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PROBLEMS PROPOSED IN THIS ISSUE

H-817 Proposed by Hideyuki Ohtsuka, Saitama, Japan
For n ≥ 1, find closed form expressions for the sums

(i)

n∑
k=1

F2kF2k−1F2k+1−1 · · ·F2n−1;

(ii)

n∑
k=1

F2k−3L2k−1L2k+1−1 · · ·L2n−1;

(iii)

n∑
k=1

(−1)kF2kL2k−1L2k+1−1 · · ·L2n−1;

(iv)
n∑
k=1

(−1)kG2k+kL2k−1L2k+1−1 · · ·L2n−1,

where {Gn}n≥1 satisfies Gn+2 = Gn+1 +Gn for n ≥ 1 with arbitrary G1 and G2.

H-818 Proposed by Hideyuki Ohtsuka, Saitama, Japan
Determine

∞∑
n=1

1

FnFn+1Fn+2Fn+4
and

∞∑
n=1

1

FnFn+2Fn+3Fn+4
.
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H-819 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai
Stanciu, Buzău, Romania

Let f : R→ R be a continuous and odd function and g : R∗+ −→ R be a continuous function
such that g(1/x) = −g(x) for all x ∈ R∗+. Compute∫ α

−β

dx

(1 + x2)(1 + e(f◦g)(x))
,

where α = (1 +
√

5)/2 and β = (1−
√

5)/2.

H-820 Proposed by D. M. Bătineţu-Giurgiu, Bucharest, and Neculai
Stanciu, Buzău, Romania

If a, b, c ∈ R+, compute

lim
n→∞

(
n+1

√
(2n+ 1)!!F bn+1

)a+1

−
(

n
√

(2n− 1)!!F bn

)a+1

(
n
√
n!Lcn

)a .

SOLUTIONS

Closed forms for sums of series involving reciprocals
of shifted Fibonacci squares

H-783 Proposed by Hideyuki Ohtsuka, Saitama, Japan (Vol. 54, No. 1, February
2016)

Prove that

(i)
∞∑
n=1

1

F 2
n + 1

=
−3 + 5

√
5

6
;

(ii)
∞∑
n=3

1

F 2
n − 1

=
43− 15

√
5

18
;

(iii)

∞∑
n=3

1

F 4
n − 1

=
35− 15

√
5

18
.

Solution by Ángel Plaza

(i) We will show that

∞∑
n=0

1

F 2
2n + 1

= α =
1 +
√

5

2
, and that

∞∑
n=0

1

F 2
2n+1 + 1

=

√
5

3
. These

two series are consequences of the following two identities that may be proved by induction:

m∑
n=0

1

F 2
2n + 1

=
F2m+2

F2m+1
,

m∑
n=0

1

F 2
2n+1 + 1

=
F4m+4/3

F2m+1F2m+3
.

Therefore, the sum proposed in (i) is

∞∑
n=1

1

F 2
n + 1

=
∞∑
n=1

1

F 2
2n + 1

+
∞∑
n=0

1

F 2
2n+1 + 1

= α− 1 +

√
5

3
=
−3 + 5

√
5

6
.

�
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(ii) Since
1

F 4
n − 1

=
1/2

F 2
n − 1

− 1/2

F 2
n + 1

, then

∞∑
n=3

1

F 2
n − 1

= 2
∞∑
n=3

1

F 4
n − 1

+
∞∑
n=3

1

F 2
n + 1

=
35− 15

√
5

18
+
−3 + 5

√
5

6
− 1

=
43− 15

√
5

18

where we have used the sum given in (iii), which is proved below. �

(iii) First, note that F 4
n − 1 = Fn−2Fn−1Fn+1Fn+2 and that Fn =

Fn+2 + Fn−2
3

. Therefore,

1

F 4
n − 1

=
1/3

Fn−2Fn−1FnFn+1
+

1/3

Fn−1FnFn+1Fn+2
.

Taking into account the following relation equation (24) in [1]:

n−1∑
i=1

1

FiFi+1Fi+2Fi+3
=

7

4
− 1

2

(
Fn−1
Fn

+
3Fn
Fn+1

+
Fn+1

Fn+2

)
it is deduced that

∞∑
n=3

1/3

Fn−2Fn−1FnFn+1
=

1

3

(
7

4
− 5

2α

)
,

∞∑
n=3

1/3

Fn−1FnFn+1Fn+2
=

1

3

(
7

4
− 5

2α
− 1

6

)
,

from where the sum (iii) follows.

[1] R. S. Melham, Finite sums that involve reciprocal of products of generalized Fibonacci
numbers, Integers, 13.4 (2013), A40.

Also solved by Brian Bradie, Dmitry Fleischman, and the proposer.

A pair of identities for π

H-784 Proposed by Gleb Glebov, Simon Fraser University, Canada (Vol. 54, No. 1,
February 2016)

Prove that

(i)

∞∑
k=1

[
1

24k + 11
− 1

24k − 11
+

1

24k + 1
− 1

24k − 1

]
=
π(
√

6 +
√

2)

12
− 12

11
;

(ii)
∞∑
k=1

[
1

24k + 7
− 1

24k − 7
+

1

24k + 5
− 1

24k − 5

]
=
π(
√

6−
√

2)

12
− 12

35
.

Solution by Hideyuki Ohtsuka

It is known that

πx cotπx = 1−
∞∑
k=1

2x2

k2 − x2
.
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From the above identity, we have
∞∑
k=1

1

(24k)2 − (24x)2
=

1− πx cotπx

2(24x)2
. (1)

(i) Note that

cot
11π

24
= −2 +

√
2−
√

3 +
√

6 and cot
π

24
= 2 +

√
2 +
√

3 +
√

6.

We have

LHS = −22
∞∑
k=1

1

(24k)2 − 112
− 2

∞∑
k=1

1

(24k)2 − 12

= − 22

2× 112

(
1− 11π

24
cot

11π

24

)
− 2

2× 12

(
1− π

24
cot

π

24

)
= − 1

11
+

π

24
(−2 +

√
2−
√

3 +
√

6)− 1 +
π

24
(2 +

√
2 +
√

3 +
√

6)

= RHS.

. (ii) Note that

cot
7π

24
= −2−

√
2 +
√

3 +
√

6 and cot
5π

24
= 2−

√
2−
√

3 +
√

6.

We have

LHS = −14
∞∑
k=1

1

(24k)2 − 72
− 10

∞∑
k=1

1

(24k)2 − 52

= − 14

2× 72

(
1− 7π

24
cot

7π

24

)
− 10

2× 52

(
1− 5π

24
cot

5π

24

)
= −1

7
+

π

24
(−2−

√
2 +
√

3 +
√

6)− 1

5
+

π

24
(2−

√
2−
√

3 +
√

6)

= RHS.

.

Also solved by Brian Bradie, Kenneth B. Davenport, Dmitry Fleischman, David
Terr, Nicuşor Zlota, and the proposer.
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Sums of Fibonomial coefficients

H-785 Proposed by Hideyuki Ohtsuka, Saitama, Japan (Vol. 54, No. 1, February
2016)

Let

(
n

k

)
F

denote the Fibonomial coefficient. For m ≥ n ≥ 1, find closed forms expressions

for the sums

(i)
n∑
k=0

F2k

(
2n

n+ k

)
F

(
2m

m+ k

)
F

;

(ii)
n∑
k=0

F2k

(
2n

n+ k

)−1
F

(
2m

m+ k

)−1
F

.

Solution by the proposer

It is known that

Fa+rFb+r − (−1)rFaFb = Fa+b+rFr (see [1](20a)). (2)

Putting a = s− k, b = t− k, and r = 2k in the above identity, we have

Fs+kFt+k − Fs−kFt−k = Fs+tF2k. (3)

(i) We have (
2n− 1

n+ k − 1

)
F

(
2m− 1

m+ k − 1

)
F

−
(

2n− 1

n+ k

)
F

(
2m− 1

m+ k

)
F

=
Fn+k
F2n

(
2n

n+ k

)
F

Fm+k

F2m

(
2m

m+ k

)
F

− Fn−k
F2n

(
2n

n+ k

)
F

Fm−k
F2m

(
2m

m+ k

)
F

=
Fn+kFm+k − Fn−kFm−k

F2nF2m

(
2n

n+ k

)
F

(
2m

m+ k

)
F

=
Fn+mF2k

F2nF2m

(
2n

n+ k

)
F

(
2m

m+ k

)
F

(by (3)).

Therefore, we have

n∑
k=0

F2k

(
2n

n+ k

)
F

(
2m

m+ k

)
F

=
F2nF2m

Fn+m

n∑
k=0

[(
2n− 1

n+ k − 1

)
F

(
2m− 1

m+ k − 1

)
F

−
(

2n− 1

n+ k

)
F

(
2m− 1

m+ k

)
F

]
=

F2nF2m

Fn+m

[(
2n− 1

n− 1

)
F

(
2m− 1

m− 1

)
F

−
(

2n− 1

2n

)
F

(
2m− 1

m+ n

)
F

]
=

F2nF2m

Fn+m
× Fn
F2n

(
2n

n

)
F

Fm
F2m

(
2m

m

)
F

=
FnFm
Fn+m

(
2n

n

)
F

(
2m

m

)
F

.
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(ii) We have(
2n+ 1

n+ k + 1

)−1
F

(
2m+ 1

m+ k + 1

)−1
F

−
(

2n+ 1

n+ k

)−1
F

(
2m+ 1

m+ k

)−1
F

=
Fn+k+1

F2n+1

(
2n

n+ k

)−1
F

Fm+k+1

F2m+1

(
2m

m+ k

)−1
F

− Fn−k+1

F2n+1

(
2n

n+ k

)−1
F

Fm−k+1

F2m+1

(
2m

m+ k

)−1
F

=
Fn+k+1Fm+k+1 − Fn+1−kFm+1−k

F2n+1F2m+1

(
2n

n+ k

)−1
F

(
2m

m+ k

)−1
F

=
Fn+m+2F2k

F2n+1F2m+1

(
2n

n+ k

)−1
F

(
2m

m+ k

)−1
F

(by (3)).

Therefore, we have
n∑
k=0

F2k

(
2n

n+ k

)−1
F

(
2m

m+ k

)−1
F

=
F2n+1F2m+1

Fn+m+2

n∑
k=0

[(
2n+ 1

n+ k + 1

)−1
F

(
2m+ 1

m+ k + 1

)−1
F

−
(

2n+ 1

n+ k

)−1
F

(
2m+ 1

m+ k

)−1
F

]

=
F2n+1F2m+1

Fn+m+2

[(
2n+ 1

2n+ 1

)−1
F

(
2m+ 1

m+ n+ 1

)−1
F

−
(

2n+ 1

n

)−1
F

(
2m+ 1

m

)−1
F

]

=
F2n+1F2m+1

Fn+m+2

[
Fm+n+1

F2m+1

(
2m

m+ n

)−1
F

− Fn+1

F2n+1

(
2n

n

)−1
F

Fm+1

F2m+1

(
2m

m

)−1
F

]

=
F2n+1Fn+m+1

Fn+m+2

(
2m

n+m

)−1
F

− Fn+1Fm+1

Fn+m+2

(
2n

n

)−1
F

(
2m

m

)−1
F

.

Note: Similarly, for positive integers n and r we obtain
n∑
k=0

F2k

(
n

r + k

)
F

(
n

r − k

)
F

=
FrFn−r
Fn

(
n

r

)2

F

.

[1] S. Vajda, Fibonacci and Lucas numbers and the golden section, Dover, 2008.

The area of a Fibonacci polygon

H-786 Proposed by Atara Shriki, Oranim College of Education (Vol. 54, No. 1,
February 2016)

Assume that the consecutive numbers in the Fibonacci sequence are the coordinates of a
polygon’s vertices in the Cartesian coordinate system, counterclockwise:

A1(F1, F2); A2(F3, F4); A3(F5, F6); A4(F7, F8); . . . ; An(F2n−1, F2n).

What is the area of such a polygon?
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Solution by Virginia Johnson

One formula for area bounded by a polygon with coordinates with vertices at P1(x1, y1),
P2(x2, y2), . . . , Pn(xn, yn) is the so called shoelace formula or surveyor’s formula, given by the
absolute value of

1

2
(x1y2 + x2y3 + · · ·+ xn−1yn + xny1 − y1x2 − y2x3 − · · · − yn−1xn − ynx1)

See reference [1].
Taking the vertices in counterclockwise order, the area of the polygons is

A =
1

2

(
F1F2n + F2n−1F2n−2 + F2n−3F2n−4 + · · ·+ F5F4 + F3F2

− F2F2n−1 − F2nF2n−3 − F2n−2F2n−5 − · · · − F6F3 − F4F1

)
Reordering the terms, we have

A =
1

2

(
(F1F2n − F2F2n−1) + (F2n−1F2n−2 − F2nF2n−3) (4)

+ (F2n−3F2n−4 − F2n−2F2n−5) + · · ·+ (F5F4 − F6F3) + (F3F2 − F4F1)
)
.

Note that after the first pair, each of the subsequent (n− 1) pairs have the form F2j−1F2j−2−
F2jF2j−3. Using an identity from Everman, et al. [2]:

Fn+kFn+h − FnFn+h+k = (−1)nFhFk,

we have that equation (4) reduces to

A =
F1F2n − F2F2n−1 − 1(n− 1)

2
=
F2n − F2n−1 − n+ 1

2
=
F2n−2 − n+ 1

2
.

Therefore, the area of the polygon is
F2n−2 − n+ 1

2
.

[1] B. Braden, The surveyor’s area formula, The College Mathematics Journal, 17.4 (1986),
326–337.

[2] D. Everman, A. Danese, K. Venkannayah, and E. Scheuer, Elementary problems and
solutions: Some properties of Fibonacci numbers, The American Mathematical Monthly, 67.7
(1960), 694.

Also solved by Harris Kwong, Ángel Plaza, and the proposer.

Errata: In the statement of H-815, the condition “p > 5” must be added.

Withdrawals: Problem H-816 is withdrawn as being a particular case of B-1173.
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