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PROBLEMS PROPOSED IN THIS ISSUE

H-735 Proposed by Paul S. Bruckman, BC

Let Fm(x) =

∞
∑

n=0

(

2n+m

n

)

xn, where m is any real number and |x| < 1/4. Also let

θ(x) = (1− 4x)1/2. For brevity, write Fm = Fm(x), θ = θ(x). Prove the following:

(a) F0 =
1

θ
, F1 =

(1− θ)

2xθ
;

(b) for all real m,
Fm

F0
=

(

F1

F0

)m

;

(c) for all real m,
n
∑

k=0

(

2k +m

k

)(

2n− 2k −m

n− k

)

= 4n, n = 0, 1, 2, . . . .

H-736 Proposed by Hideyuki Ohtsuka, Saitama, Japan
The Tribonacci numbers Tn satisfy T0 = 0, T1 = T2 = 1, Tn+3 = Tn+2 + Tn+1 + Tn for

n ≥ 0. Find an explicit formula for the sum
∑n

k=1 T
3
k .

H-737 Proposed by Hideyuki Ohtsuka, Saitama, Japan

Let

(

n

k

)

F

denote the Fibonomial coefficient. For an odd prime p and a positive integer n,

prove that
(

np− 1

p− 1

)

F

≡ (−1)
(n−1)(p−1)

2 (mod F 2
pLp).

H-738 Proposed by H. Ohtsuka, Saitama, Japan

Let

(

n

k

)

F

denote the Fibonomial coefficient. For n ≥ 1, prove that

(i)

2n−1
∑

k=0

L2
k

(

2n− 1

k

)2

F

=
L4n−1 + 1

L4n−1 − 1

2n
∑

k=0

(

2n

k

)2

F

,
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(ii)
∑

a+b=2n
a,b>0

LaLb

(

2n− 1

a

)

F

(

2n− 1

b

)

F

=
L4n−1 − 3

L4n−1 − 1

2n
∑

k=0

(

2n

k

)2

F

.

SOLUTIONS

Summatory Function of the Riemann Zeta Function

H-709 Proposed by Ovidiu Furdui, Campia Turzii, Romania
(Vol. 49, No. 4, November 2011)

a) Let a be a positive real number. Calculate,

lim
n→∞

an (n− ζ(2)− ζ(3)− · · · − ζ(n)) ,

where ζ is the Riemann zeta function.
b) Let a be a real number such that |a| < 2. Prove that,

∞
∑

n=2

an (n− ζ(2)− ζ(3)− · · · − ζ(n)) = a

(

Ψ(2− a) + γ

1− a
− 1

)

,

where Ψ denotes the Digamma function.

Solution by the proposer.

We need the following lemma.

Lemma 1. The following limit holds lim
x→∞

2x (ζ(x)− 1) = 1.

Proof. We note that if x > 1 we have ζ(x) =
∞
∑

n=1

1

nx
= 1 +

1

2x
+

∞
∑

n=3

1

nx
> 1 +

1

2x
, and hence,

1 < 2x (ζ(x)− 1) . (1)

On the other hand,
∞
∑

n=3

1

nx
<

∫ ∞

2

1

tx
dt =

21−x

x− 1
, from which it follows that

2x (ζ(x)− 1) <
x+ 1

x− 1
. (2)

From (1) and (2) we get that lim
x→∞

2x (ζ(x)− 1) = 1. �

Now we are ready to solve the problem. First, we prove that

Sn =

∞
∑

k=1

1

k(k + 1)n
= n− ζ(2)− ζ(3)− · · · − ζ(n).

We have, since
1

k(k + 1)n
=

1

k(k + 1)n−1
− 1

(k + 1)n
,

that
∞
∑

k=1

1

k(k + 1)n
=

∞
∑

k=1

1

k(k + 1)n−1
−

∞
∑

k=1

1

(k + 1)n
,
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and hence, Sn = Sn−1 − (ζ(n)− 1). Iterating this equality we obtain

Sn = S1 − (ζ(2) + ζ(3) + · · ·+ ζ(n)− (n− 1))

and, since S1 =
∑∞

k=1 1/(k(k + 1)) = 1, we obtain Sn = n− ζ(2)− ζ(3)− · · · − ζ(n).

a) We prove that lim
n→∞

an (n− ζ(2)− ζ(3)− · · · − ζ(n)) equals 1 for a = 2, 0 for a ∈ (0, 2),

and ∞ when a > 2. First we consider the case when a = 2. Let L = limn→∞ 2nSn. Since Sn

verifies the recurrence formula Sn = Sn−1 − (ζ(n)− 1), it follows that

2nSn = 2 · 2n−1Sn−1 − 2n(ζ(n)− 1).

Letting n tend to ∞ in the preceding equality and using the lemma we get L = 2L− 1, from
which it follows that L = 1. If a < 2, we have that L = limn→∞ anSn = limn→∞ 2nSn ·
limn→∞(a/2)n = 0, and if a > 2 we get, based on the same reasoning, that L = ∞.

b) Clearly when a = 0 there is nothing to prove so we consider the case when a 6= 0. We have,

∞
∑

n=2

an (n− ζ(2)− ζ(3)− · · · − ζ(n)) =
∞
∑

n=2

an
∞
∑

k=1

1

k(k + 1)n
=

∞
∑

k=1

1

k

∞
∑

n=2

(

a

k + 1

)n

= a2
∞
∑

k=1

1

k(k + 1)(k + 1− a)
.

We distinguish two cases here.

Case a = 1. In this case we have, based on the preceding calculations,

∞
∑

n=2

(n− ζ(2)− ζ(3)− · · · − ζ(n)) =

∞
∑

k=1

1

k2(k + 1)
= ζ(2)− 1.

Case a 6= 1. We have,

∞
∑

n=2

an (n− ζ(2)− ζ(3)− · · · − ζ(n)) = a2
∞
∑

k=1

1

k(k + 1)(k + 1− a)

= a2
∞
∑

k=1

(

1

k(k + 1− a)
− 1

(k + 1)(k + 1− a)

)

= a2

(

∞
∑

k=1

1

1− a

(

1

k
− 1

k + 1− a

)

−
∞
∑

k=1

1

a

(

1

k + 1− a
− 1

k + 1

)

)

= a2

(

∞
∑

k=1

1

1− a

(

1

k
− 1

k + 1− a

)

−
∞
∑

k=1

1

a

(

1

k + 1− a
− 1

k
+

1

k
− 1

k + 1

)

)

= a2

(

1

a(1− a)

∞
∑

k=1

(

1

k
− 1

k + 1− a

)

− 1

a

∞
∑

k=1

(

1

k
− 1

k + 1

)

)

= a

(

Ψ(2− a) + γ

1− a
− 1

)

,

and the problem is solved.

188 VOLUME 51, NUMBER 2



ADVANCED PROBLEMS AND SOLUTIONS

Remark. It is worth mentioning that this formula is consistent with the case when a = 1,
since

lim
a→1

a

(

Ψ(2− a) + γ

1− a
− 1

)

= Ψ′(1) − 1 =
π2

6
− 1.

Also solved by Khristo Boyadzhiev, Paul S. Bruckman, and Anastasios Kotronis.

A Double Generating Function for Ternary Words

H-710 Proposed by Emeric Deutsch, Polytechnic Institute of NYU, Brooklyn,
NY
(Vol. 49, No. 4, November 2011)

Let an,k denote the number of ternary words (i.e., finite sequences of 0’s, 1’s and 2’s) of length

n and having k occurrences of 01’s. Find the generating function G(t, z) =
∑

k≥0,n≥0 an,kt
kzn.

Solution by Helmut Prodinger, Stellenbosch, South Africa.

Such questions can be answered in a fairly automatic fashion using a finite automaton. Set

A :=

[

2z z
zt+ z z

]

,

then

G(t, z) =
[

1 0
]

(I −A)−1

[

1
1

]

=
1

1− 3z + z2 − z2t
.

Also solved by Paul S. Bruckman and the proposer.

Inequalities With Square Roots of Fibonacci Numbers

H-711 Proposed by Hideyuki Ohtsuka, Saitama, Japan
(Vol. 49, No. 4, November 2011)

Let Rn =
√

Fn+3 +
√

Fn+4 for n ≥ 0. Prove that

Rn −R2 + 2 ≤
n
∑

k=1

√

Fk ≤ Rn −R1 + 1.

Solution by the proposer.

First, we prove the following lemma.

Lemma. For positive integer n,

(1)
√

F2n+1 +
√

F2n+3 −
√

F2n+5 > 0,

(2)
√

F2n+1 +
√

F2n+2 +
√

F2n+3 +
√

F2n+4 −
√

F2n+5 −
√

F2n+6 > 0,

(3)
√

F2n +
√

F2n+1 +
√

F2n+2 +
√

F2n+3 −
√

F2n+4 −
√

F2n+5 < 0.

Proof. For (1), note that

(
√

F2n+1 +
√

F2n+3)
2 − (

√

F2n+5)
2 = 2

√

F 2
2n+2 + 1− 2F2n+2 > 0. (3)

Therefore,
√

F2n+1 +
√

F2n+3 −
√

F2n+5 > 0.
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For (2), we consider the following An:

An =
(
√

F2n+6 +
√

F2n+4 +
√

F2n+2

)

{

(
√

F2n+3 +
√

F2n+1 −
√

F2n+5

)

−
(
√

F2n+6 −
√

F2n+4 −
√

F2n+2

)

}

>
(
√

F2n+5 +
√

F2n+3 +
√

F2n+1

)(
√

F2n+3 +
√

F2n+1 −
√

F2n+5

)

−
(
√

F2n+6 +
√

F2n+4 +
√

F2n+2

)(
√

F2n+6 −
√

F2n+4 −
√

F2n+2

)

= 2
(
√

F 2
2n+3 − 1 +

√

F 2
2n+2 + 1− F2n+4

)

.

Here
(
√

F 2
2n+3 − 1 +

√

F 2
2n+2 + 1

)2
− F 2

2n+4

= 2
√

(F2n+2F2n+3)2 + F 2
2n+3 − F 2

2n+2 − 1− 2F2n+2F2n+3 > 0.

Therefore,
√

F 2
2n+3 − 1 +

√

F 2
2n+2 + 1− F2n+4 > 0. Hence, An > 0. We have

(
√

F2n+3 +
√

F2n+1 −
√

F2n+5

)

−
(
√

F2n+6 −
√

F2n+4 −
√

F2n+2

)

> 0.

Thus, we obtain (2). Part (3) can be obtained similarly. �

We define Sn as follows. For positive integer n, Sn =
∑n

k=1

√
Fk − √

Fn+3 −
√
Fn+4. For

positive integer m, we show
(i) S2m+1 > S2m, (ii) S2m+2 > S2m and (iii) S2m+1 < S2m−1.
(i) By Lemma (1),

S2m+1 − S2m =
√

F2m+1 +
√

F2m+3 −
√

F2m+5 > 0.

(ii) By Lemma (2),

S2m+2 − S2m =
√

F2m+1 +
√

F2m+2 +
√

F2m+3 +
√

F2m+4 −
√

F2m+5 −
√

F2m+6 > 0.

(iii) By Lemma (3),

S2m+1 − S2m−1 =
√

F2m +
√

F2m+1 +
√

F2m+2 +
√

F2m+3 −
√

F2m+4 −
√

F2m+5 < 0.

By (i), (ii), and (iii) we have

S2 < S4 < S6 < · · · < S5 < S3 < S1.

Thus, S2 ≤ Sn ≤ S1. Putting Rn =
√

Fn+3 +
√

Fn+4, then we have

2−R2 ≤
n
∑

k=1

√

Fk −Rn ≤ 1−R1.

Therefore,

Rn −R2 + 2 ≤
n
∑

k=1

√

Fk ≤ Rn −R1 + 1.

Also solved by Paul S. Bruckman, Kenneth B. Davenport, and Zbigniew Jakubczyk.
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Convolutions With Middle Binomial Coefficients

H-712 Proposed by N. Gauthier, Royal Military College of Canada, Kingston,
ON
(Vol. 50, No. 1, February 2012)

The nth central binomial coefficient is, for an integer n ≥ 0: Bn =
(

2n
n

)

. Then, for a
nonnegative integer m, define the convolution

bm(n) =
n
∑

k=0

kmBn−kBk,

where b0(n) =
∑n

k=0Bn−kBk. Prove the following recurrence,

bm(n) =
22n−m(2m− 1)!!(n)m

m!
−

m−1
∑

k=1

S(k)
m bk(n).

In this expression, the sum on the right-hand side is taken to vanish when m = 0, 1, and the

coefficients are Stirling numbers of the first kind, {S(k)
m : 1 ≤ k ≤ m}. Also,

(2m− 1)!! = 1 · 3 · 5 · · · (2m− 1); (n)m = n(n− 1) . . . (n−m+ 1),

where, by convention, (2m− 1)!! = 1 and (n)m = 1 for m = 0.

Solution by Harris Kwong, SUNY Fredonia, Fredonia, NY.

We shall first derive another recurrence relation for bm(n). Let Bm(x) =
∑∞

n=0 bm(n)xn,

and define Cm(x) =
∑∞

k=0 k
mBkx

k. We have

C0(x) =
d

dx

(

∞
∑

k=0

1

k + 1

(

2k

k

)

xk+1

)

=
d

dx

(

1−
√
1− 4x

2

)

= (1− 4x)−1/2.

The convolution in the definition of bm(n) leads to Bm(x) = C0(x)Cm(x) = (1−4x)−1/2Cm(x).
In particular,

B0(x) = (1− 4x)−1 =
∞
∑

n=0

4nxn,

hence, b0(n) = 4n. For m ≥ 1, from Cm−1(x) = (1− 4x)1/2Bm−1(x), we obtain

Cm(x) = xC ′
m−1(x) = x(1− 4x)1/2B′

m−1(x)− 2x(1 − 4x)−1/2Bm−1(x).

Thus,

Bm(x) = (1− 4x)−1/2Cm(x)

= xB′
m−1(x)− 2x(1− 4x)−1Bm−1(x)

=

m
∑

n=0

nbm−1(n)x
n − 2x

∞
∑

n=0

(

n
∑

k=0

4n−kbm−1(k)

)

xn.

Comparison of the coefficient of xn yields the recurrence

bm(n) = nbm−1(n)− 2
n−1
∑

k=0

4n−1−kbm−1(k), m ≥ 1. (4)
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Since b0(n) = 4n, the identity stated in the problem holds when m = 0. To finish the proof,
we use induction on m ≥ 1 to prove the equivalent form

m
∑

k=1

S(k)
m bk(n) = 4n−m(2m)m

(

n

m

)

. (5)

It is easy to verify that (5) is true when m = 1 because the recurrence (4) and b0(n) = 4n

together imply that b1(n) = 2n · 4n−1. Assuming that (5) is true for some m ≥ 1, it remains
to show that it is also valid when m is replaced by m+1. Using a well-known recurrence that

S
(k)
m satisfies, the fact that S

(0)
m = S

(m+1)
m = 0, the recurrence (4), the induction hypothesis

(5), the “hockey-stick” theorem, and simple algebra, we find

m+1
∑

k=1

S
(k)
m+1bk(n) =

m+1
∑

k=1

(

S(k−1)
m −mS(k)

m

)

bk(n)

=

m
∑

k=1

S(k)
m bk+1(n)−m

m
∑

k=1

S(k)
m bk(n)

=

m
∑

k=1

S(k)
m



nbk(n)− 2

n−1
∑

j=0

4n−1−jbk(j)



 −m

m
∑

k=1

S(k)
m bk(n)

= (n−m)

m
∑

k=1

S(k)
m bk(n)− 2

n−1
∑

j=0

4n−1−j
m
∑

k=1

S(k)
m bk(j)

= (n−m) · 4n−m(2m)m

(

n

m

)

− 2 · 4n−m−1(2m)m

n−1
∑

j=1

(

j

m

)

= (m+ 1) · 4n−m(2m)m

(

n

m+ 1

)

− 2 · 4n−m−1(2m)m

(

n

m+ 1

)

= 4n−m−1(4m+ 2)(2m)m

(

n

m+ 1

)

= 4n−m−1(2m+ 2)m+1

(

n

m+ 1

)

,

thereby completing the induction.

Also solved by Paul Bruckman, Andrew Gibson, Matthew Roberson & Cecil
Rousseau, and the proposer.

Errata. Kenneth B. Davenport pointed out that Problem H-730 is exactly the same as
H-720. The editor apologizes for the oversight.
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