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PROBLEMS PROPOSED IN THIS ISSUE

H-669 Proposed by G. C. Greubel, Newport News, VA
Show that
∞∑

n=0

[
1

5n + 1
+

2

5n + 2
+

β2

5n + 3
+

β

5n + 4
− β2

5n + 5

]
=

α3

2
ln(2β2) + µα2 tan−1(β2σ),

where µ = (−√5β)1/2 and σ = (5α2)1/4.

H-670 Proposed by P. Bruckman, Sointula, Canada
Let

[
n
k

]
denote the standard Fibonomial coefficient FnFn−1 · · ·Fn−k+1/(F1F2 · · ·Fk).

(a) Define the following sums:

An =
n∑

k=0

(−1)k(k+1)/2

[
n

k

]
Fk, Bn =

n∑

k=0

(−1)k(k−1)/2

[
n

k

]
.

Prove that for n ≥ 1, An = −FnBn−1.
(b) Define

Cn =
n∑

k=0

(−1)k(k+1)/2

[
n

k

]
Lk.

Prove that Cn = −(Ln − 2)Bn−1.

H-671 Proposed by G. C. Greubel, Newport News, VA
Let φn(x, y) be the bi-variate Fibonacci and Lucas polynomials. Find expansions for

∞∑
n=0

(
n + m

n

)
φn+p(x, y),

in the form

P (x, y) +
λ∑

r=0

(
λ

r

)
Qr(x, y),

where P (x, y) and Qr(x, y) are general polynomials and λ is given by: (A) m + 1, (B) p.
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H-672 Proposed by J. L. Dı́az-Barrero, Barcelona, Spain
Let n be a positive integer. Prove that

n∑

k=1

(
Fk

1 + Lk

)2

≥ 1

FnFn+1

(
n∑

k=1

F 2
k

1 + Lk

)2

≥ F 3
nF 3

n+1

(
n∑

k=1

F 2
k (1 + Lk)

)−2

.

SOLUTIONS

Binomial Coefficients, Powers of 2 and Fibonacci Numbers

H-651 Proposed by H.-J. Seiffert, Berlin, Germany
(Vol. 45, No. 1, February 2007)

Prove that, for all positive integers n,

b(n−3)/5c∑

k=0

(
4n

2n− 10k − 5

)
=

1

10
(24n−1 − 5nL2n + L4n)

and
b(n−3)/5c∑

k=0

(
4n− 2

2n− 10k − 6

)
=

1

10
(24n−3 − 5nF2n−1 + L4n−2).

Solution by Paul S. Bruckman, Sointula, Canada

Suppose that n ≥ 3. Let An and Bn denote the first and second sums appearing in the
statement of the problem. Observe that both expressions are special cases of the quantity

Hm =

b(m−5)/10c∑

k=0

(
2m

m− 10k − 5

)
, m = 5, 6, 7, . . . .

Indeed, it is easy to see that An = H2n and Bn = H2n−1. Putting

Um(x) =
m∑

k=0

(
2m

m− k

)
xk,

then Hm consists of the subsum of Um(x) for x = 1 corresponding to the summation terms
which are congruent to 5 modulo 10. Using the fact that

1 + eiπN/5 + e2iπN/5 + · · ·+ e9iπN/5

is 0 if 10 - N and is 10 otherwise, we get

Hm =
1

10

m∑

k=0

9∑
j=0

(
2m

m− k

)
eiπj(k−5)/5,

or, by changing the order of summation,

Hm =
1

10

9∑
j=0

(−1)jUm(eiπj/5).
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Since also

Hm =
1

10

9∑
j=0

(−1)jUm(e−iπj/5),

we get that

Hm =
1

20

9∑
j=0

(−1)j(Um(eiπj/5) + Um(e−iπj/5)). (1)

Next note that

Um =
m∑

k=0

(
2m

k

)
xm−k =

2m∑

k=m

(
2m

k

)
xk−m,

which implies that

Um(x) + Um(x−1) =
2m∑

k=0

(
2m

k

)
xm−k +

(
2m

m

)
= (x + x−1)2m +

(
2m

m

)
.

In particular,

Um(eiπj/5) + Um(e−iπj/5) = (2 cos(πj/10))2m +

(
2m

m

)
,

which together with formula (1) gives

Hm =
1

20

9∑
j=0

(
(−1)j(2 cos(πj/10)2m + (−1)j

(
2m

m

))
.

The terms involving
(
2m
m

)
cancel. Letting θj = 2 cos(πj/10), we have

θ0 = 2, θ1 =

√
α
√

5, θ2 = α, θ3 =

√
α−1

√
5, θ4 = α−1,

θ5 = 0, θ6 = −α−1, θ7 = −
√

α−1
√

5, θ8 = −α, θ9 = −
√

α
√

5.

Using the above values, we get

20Hm = 22m − αm5m/2 + α2m − α−m5m/2 + α−2m + α−2m − α−m5m/2 + α2m − αm5m/2

= 22m − 2αm5m/2 − 2(−1)mβm5m/2 + 2α2m + 2β2m,

or

Hm =
1

10
(22m−1 − 5m/2(αm + (−1)mβm) + L2m).

The desired equalities now follow from Binet’s formula. It may be observed that for n = 1
and n = 2, the sums Hm for m = 2n and m = 2n− 1 may be defined as zero, which is also
the value obtained when these values are substituted in the closed form expressions.

Also solved by the proposer.
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Fibonacci Logarithms

H-652 Proposed by José Luis Dı́az-Barrero, Barcelona, Spain
(Vol. 45, No. 1, February 2007)

Determine

lim
n→∞

n∑

k=1

ln

(
1 +

FkFk+1

FnFn+1

)Fk/Fk+1

.

Solution by the editor

Let L be the required limit. We use the fact that

Fn =
αn

√
5
(1 + O(α−2n)).

Let

un =
n∑

k=1

ln

(
1 +

FkFk+1

FnFn+1

)Fk/Fk+1

=
n∑

k=1

Fk

Fk+1

ln

(
1 +

FkFk+1

FnFn+1

)
.

Since ln(1 + x) < x for all x > 0, we have that

0 < un <

n∑

k=1

Fk

Fk+1

· FkFk+1

FnFn+1

=
1

FnFn+1

n∑

k=1

F 2
k = 1.

We now write

un =
∑

1≤k<
√

n

Fk

Fk+1

ln

(
1 +

FkFk+1

FnFn+1

)
+

∑
√

n≤k<n

Fk

Fk+1

ln

(
1 +

FkFk+1

FnFn+1

)

:= S1 + S2.

Obviously,

S1 ¿
∑

k<
√

n

FkFk+1

FnFn+1

¿
√

n

α2(n−√n)
= o(1)

as n →∞. If
√

n < k ≤ n, we then have

1 +
FkFk+1

FnFn+1

= 1 +
α2k+1 + O(1)

α2n+1(1 + O(α−2n))

= 1 + α2(k−n) + O
(
α−2n

)

= (1 + α2(k−n))(1 + O(α−2n)),

and

Fk

Fk+1

= α−1(1 + O(α−2k)) = α−1(1 + O(α−
√

n)),
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therefore

S2 =
1

α

∑
√

n<k≤n

(1 + O(α−
√

n))
(
ln(1 + α−2(n−k)) + ln(1 + O(α−2n))

)

=
1

α

∑
√

n<k≤n

ln(1 + α−2(n−k)) + O(nα−
√

n)

=
1

α

(
n∑

k=1

ln(1 + α−2(n−k))− S3

)
+ o(1),

where
S3 =

∑

1≤k<
√

n

ln(1 + α−2(n−k)).

Since clearly

S3 <

√
n

α2(n−√n)
= o(1),

we get that if we write

vn =
n∑

k=1

ln(1 + α−2(n−k)),

then the required limit is α−1 limn→∞ vn. But clearly,

vn =
n−1∑

k=0

ln(1 + α−2k),

and therefore the limit of vn is simply the sum of the series
∞∑

k=0

ln(1 + α−2k).

To compute it with any precision, we note that its tail at N is at most
∑

k≥N

ln(1 + α−2k) <
∑

k≥N

α−2k = α−2N 1

1− α−2
= α−2N+1,

so ∣∣∣L− 1

α

N−1∑

k=0

ln(1 + α−2k)
∣∣∣ < α−2N .

Using the above with N = 10, we get that the first three decimals of L are 0.767. It is not
clear if this expressions admits a closed form.

Also solved by Paul S. Bruckman, H.-J. Seiffert and the proposer.
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Harmonic Numbers, ζ(2) and ζ(3)

H-653 Proposed by Ovidiu Furdui, Kalamazoo, MI
(Vol. 45, No. 1, February 2007)

Let n ≥ 3 be a natural number. Prove the following formula

∞∑

k=1

Hk

k2(k + 1)(k + 2) · · · (k + n)
=

2

n!

(
ζ(3)− π2

8
+

1

4

)
− 1

n!

n∑

k=3

1

k

(
π2

6
−

k−1∑
j=1

1

j2

)
,

where Hk =
∑k

j=1 1/j is the kth harmonic number and ζ(3) =
∑∞

j=1 1/j3 is the celebrated
Apéry constant.

Solution by H.-J. Seiffert, Berlin, Germany

If Pk,n = k(k + 1) · · · (k + n), k ≥ 1, n ≥ 0, then

1

Pk,n

− 1

Pk+1,n

=
n + 1

Pk,n+1

. (2)

We consider the series

Sn =
∞∑

k=1

Hk

kPk,n

, Tn =
∞∑

k=1

Hk

Pk,n

, Un =
∞∑

k=1

1

kPk,n

, Vn =
∞∑

k=1

1

Pk,n

.

The series Sn and Un converge for n ≥ 0 while Tn and Vn converge for n ≥ 1. Multiplying
(2) by Hk/k and summing over all k ≥ 1 gives

Sn − Tn+1 = (n + 1)Sn+1, n ≥ 0. (3)

Above we used the fact that kPk+1,n = Pk,n+1. Since Hk+1 = Hk + 1/(k + 1), by (2), we get

Hk

Pk,n

− Hk+1

Pk+1,n

=
(n + 1)Hk

Pk,n+1

− 1

(k + 1)Pk+1,n

, k ≥ 1, n ≥ 1.

Summing over all k ≥ 1 and noting the telescoping on the left hand side, one almost imme-
diately obtains

Tn+1 =
Un

n + 1
, n ≥ 0. (4)

Multiplying (2) by 1/k and then summing over all k ≥ 1 yields

Un − Vn+1 = (n + 1)Un+1, n ≥ 0. (5)

Finally, summing (2) over all k ≥ 1, one easily gets

Vn+1 =
1

(n + 1)(n + 1)!
, n ≥ 0. (6)

Based on (5) and (6), a simple induction argument shows that

Un =
1

n!

(
U0 −

n∑
j=1

1

j2

)
, n ≥ 0; (7)

empty sums are understood to be zero. From (3), (4) and (7), it follows that

Sn+1 =
Sn

n + 1
− 1

(n + 1)(n + 1)!

(
U0 −

n∑
j=1

1

j2

)
, n ≥ 0. (8)
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Using Euler’s results U0 = π2/6, as well as S0 = 2ζ(3), we find from (8) that S1 = 2ζ(3) −
π2/6. Now, based on (8), a simple induction argument shows that

Sn =
2

n!

(
ζ(3)− π2

8
+

1

4

)
− 1

n!

n∑

k=3

1

k

(
π2

6
−

k−1∑
j=1

1

j2

)
, n ≥ 2.

This proves the required identity.

Editor’s comment. In the original statement of the problem, the last sum on the
right hand side was erroneously written as ‘

∑n−1
j=1 1/j2’ instead of ‘

∑k−1
j=1 1/j2’. The editor

apologizes for this oversight.

Also solved by K. N. Boyadzhiev, Paul S. Bruckman and the proposer.

Late Acknowledgement. H-648 and H-649 were also solved by Paul S. Bruckman.
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192 VOLUME 46/47, NUMBER 2


