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PROBLEMS PROPOSED IN THIS ISSUE

H-730 Proposed by N. Gauthier, Kingston, ON
Let bxc be the largest integer less than or equal to x and let εn = (1 + (−1)n)/2. Then,

with Pn the nth Pell number prove the following identities:

(a)
∑

k≥0

1

25k

(

n− 2k

2k

)

=
1

5n/26

[

εn(L2n+2 + 3Ln+1) + (1− εn)
√
5(F2n+2 + 3Fn+1)

]

;

(b)
∑

k≥0

1

16k

(

n− 1− 2k

2k

)

=
1

2n
[Pn + n];

(c)

b(n−1)/4c
∑

k=0

1

25k(n− 4k)

(

n− 1− 2k

2k

)

=
1

5n/2n

[

εn(L2n + Ln − 2(1 + (−1)n/2))

+ (1− εn)
√
5(F2n + Fn)

]

;

(d)

∑

k≥1

k

5k

(

n− 1− k

k

)

=
1

5n/254
[εn((45n − 20)F2n − 15nL2n)

+ (1− εn)
√
5((9n − 4)L2n − 15nF2n)

]

.

H-731 Proposed by Anastasios Kotronis, Athens, Greece
Show that

f(x) :=

∞
∑

n=1

n cosh(nx)

sinh(nπ)
=

1

(π − x)2
+

3π − 12

12π
+O ((π − x)) as x → π−.
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H-732 Proposed by N. Gauthier, Kingston, ON
In the following, Ck is the kth Catalan number with the convention that Ck = 0 if k < 0.

(1) For nonnegative integers m,n let

cm(n) =
∑

k≥0

(−1)k
(

n− k

k

)

Cn−m−k.

Find a closed form for cm(n).
(2) For nonnegative integers m,n let

Gm(n) =
∑

k≥0

(−1)k
(

n− k

k

)(

2(n−m− k)

n−m− k

)

.

(a) Show that Gm(n) = 0 for 0 ≤ n ≤ m− 1.
(b) Find a closed form for Gm(n) if n ≥ 2m.
(c) Show that Gm(n+m) is a polynomial of degree n in m and express the polynomial

coefficients as a ratio of two determinants.

H-733 Proposed by H. Ohtsuka, Saitama, Japan
Define the sequence {Hn}n≥−1 given by H−1 = i, H0 = 0, Hn+2 = Hn+1− iHn for n ≥ −1,

where i =
√
−1. Find an explicit formula for

∑n
k=1H

4
k .

H-734 Proposed by H. Ohtsuka, Saitama, Japan
For n ≥ 3 find closed form expressions for









(

1−
∞
∏

k=n

(

1− 1

Fk

)

)−1






 and









(

1−
∞
∏

k=n

(

1− 1

F 2
k

)

)−1






 .

Here, bxc be the largest integer less than or equal to x.

SOLUTIONS

A Sum Yielding Pell Numbers

H-704 Proposed by Paul S. Bruckman, Nanaimo, BC
(Vol. 48, No. 3, August 2011)

Prove the following identity:

bn/4c
∑

k=0

(

n− 2k

2k

)

2n+1−4k = Pn+1 + n+ 1,

where {Pn}n≥0 is the ordinary Pell sequence.
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Solution by Zbigniew Jakubczyk, Warsaw, Poland.

The generating function of this sequence is
∞
∑

n=0

snz
n =

∞
∑

n=0

∑

4k≤n

(

n− 2k

2k

)

2n+1−4kzn =

∞
∑

m=0

∑

4k≤m+2k

(

m

2k

)

2m+1−2kzm+2k

=

∞
∑

m=0

∑

2k≤m

(

m

2k

)

2(2z)m−2kz4k = 2

∞
∑

m=0

∑

2k≤m

(

m

2k

)

(2z)m−2k(z2)2k

=

∞
∑

m=0

(

(2z + z2)m + (2z − z2)m
)

=
1

1− 2z − z2
+

1

1− 2z + z2

=
1

z

(

z

1− 2z − z2

)

+
1

(1− z)2
=

1

z

(

z

1− 2z − z2

)

+

(

1

1− z

)′

.

Since the generating function of the Pell sequence is z/(1 − 2z − z2), we find

∞
∑

n=0

snz
n =

1

z

∞
∑

n=0

Pnz
n +





∑

n≥0

zn





′

=
∞
∑

n=0

Pn+1z
n +

∞
∑

n=0

(n+ 1)zn

=
∑

n≥0

(Pn+1 + n+ 1)zn.

So, sn = Pn+1 + n+ 1.

Also solved by Annita Davis & Cecil Rousseau, Kenneth Davenport, Ángel
Plaza & Sergio Falcón, and the proposer.

A Recurrence for Sums of Binomial Coefficients

H-705 Proposed by Paul S. Bruckman, Nanaimo, Canada
(Vol. 48, No. 3, August 2011)

Define the following sum

Sn(a, b) =

b(n−b)/ac
∑

k=0

(

n

ak + b

)

,

where n, a and b are integers with 0 ≤ b < a ≤ n. Prove the following relation: Sam+2b(a, b) =
2Sam+2b−1(a, b), m = 1, 2, . . ..

Solution by Ángel Plaza, Las Palmas, Spain.

We have to prove the following identity

Sam+2b(a, b) = 2Sam+2b−1(a, b),

or, equivalently,

b(am+b)/ac
∑

k=0

(

am+ 2b

ak + b

)

= 2

b(am+b−1)/ac
∑

k=0

(

am+ 2b− 1

ak + b

)

.
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Since
(n
k

)

=
(n−1
k−1

)

+
(n−1

k

)

, it is enough to prove that

∑

k≥0

(

am+ 2b− 1

ak + b

)

=
∑

k≥0

(

am+ 2b− 1

ak + b− 1

)

,

where it is supposed that the binomial terms are zero if the lower index is negative or greater

than the upper index. On the other hand, since

(

am+ 2b− 1

ak + b

)

=

(

am+ 2b− 1

a(m− k) + b− 1

)

, the

conclusion follows.

Also solved by the proposer.

Harmonic Sums and the Prime Counting Function

H-706 Proposed by Paul S. Bruckman, Nanaimo, Canada
(Vol. 48, No. 3, August 2011)

Define the following sum:

Sn =
1

2

(

3n
∑

k=n+1

1

k2 − n2

)−1

.

Show that S(n) ∼ π(n) as n → ∞, where π(n) is the counting function of the primes p ≤ n.

Solution by Ángel Plaza, Las Palmas, Spain.

Since
1

k2 − n2
=

1/(2n)

k − n
− 1/(2n)

k + n
, then

3n
∑

k=n+1

1

k2 − n2
=

1

2n

3n
∑

k=n+1

1

k − n
− 1

2n

3n
∑

k=n+1

1

k + n

=
1

2n
(H2n −H4n +H2n)

=
1

2n
(2H2n −H4n) ,

where Hn =
∑n

k=1
1
k is the nth harmonic number. Therefore, Sn =

n

2H2n −H4n
.

For n large enough, the following bounds will be of help [1]:

n

lnn+ 2
< π(n) <

n

lnn− 4
.

Therefore, in order to prove that Sn ∼ π(n) it is enough to see that

1

lnn+ 2
<

1

2H2n −H4n
<

1

lnn− 4
,

or, equivalently,

lnn− 4 < 2H2n −H4n < lnn+ 2.

But these last inequalities hold trivially, since
1

2(n + 1)
< Hn − lnn− γ <

1

2n
.
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Also solved by Anastasios Kotronis and the proposer.

An Identity with Continued Fractions

H-707 Proposed by Paul S. Bruckman, Nanaimo, Canada
(Vol. 48, No. 3, August 2011)

Write [P ] = [a1, a2, . . . , an], where ak = an+1−k, k = 1, 2, . . . , n; then [P ] is a palin-
dromic simple continued fraction (scf); here, the ak’s are positive integers. Also, write
[0, P ∗] = [0, a1, . . . , an−1]. Finally, let [P ] denote the infinite periodic scf [P,P, P, . . .]. Prove
the following: [P ]− [0, P ] = [P ]− [0, P ∗].

Solution by the proposer

Let x = [P ] = [P, x]. Then x = (Px+ 1)/x, so

x2 − PX − 1 = 0. (1)

Note that P = x − x−1 = [P ] − [0, P ]. Consider the last two convergence of [P ], namely
say r/s and t/u, say. By the so-called Mirror formula, [P ] = t/u and [0, P ∗] = s/u. Thus,
[P ]− [0, P ∗] = (t− s)/u. On the other hand, the last three convergents of x = [P ] = [P, x] are
u/s, t/u and (tx+ u)/(ux+ s). Then ux2 + sx = tx+ u, or

x2 −
(

t− s

u

)

x− 1 = 0. (2)

Comparing (1) and (2), we get P = (t− s)/u = [P ]− [0, P ] = [P ]− [0, P ∗], which is what we
wanted to prove.

Note: If n = 1, then P = a1 and [0, P ∗] = 0. If n = 2, we have essentially the same case as
when n = 1. Hence, we may therefore assume that n = 1 or n ≥ 3.

An Inequality with Fibonacci Numbers

H-708 Proposed by José Luis D́ıaz-Barrero, Polytechnical University of
Catalonia, Barcelona, Spain
(Vol. 48, No. 4, November 2011)

Let n be a positive integer. Prove that

(

n

F 2
n + F 2

n+1

)2

+

(

1

4n2

n
∏

k=1

1

F 4
k

)(

n
∑

k=1

(F 4
k − 1)1/2

)2

≤ 1

4
.

Solution by Hideyuki Ohtsuka, Saitama, Japan.

Let

An =

(

n

F 2
n + F 2

n+1

)2

+

(

1

4n2

n
∏

k=1

1

F 4
k

)(

n
∑

k=1

(F 4
k − 1)1/2

)2

.

We have

A1 =
1

4
, A2 =

4

25
<

1

4
, A3 =

2573

32448
<

1

4
,
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and

A4 =
4

289
+

(4
√
5 +

√
15)2

5184
<

1

4
.

For n ≥ 5, we have

An <
( n

2n2

)2
+

1

4n2F 4
n

(

n
∑

k=1

F 2
k

)2

(by Fn+1 > Fn ≥ n ≥ 5)

=
1

4n2
+

(FnFn+1)
2

4n2F 4
n

=
1

4n2
+

F 2
n+1

4n2F 2
n

<
1

4n2
+

2Fn)
2

4n2F 2
n

=
5

4n2
≤ 1

20
<

1

4
.

Also solved by Paul Bruckman and the proposer.

Late Acknowledgement: Kenneth Davenport has solved H–694 and H–701.
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