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PROBLEMS PROPOSED IN THIS ISSUE
H-669 Proposed by G. C. Greubel, Newport News, VA

Show that
0o 1 2 ﬁQ 6 ﬁ2 ob , ; o

where p = (—v/53)"/? and o = (5a2)"/*.

H-670 Proposed by P. Bruckman, Sointula, Canada
Let m denote the standard Fibonomial coefficient F,,Fy,_1 -+ Fy_gr1/(F1Fs -+ F).

(a) Define the following sums:

n

A, = Z(_l)k<k+1)/2 m £, = zn:(—1)’“(’“—1)/2 m .

k=0 k=0
Prove that forn > 1, A, = —F,,B,,_1.

(b) Define
Cn _ Z(_l)k(kJrl)/Z |:Z] Lk-
k=0
Prove that C,, = —(L,, — 2)B,,_1.

H-671 Proposed by G. C. Greubel, Newport News, VA
Let ¢, (z,y) be the bi-variate Fibonacci and Lucas polynomials. Find expansions for

f: (n —;m) Ontp(T,Y),

n=0
in the form

P(z,y) + io <i> Qr(z,y),

where P(x,y) and Q,(z,y) are general polynomials and A is given by: (A) m + 1, (B) p.
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H-672 Proposed by J. L. Diaz-Barrero, Barcelona, Spain
Let n be a positive integer. Prove that

- F; 2 1 n F2 2 n -2
E i k 313 2
> > F°F E F2(1+ L _

k=1 k=1

SOLUTIONS

Binomial Coeflicients, Powers of 2 and Fibonacci Numbers

H-651 Proposed by H.-J. Seiffert, Berlin, Germany
(Vol. 45, No. 1, February 2007)
Prove that, for all positive integers n,

L(n=3)/5] n .
— 24n71 — 5", . L N
,; (2n—10k—5> 0 5 Lan+ Lan)

and

[(n=3)/5]
4n — 2 1
= — (273 5" Fyy 1+ Lyn_s).
,;0 <2n—10k—6> 0! n-1 + Lan-2)

Solution by Paul S. Bruckman, Sointula, Canada

Suppose that n > 3. Let A, and B, denote the first and second sums appearing in the
statement of the problem. Observe that both expressions are special cases of the quantity

2m
m — 10k — 5

>

[(m—5)/10] (
k=0

), m=295,6,7,....

Indeed, it is easy to see that A, = Hs, and B,, = Hs,_;. Putting

m

Un(z) =Y (mQT k) *,

k=0

then H,, consists of the subsum of Uy, (x) for x = 1 corresponding to the summation terms
which are congruent to 5 modulo 10. Using the fact that

14 ef™N/5 4 Q2imN/5 | 4 9iwN/5

is 0 if 10 ¥ NV and is 10 otherwise, we get

MAY 2008/2009 187



THE FIBONACCI QUARTERLY

Since also .
1
= — —_1)J *27'('_7/5
Hyy =55 (=1 Un (e,
7=0
we get that
9
1 .
— —1)7 in35/5) —imj/5
Hp = o5 ;( 1) (U (€77 4 U (e77/7)) (1)
Next note that ,
_ S 2m m—k - 2m k—m
=g ()£ )

In particular,
inj/5 —inj/5 )2m 2m
U (€™7°) 4+ Uy, (e ) = (2cos(mj/10))

which together with formula (1) gives
9

o, - 2_10 3 ((—1)3'(2 cos(mj /10)*™ + (- ( >)

J=0

The terms involving (*") cancel. Letting 6; = 2 cos(7;/10), we have

o = 2, 0 =/ a5, 0o = a, O3 =/ a5, Oy =a"l,
0; =0, Og=—a", 0; = —\/a~W5h, b= —a, 0y = —\/ aV/5.

Using the above values, we get
20H,, = 22 —am5™? 4P —a M52 4TI 4o MM gt — gmpmY2
= 22m _9q™m5M/2 _ 9(—1)"3mE™2 420%™ 4 237,
or
H,, = 110(22m L 5m2(a™ 4 (=1)™B™) 4 Lay).
The desired equalities now follow from Binet’s formula. It may be observed that for n = 1

and n = 2, the sums H,, for m = 2n and m = 2n — 1 may be defined as zero, which is also
the value obtained when these values are substituted in the closed form expressions.

Also solved by the proposer.
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Fibonacci Logarithms

H-652 Proposed by José Luis Diaz-Barrero, Barcelona, Spain
(Vol. 45, No. 1, February 2007)

Determine
FioFppy \ 7/ e
nh_)n;(}Zln <1 + 7 Fn+1> .

Solution by the editor
Let L be the required limit. We use the fact that
an

F, = ﬁ(l + O(a™)).

z FF \ M0 R FiFipa
! ; n( +FnFn+1 1 Fk+1 N +FnFn+1

Let

Since In(1 + z) < z for all > 0, we have that

n

- Fk;Fk—I—l 1 2
o<u, < = FZ=1.
! Z Fkﬂ FoFny1 FuFoi ,; k

We now write

F, FyFitn Fy, FiFr
= In{1+4+ —— In{1+ ———
i Z F n( +FnFn+1 * Z ! +FnFn+1

I<k<ym = FH Vn<k<n

= Sl + SQ.

Obviously,

Fka—H N
51 < Z Ia Fn+1 Q2n—vn) o(1)
k<y/n

as n — oo. If v/n < k < n, we then have
Fka—f—l — 14 042’““ + 0(1)
FoFoin a1 (1 + O(a™?"))

= 1+ 40 (a™)

= (1+a** )1+ 0(a™™)),

1+

and
Fy,

Flta

140 ) =a N (1+0(a™V")),
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therefore

S2

where

Since clearly

SHES

(]

(1+0(aV™) (In(1 + o 2"™M) + In(1 + O(a™?")))

Vn<k<n

Q|+

(]

In(1 4 o~ 2" £ O(na~V")

Vn<k<n

1
e}

(

we get that if we write

Ed

n

1

In(1 + a2k — 53) + o(1),

S3 = Z In(1 + a2k,

1<k<y/n

vn

S5 < W = 0(1),

Uy = Z In(1 + a2k,
k=1

then the required limit is o lim,, o v,,. But clearly,

n—1
Uy, = Zln(l + a7k,
k=0

and therefore the limit of v,, is simply the sum of the series

Zln(l +a™ %),
k=0

To compute it with any precision, we note that its tail at /N is at most

1
Zln(l +a—2k) < Z a—2k _ a—2N S = 04_2N+1,

SO

k>N

1—a~
k>N

e
‘L - = Z In(1 + 04_2]“)‘ <a N,
a
k=0

Using the above with N = 10, we get that the first three decimals of L are 0.767. It is not
clear if this expressions admits a closed form.

Also solved by Paul S. Bruckman, H.-J. Seiffert and the proposer.
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Harmonic Numbers, ((2) and ((3)

H-653 Proposed by Ovidiu Furdui, Kalamazoo, MI
(Vol. 45, No. 1, February 2007)
Let n > 3 be a natural number. Prove the following formula

i s 2 C(B)—W2+1 _ 15l WQ—k_ll
R (k+0)(k+2)- (k+n) ! 8 4) nle=k\6 &)

where Hy = 25:1 1/j is the kth harmonic number and ((3) = 3772, 1/;% is the celebrated
Apéry constant.

Solution by H.-J. Seiffert, Berlin, Germany
If Poy=k(k+1)---(k+n), k>1, n>0, then
1 1 n+1
= (2)

Pk,n PkJrl,n Pk,nJrl

We consider the series
o0

H, =\ H, = 1 = 1
=2 gpy TeXp, UmXlaps Tl

1
The series S, and U,, converge for n > 0 while 7,, and V,, converge for n > 1. Multiplying
(2) by Hi/k and summing over all k£ > 1 gives

Sn — Tn+1 = (TL + 1)Sn+1, n Z 0. (3)
Above we used the fact that kPyi1,, = Pgpi1. Since Hyy = Hi +1/(k+ 1), by (2), we get
H H 1)H, 1
b Hen (DA, k>1, 0> 1.

Pen  Pryin Py (k+1)Pey1n

Summing over all £ > 1 and noting the telescoping on the left hand side, one almost imme-
diately obtains

Uy,
Ty = —" > 0. 4
T n (4)
Multiplying (2) by 1/k and then summing over all k > 1 yields
Un — Vn+l = (n -+ 1)Un+17 n Z 0. (5)
Finally, summing (2) over all k£ > 1, one easily gets
1
Vn+1 = n > 0. (6)

(n+ (n+ ) =

Based on (5) and (6), a simple induction argument shows that

1 "1

=1

empty sums are understood to be zero. From (3), (4) and (7), it follows that

S, 1 1
S+l n+1 (n+1)(n+1)! (UO Zj2> ’ nz0 (8)
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Using Euler’s results Uy = 72/6, as well as Sy = 2((3), we find from (8) that S; = 2{(3) —
72/6. Now, based on (8), a simple induction argument shows that

2 1\ 11 &1
S, = — N——+-|-= - = - -1, > 2.
n!(C() 8+4) ! k<6 27 "=
k=3 j=1
This proves the required identity.

Editor’s comment. In the original statement of the problem, the last sum on the

right hand side was erroneously written as ‘Z?;ll 1/7% instead of ‘Z?;ll 1/7%’. The editor
apologizes for this oversight.

Also solved by K. N. Boyadzhiev, Paul S. Bruckman and the proposer.
Late Acknowledgement. H-648 and H-649 were also solved by Paul S. Bruckman.
PLEASE SEND IN PROPOSALS!
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