

4n+1) = F1 + F5 + · · ·+ F8n+1.

The second inequality can be obtained in a similar manner.
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Also solved by Kenny B. Davenport (two solutions), and Dmitry Fleischman.

Telescoping Sum Again!

B-1214 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 55.3, August 2017)

Given an integer m ≥ 2, find a closed form for the infinite sum
∞
∑

n=1

F2n+m

FnFn+2Fn+m−2Fn+m
.

Solution by Jason L. Smith, Richland Community College, Decatur, IL.

Consider the numerator in the summand. Using the identity [1, page 89, identity 47]
FpFq+r = Fp+qFr − (−1)pFqFr−p, we find

F2n+m = F2Fn+(n+m) = Fn+2Fn+m − FnFn+m−2.

The sum now becomes
∞
∑

n=1

(

1

FnFn+m−2
− 1

Fn+2Fn+m

)

.

This is a telescoping sum in which only the first two positive terms survive. Therefore, the
closed form that is sought is

1

F1Fm−1
+

1

F2Fm
=

1

Fm−1
+

1

Fm
=

Fm + Fm−1

Fm−1Fm
=

Fm+1

Fm−1Fm
.

References

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York, 2001.

Also solved by Brian Bradie, I. V. Fedak, Ángel Plaza, Raphael Schumacher, and
the proposer.

An Infinite Series of Arctangent

B-1215 Proposed by Ángel Plaza and Sergio Falcón, Universidad de Las Palmas
de Gran Canaria, Spain.
(Vol. 55.3, August 2017)

For any positive integer k, the k-Fibonacci and k-Lucas sequences {Fk,n}n∈N and {Lk,n}n∈N
are defined recursively by un+1 = kun + un−1 for n ≥ 1, with respective initial conditions
Fk,0 = 0, Fk,1 = 1, and Lk=0 = 2, Lk,1 = k. Let c be a positive integer. The sequence {an}n∈N
is defined by a1 = 1, a2 = 3, and an+2 = an + 2c for n ≥ 1. Prove that

∞
∑

n=1

tan−1

(

Fk,c

Fk,an+c

)

= tan−1

(

1

k

)

, if c is even;

∞
∑

n=1

tan−1

(

Lk,c

Lk,an+c

)

= tan−1

(

1

k

)

, if c is odd.
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Solution by Hideyuki Ohtsuka, Saitama, Japan.

We have the Binet’s forms Fk,n = pn−qn

p−q , and Lk,n = pn + qn, with p = k+
√
k2+4
2 and

q = k−
√
k2+4
2 . Note that pq = −1, hence p−1 = −q. We find

tan−1 p−an − tan−1 p−an+2 = tan−1 p−an − p−an+2

1 + p−anp−an+2

= tan−1 p
(an+2−an)/2 − p−(an+2−an)/2

p(an+2+an)/2 + p−(an+2+an)/2

= tan−1 pc − p−c

pan+c + p−an−c
.

By the above inequality, for m ≥ 1, we have
m
∑

n=1

tan−1 pc − p−c

pan+c + p−an−c
=

m
∑

n=1

(

tan−1 p−an − tan−1 p−an+2
)

= tan−1 p−a1 + tan−1 p−a2 − tan−1 p−am+1 − tan−1 p−am+2 .

Since

tan−1 p−a1 + tan−1 p−a2 = tan−1 p−1 + tan−1 p−3 = tan−1 p−1 + p−3

1− p−1p−3

= tan−1 p+ p−1

p2 − p−2
= tan−1 p− q

p2 − q2
= tan−1 1

Fk,2
= tan−1 1

k
,

and limn→∞ an = ∞, we obtain the identity
∞
∑

n=1

tan−1 pc − p−c

pan+c + p−an−c
= tan−1 1

k
.

If c is even, then an + c is odd for n ≥ 1, and
∞
∑

n=1

tan−1 Fk,c

Fk,an+c
=

∞
∑

n=1

tan−1 pc − qc

pan+c − qan+c
=

∞
∑

n=1

tan−1 pc − p−c

pan+c + p−an−c
= tan−1 1

k
.

If c is odd, then an + c is even for n ≥ 1, and
∞
∑

n=1

tan−1 Lk,c

Lk,an+c
=

∞
∑

n=1

tan−1 pc + qc

pan+c + qan+c
=

∞
∑

n=1

tan−1 pc − p−c

pan+c + p−an−c
= tan−1 1

k
.

Editor’s Note: This problem is similar to Problem B-1198.

Also solved by Kenny B. Davenport, I. V. Fedak, Dmitry Fleischman, and the
proposer.
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