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Each problem and solution should be typed on separate sheets. Solutions to problems in this
issue must be received by August 15, 2015. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results”.

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√
5)/2, β = (1−

√
5)/2, Fn = (αn − βn)/

√
5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-1161 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Prove each of the following:

(i)

∞
∑

k=1

2kL2k

F 2
2k

= 10,

(ii)
∞
∑

k=0

tan−1

(

1√
5F2k+1

)

=
π

4
.
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B-1162 Proposed by José Luis D́ıaz-Barrero, Barcelona Tech, Barcelona, Spain.

Let n be a positive integer. Show that

n
∑

k=1

√

(

n− 1

k − 1

)

Fk

k
≤
√

F2n .

B-1163 Proposed by Ángel Plaza and Sergio Falcón, Universidad de Las Palmas
de Gran Canaria, Spain.

For any positive integer k, the k-Fibonacci and the k-Lucas sequences, {Fk,n}n∈N and
{Lk,n}n∈N, both are defined recursively by un+1 = kun + un−1 for n ≥ 1 with respective
initial conditions Fk,0 = 0, Fk,1 = 1, and Lk,0 = 2, Lk,1 = k. For any integer n ≥ 2, prove that

(i)
n
∑

j=1

(

kFk,j

Fk,n+1 + Fk,n − 1− kFk,j

)2

≥ n

(n− 1)2
,

(ii)

n
∑

j=1

(

kLk,j

Lk,n+1 + Lk,n − 2− k − kLk,j

)2

≥ n

(n− 1)2
.

B-1164 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

Determine each of the following:

(i)

∞
∑

n=0

(−1)n

L2Fn
L2Fn+3

(ii)

∞
∑

n=0

(−1)n

L2Ln
L2Ln+3

.

B-1165 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

For an integer n 6= 0, find the value of

LF3n

FF3n−1
FF3n−2

+
LF3n−1

FF3n−2
FF3n

+
LF3n−2

FF3n
FF3n−1

.
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SOLUTIONS

Easily Seen by “Telescoping”

B-1141 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 52.1, February 2014)

Determine
∞
∑

k=1

2k sin(2kθ)

L2k + 2cos(2kθ)
.

Solution by Kenneth B. Davenport, DA, PA.

We will use the following identities:

(i) sin 2x = 2 sinx cos x.
(ii) cos 2x = 1− 2 sin2 x = 2cos2 x− 1.
(iii) L2

n = L2n + 2(−1)n.

The key to our solution is to write the sum as a “telescoping” sum. Note that

1

L2k − 2 cos 2kθ
− 1

L2k + 2cos 2kθ
=

4cos 2kθ

L2
2k

− 4 cos2(2kθ)
. (1)

Based on (ii) and (iii), we may write the denominator on the right-hand side as

(L2k+1 − 2 cos 2k+1θ).

So now (1) is written:

1

L2k + 2cos 2kθ
=

1

L2k − 2 cos 2kθ
− 4 cos 2kθ

L2k+1 − 2 cos 2k+1θ
.

Next, by multiplying both sides by 2k sin 2kθ and then summing we get

N
∑

k=1

2k sin 2kθ

L2k + cos 2kθ
=

N
∑

k=1

(

2k sin 2kθ

L2k − 2 cos 2kθ
− 4 · 2k sin 2kθ cos 2kθ

L2k+1 − 2 cos 2k+1θ

)

. (2)

Using (i), the second term’s numerator on the right-hand side is now written 2k+1 sin 2k+1θ.
Consequently, we now have the desired collapsing sum we were seeking, i.e.

2 sin 2θ

L2 − 2 cos 2θ
− 2N+1 sin 2N+1θ

LN+1
2 − 2 cos 2N+1θ

. (3)

Now let N → ∞. From the Binet form of the Lucas numbers, and the fact that α2 > 2, it
is easy to see that the second term in (3) vanishes quickly. Hence, we have shown

∞
∑

k=1

2k sin 2kθ

L2k + 2cos 2kθ
=

2 sin 2θ

3− 2 cos 2θ
.

Also solved by the proposer.
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Summing Every Fourth Fibonacci

B-1142 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade Secondary
School, Buzău, Romania.
(Vol. 52.1, February 2014)

Prove that

n
∑

k=1

F4k−1 = F2n · F2n+1 for any positive integer n.

Solution by Carlos Alirio Rico Acevedo, Universidad Distrital Francisco José de
Caldas (ITENU), Bogotá, Columbia.

Proof. We know that F2n+1 = F 2
n + F 2

n+1 and
∑n

k=1 F
2
k = FnFn+1, see, for example [1, p.

79,Corollary 5.4] and [1, p. 77, Theorem 5.5], respectively. Thus,

n
∑

k=1

F4k−1 =

n
∑

k=1

(F 2
2k + F 2

2k−1)

=

2n
∑

k=1

F 2
k

= F2nF2n+1.

This proves the result.

References

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley, New York, 2001.

All solutions were either some variations on the featured solution or they used an induction
argument.

Also solved by Brian D. Beasley, Charles K. Cook, Kenneth B. Davenport (2 solu-
tions), Steve Edwards, Bryan Ek, Pedro Fernando Fernández Espiroza (student),
Ralph Grimaldi (2 solutions), Russell Jay Hendel, Tia Herring, Gary Knight,
Shane Latchman, Ludwing Murillo, Zibussion Ndimande, and Eyob Tarekegn
(jointly), Harris Kwong (2 solutions), Wei-kai Lai, Fidel Ngwane and Gregory Jay

(student) (jointly), Kathleen E. Lewis, Michelle Monnin, Ángel Plaza, Hideyuki
Ohtsuka, Cecil Rousseau, Jason L. Smith, Lawrence Sommer, David Stone and
John Hawkins (jointly), Dan Weiner, Nazmiye Yilmaz, and the proposer. A
nameless solution was also received.
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Just Apply the AM-GM!

B-1143 Proposed by José Luis D́ıaz-Barrero, Barcelona Tech, Barcelona, Spain
and Francesc Gispert Sánchez, CFIS, Barcelona Tech, Barcelona, Spain.
(Vol. 52.1, February 2014)

Let n be a positive integer. Prove that

1

FnFn+1

[

(

1− 1

n

) n
∑

k=1

F 2n
k +

n
∏

k=1

F 2
k

]

≥
(

n
∏

k=1

F
(1−1/n)
k

)2

.

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaria, Spain.

Using FnFn+1 =
∑n

k=1 F
2
k , the proposed inequality may be written equivalently as

(n− 1)

∑n
k=1 F

2n
k

n
+

n
∏

k=1

F 2
k ≥

(

n
∏

k=1

F 2
k

)(n−1)/n n
∑

k=1

F 2
k ,

which follows by the AM-GM inequality.

Also solved by Dmitry Fleischman and the proposer.

It Is Not Strict When n = 1!

B-1144 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade Secondary
School, Buzău, Romania.
(Vol. 52.1, February 2014)

Prove that
n
∏

k=1

(F 2
k + 1) > Fn · Fn+1 + 1 (1)

n
∏

k=1

(L2
k + 1) > Ln · Ln+1 − 1 (2)

for any positive integer n.

Solution 1 by Harris Kwong, SUNY Fredonia, Fredonia, NY.

Both inequalities actually become equations when n = 1, so we may assume n > 1. Then
each product contains at least two factors. Hence, since F 2

k , L
2
k > 0, upon expansion, we find

n
∏

k=1

(F 2
k + 1) > 1 +

n
∑

k=1

F 2
k = 1 + FnFn+1,

and
n
∏

k=1

(L2
k + 1) > 1 +

n
∑

k=1

L2
k = 1 + (LnLn+1 − 2) = LnLn+1 − 1.
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Solution 2 by Sydney Marks and Leah Seader (jointly) students at California
University of Pennsylvania (CALURMA), California, PA.

Proof. We generalized inequalities (1) and (2) by proving
n
∏

k=1

(G2
k + 1) ≥ GnGn+1 + a(a− b) + 1 for all n ∈ N, (3)

where {Gn}n∈N is the generalized Fibonacci sequence with G1 = a and G2 = b, where a, b ∈ Z.
We first notice that

n
∏

k=1

(G2
k + 1) ≥

(

n
∑

k=1

G2
k

)

+ 1. (4)

We prove inequality (4) by induction on n. This inequality is clearly true when n = 1. We
assume that (4) is true for a fixed arbitrary natural number n. Thus,

n+1
∏

k=1

(G2
k + 1) =

(

n
∏

k=1

(G2
k + 1)

)

(G2
n+1 + 1) ≥

[(

n
∑

k=1

G2
k

)

+ 1

]

(G2
n+1 + 1)

= G2
n+1

(

n
∑

k=1

G2
k

)

+

(

n
∑

k=1

G2
k

)

+G2
n+1 + 1

≥
(

n+1
∑

k=1

G2
k

)

+ 1.

Therefore, (4) is true for every n ∈ N. Thus, inequality (3) follows from (4) by using
∑n

n=1G
2
k = GnGn+1 + a(a − b), see (1, Exercise 14, p. 113]. Inequalities (1) and (2) are

now obtained from (3) by setting a = b = 1 and a = 1, b = 3, respectively.

References

[1] T. Koshy, Fibonacci and Lucas Numbers with Applications, John Wiley, New York, 2001.

Also solved by Brian D. Beasley, Charles K. Cook, Kenneth B. Davenport, Steve
Edwards, Dmitry Fleischman, Ralph Grimaldi, Russell Jay Hendel, Tia Herring,
Gary Knight, Shane Latchman, Ludwig Murillo, Zibussion Ndimande and Eyob
Tarekegn (jointly) (students), Wei-kai Lai, Kathleen E. Lewis, Carolina Melee

Lopez (student), Hideyuki Ohtsuka, Ángel Plaza, David Stone and John Hawkins
(jointly), and the proposer.

Squares of “Almost Squares” Terms

B-1145 Proposed by D. M. Bătineţu-Giurgiu, Matei Basarab National College,
Bucharest, Romania and Neculai Stanciu, George Emil Palade Secondary
School, Buzău, Romania.
(Vol. 52.1, February 2014)

Prove that

(

F1 −
√

F1F2 + F2

)2
+
(

F2 −
√

F2F3 + F3

)2
+ · · · +

(

Fn −
√

FnF1 + F1

)2
≥ FnFn+1 (1)
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(

L1 −
√

L1L2 + L2

)2
+
(

L2 −
√

L2L3 + L3

)2
+· · ·+

(

Ln −
√

LnL1 + L1

)2
≥ LnLn+1−2 (2)

for any positive integer n.

Solution by Ángel Plaza, Universidad de Las Palmas de Gran Canaris, Spain.

Using the AM-GM inequality, we obtain

x+ y

2
≥

√
xy +

√

x2+y2

2

2
,

and so

x−√
xy + y ≥

√

x2 + y2

2
for any positive real numbers x and y. Thus, the left-hand side of (1), LHS, is

LHS ≥ F 2
1 + F 2

2

2
+

F 2
2 + F 2

3

2
+ · · ·+ F 2

n + F 2
1

2

=

n
∑

k=1

F 2
k

= FnFn+1.

Inequality (2) is proved in the same way by using
∑n

k=1 L
2
k = LnLn+1 − 2.

Also solved by Kenneth B. Davenport, Dmitry Fleischman, Russell Jay Hendel,
and the proposer.

FEBRUARY 2015 87


