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Please submit solutions and problem proposals to Dr. Harris Kwong, Department of Mathe-
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If you wish to have receipt of your submission acknowledged by mail, please include a self-
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Each problem or solution should be typed on separate sheets. Solutions to problems in this
issue must be received by November 15, 2020. If a problem is not original, the proposer should
inform the Problem Editor of the history of the problem. A problem should not be submitted
elsewhere while it is under consideration for publication in this Journal. Solvers are asked to
include references rather than quoting “well-known results.”

The content of the problem sections of The Fibonacci Quarterly are all available on the web
free of charge at www.fq.math.ca/.

BASIC FORMULAS

The Fibonacci numbers Fn and the Lucas numbers Ln satisfy

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1.

Also, α = (1 +
√

5)/2, β = (1−
√

5)/2, Fn = (αn − βn)/
√

5, and Ln = αn + βn.

PROBLEMS PROPOSED IN THIS ISSUE

B-416 Proposed by Gene Jakubowski and V. E. Hoggatt, Jr., San Jose State
University, San Jose, CA.
(Vol. 17.4, December 1979)

Let Fn be defined for all integers (positive, negative, and zero) by F0 = 0, F1 = 1, Fn+2 =
Fn+1 + Fn, and hence

Fn = Fn+2 − Fn+1.

Prove that every positive integer m has at least one representation of the form

m =

N∑
j=−N

αjFj ,

with each αj in {0, 1} and αj = 0 when j is an integral multiple of 3.

Editor’s Note: This is an old problem from more than 40 years ago. No solutions were
received at the time it appeared, so we present the problem again, and invite the readers to
solve it.
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B-1266 Proposed by Hideyuki Ohtsuka, Saitama, Japan.

For any positive integer n, prove that

F2n

F2n−1
≥

√√√√
1 +

√
1 +

√
1 + · · ·+

√
1 +
√

1 (n square roots).

B-1267 Proposed by Robert Frontczak, Landesbank Baden-Württemberg,
Stuttgart, Germany.

Prove that
∞∑
n=1

ζ(2n)F2n

5n
= −1 +

∞∑
n=1

ζ(2n)L2n

5n
=

π

2
√

5
tan

(
π

2
√

5

)
,

where ζ(s) =
∑∞

k=1
1
ks (s > 1) is the Riemann zeta function.

B-1268 Proposed by Ángel Plaza, Universidad de Las Palmas de Gran Canaria,
Spain.

Prove that, for n ≥ 1,

(i) L2n−1 = L2n−3 + 2L2n−5 + · · ·+ (n− 1)L1 + 2n− 1

(ii) L2n = L2n−2 + 2L2n−4 + · · ·+ (n− 1)L2 + n+ 2

B-1269 Proposed by Ivan V. Fedak, Vasyl Stefanyk Precarpathian National Uni-
versity, Ivano-Frankivsk, Ukraine.

For all integers n and real numbers x ≤ y, prove that

Ln−1(xFn + yFn+2) ≤ xFn−2Fn+2 + 4yF 2
n .

B-1270 Proposed by Pridon Davlianidze, Tbilisi, Republic of Georgia.

Evaluate the following infinite products:

(A)

∞∏
n=2

(
1− 5

L2
2n−1

)
(B)

∞∏
n=2

(
1 +

5

L2
2n

)
(C)

∞∏
n=2

(
1 +

5

L2
2n−1

)(
1− 5

L2
2n

)
(D)

∞∏
n=2

(
1− 25

L4
n

)
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SOLUTIONS

Rationalize the Denominators

B-1246 Proposed by Raphael Schumacher (student), ETH Zurich, Switzerland.
(Vol. 57.2, May 2019)

Prove that, for all integers n ≥ 0,

Fn−1√
n+ 2 +

√
n+ 1

+

n∑
k=0

Fk√
k + 1 +

√
k

= 2

n∑
k=1

Fk−1√
k + 2 +

√
k

+
√

2− 1,

and deduce that

Fn+1√
n+ 2 +

√
n+ 1

=
n∑
k=0

(
2√

k + 3 +
√
k + 1

− 1
√
k + 1 +

√
k

)
Fk−

Fn√
n+ 3 +

√
n+ 2

+
√

2−1.

Solution by Hideyuki Ohtsuka, Saitama, Japan.

We find

2

n∑
k=1

Fk−1√
k + 2 +

√
k
−

n∑
k=0

Fk√
k + 1 +

√
k

=

n∑
k=1

(√
k + 2−

√
k
)
Fk−1 −

n∑
k=1

(√
k + 1−

√
k
)
Fk

=

n∑
k=1

(√
k + 2Fk−1 −

√
k + 1Fk−2

)
−

n∑
k=1

(√
k + 1Fk−1 −

√
k Fk−2

)
=

(√
n+ 2Fn−1 −

√
2F−1

)
−
(√
n+ 1Fn−1 − F−1

)
=

Fn−1√
n+ 2−

√
n+ 1

−
(√

2− 1
)
.

This proves the first identity, using which we deduce that

n∑
k=0

(
2√

k + 3−
√
k + 1

− 1
√
k + 1 +

√
k

)
Fk +

√
2− 1

= 2
n+1∑
k=1

Fk−1√
k + 2 +

√
k
−

n∑
k=0

Fk√
k + 1 +

√
k

+
√

2− 1

=
2Fn√

n+ 3 +
√
n+ 1

+
Fn−1√

n+ 2 +
√
n+ 1

=
(√
n+ 3−

√
n+ 1

)
Fn +

(√
n+ 2−

√
n+ 1

)
Fn−1

=
(√
n+ 2−

√
n+ 1

)
Fn+1 +

(√
n+ 3−

√
n+ 2

)
Fn

=
Fn+1√

n+ 2 +
√
n+ 1

+
Fn√

n+ 3 +
√
n+ 2

.

This proves the second identity.
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Editor’s Note: Frontczak generalized the result for any arbitrary arithmetic progression
{an}n≥1, where an = a1 + (n− 1)d. For example, he showed that

Fn−1√
an+2 +

√
an+1

+
n∑
k=0

Fk√
ak+1 +

√
ak

= 2
n∑
k=1

Fk−1√
ak+2 +

√
ak

+

√
a2 −

√
a1

d
.

Also solved by Michel Bataille, Brian Bradie, I. V. Fedak, Dmitry Fleischman,
Robert Frontczak, Wei-Kai Lai, Ángel Plaza, Jason L. Smith, Albert Stadler,
Santiago Alzate Suárez (student), Daniel Văcaru, and the proposer.

Sum of Products of Cubes of Consecutive Lucas Numbers

B-1247 Proposed by Kenny B. Davenport, Dallas, PA.
(Vol. 57.2, May 2019)

Prove that, for all positive integers n,

n∑
k=1

L3
kL

3
k+1 =

(
n∑
k=1

L2
kLk+1

)2

+ 6
n∑
k=1

L2
kLk+1.

Solution by Hideyuki Ohtsuka, Saitama, Japan.

We will prove the generalized identity

n∑
k=1

G3
kG

3
k+1 =

(
n∑
k=1

G2
kGk+1

)2

+G0G1G2

n∑
k=1

G2
kGk+1,

where the sequence {Gn} is defined by Gn+2 = Gn+1 + Gn for n ≥ 0, with arbitrary G0 and
G1. Since

GkGk+1Gk+2 −Gk−1GkGk+1 = GkGk+1(Gk+2 −Gk−1) = GkGk+1 · 2Gk = 2G2
kGk+1,

we have

n∑
k=1

G2
kGk+1 =

1

2

n∑
k=1

(GkGk+1Gk+2 −Gk−1GkGk+1) =
1

2
GnGn+1Gn+2 −

1

2
G0G1G2.

We also have

(GkGk+1Gk+2)
2 − (Gk−1GkGk+1)

2 = (GkGk+1)
2
(
G2
k+2 −G2

k−1
)

= (GkGk+1)
2(Gk+2 −Gk−1)(Gk+2 +Gk−1)

= (GkGk+1)
2 · 2Gk · 2Gk+1

= 4G3
kG

3
k+1.
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Therefore,

n∑
k=1

G3
kG

3
k+1 =

n∑
k=1

[(
1

2
GkGk+1Gk+2

)2

−
(

1

2
Gk−1GkGk+1

)2
]

=

(
1

2
GnGn+1Gn+2

)2

−
(

1

2
G0G1G2

)2

=

(
n∑
k=1

G2
kGk+1 +

1

2
G0G1G2

)2

−
(

1

2
G0G1G2

)2

=

(
n∑
k=1

G2
kGk+1

)2

+G0G1G2

n∑
k=1

G2
kGk+1.

Editor’s Note: This problem is a Lucas analog of Problem B-1136, Volum 51.4 (2013).

Also solved by Michel Bataille, Brian Bradie, I. V. Fedak, Dmitry Fleischman,
Robert Frontczak, Wei-Kai Lai and John Risher (student) (jointly), Ehren Met-

calfe (computer proof), Ángel Plaza, Raphael Schumacher (student), Albert Stad-
ler, David Terr, Daniel Văcaru, and the proposer.

An Inequality Derived from the Trapezoidal Rule

B-1248 Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria,
Spain.
(Vol. 57.2, May 2019)

For all positive integers n and a, prove that
n∑
k=0

Lk(L
a
k+1 + Lak+2) ≤ (Ln+2 − 1)(Lan+2 + 1).

Solution by Brian Bradie, Christopher Newport University, Newport News, VA.

Replacing Lk with Lk+2 − Lk+1, noting L1 = 1, and dividing by 2, we see that the desired
inequality is equivalent to

n∑
k=0

(Lk+2 − Lk+1)
Lak+1 + Lak+2

2
≤ (Ln+2 − L1)

Lan+2 + La1
2

.

The summation on the left side of this inequality is a trapezoidal rule approximation of the
value of ∫ Ln+2

L1

xa dx

using the n+1 subintervals [L1, L2], [L2, L3], [L3, L4], . . . , [Ln+1, Ln+2], whereas the expression
on the right side is a trapezoidal rule approximation to the value of the same integral using
just one subinterval [L1, Ln+2]. Because f(x) = xa is convex on [L1, Ln+2] for all positive
integers n and a, the desired inequality follows immediately.

Moreover, because f(x) = xa is convex on [L1, Ln+2] for all positive integers n and all real
numbers a ≥ 1 or a ≤ 0, the inequality holds for all real numbers a ≥ 1 or a ≤ 0, with equality
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for a = 1 and a = 0. For 0 < a < 1, the function f(x) = xa is concave on [L1, Ln+2], so the
opposite inequality holds; that is,

n∑
k=0

(Lk+2 − Lk+1)
Lak+1 + Lak+2

2
> (Ln+2 − L1)

Lan+2 + La1
2

.

Editor’s Note: This problem is a Lucas analog of Problem B-1223, Volume 56.1 (2018).

Also solved by Dmitry Fleischman, Wei-Kai Lai, I. V. Fedak, and the proposer.

The Tails of Two Series

B-1249 Proposed by Hideyuki Ohtsuka, Saitama, Japan.
(Vol. 57.2, May 2019)

For positive integers s and t, prove that
∞∑
n=s

(−1)tn

α(2t−1)nFn
=

∞∑
n=t

(−1)sn

α(2s−1)nFn
.

Solution by I. V. Fedak, Vasyl Stefanyk Precarpathian National University, Ivano-
Frankivsk, Ukraine.

Let q = β
α , so that |q| < 1. Using αβ = −1, we obtain

∞∑
n=s

(−1)tn

α(2t−1)nFn
=
√

5

∞∑
n=s

(
β

α

)tn αn

αn − βn
=
√

5

∞∑
n=s

qtn

1− qn
=
√

5

∞∑
n=s

qtn
∞∑
k=0

qkn.

Similarly,
∞∑
n=t

(−1)sn

α(2s−1)nFn
=
√

5
∞∑
n=t

qsn
∞∑
k=0

qkn.

Because
∞∑
n=s

qtn
∞∑
k=0

qkn =
∞∑
n=s

∞∑
k=0

q(t+k)n =
∞∑
`=0

∞∑
k=0

q(t+k)(s+`)

=
∞∑
k=0

∞∑
`=0

q(s+`)(t+k) =
∞∑
n=t

∞∑
`=0

q(s+`)n =
∞∑
n=t

qsn
∞∑
`=0

q`n,

we have that
∞∑
n=s

(−1)tn

α(2t−1)nFn
=

∞∑
n=t

(−1)sn

α(2s−1)nFn
.

Also solved by Michel Bataille, Raphael Schumacher (student), and the proposer.

Make It Telescopic!

B-1250 Proposed by Ángel Plaza, University of Las Palmas de Gran Canaria,
Spain.
(Vol. 57.2, May 2019)
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Evaluate
∞∑
k=1

tan−1
Fk+1

FkFk+2 + 1
tan−1

1

Fk+1
.

Solution by Jason L. Smith, Richland Community College, Decatur, IL.

Note that the first factor in the sum is equal to

tan−1
Fk+2 − Fk
FkFk+2 + 1

= tan−1 Fk+2 − tan−1 Fk

=

(
π

2
− tan−1

1

Fk+2

)
−
(
π

2
− tan−1

1

Fk

)
= tan−1

1

Fk
− tan−1

1

Fk+2
.

Our sum now becomes
∞∑
k=1

(
tan−1

1

Fk
− tan−1

1

Fk+2

)
tan−1

1

Fk+1

=

∞∑
k=1

(
tan−1

1

Fk
tan−1

1

Fk+1
− tan−1

1

Fk+1
tan−1

1

Fk+2

)
.

This is a telescoping sum in which only the first term survives. Therefore, the sum evaluates
to

tan−1
1

F1
tan−1

1

F2
=
(
tan−1 1

)2
=
π2

16
.

Editor’s Note: Frontczak noted that the following arctangent product involving Fibonacci
numbers

∞∑
k=0

tan−1

( √
5

L2k+1

)
tan−1

(
1√

5F2k+1

)
,

also converges to the same sum (tan−1 1)2, and the convergence is faster than the series given
in the problem. The claim follows from

tan−1
(

1

α2k

)
− tan−1

(
1

α2k+2

)
= tan−1

(
1√

5F2k+1

)
,

and

tan−1
(

1

α2k

)
+ tan−1

(
1

α2k+2

)
= tan−1

( √
5

L2k+1

)
.

Also solved by Michel Bataille, Brian Bradie, Alejandro Cardona Castrillón (stu-
dent), I. V. Fedak, Dmitry Fleischman, Robert Frontczak, Hideyuki Ohtsuka,
Raphael Schumacher (student), Albert Stadler, Daniel Văcaru, Dan Weiner, and
the proposer.
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