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PROBLEMS PROPOSED IN THIS ISSUE

H-618 Proposed by Slavko Simic, Mathematical Institute SANU, Belgrade
Prove that there exists a constant c ≥ 2.5 such that the inequality

ex ≥ 1 + xα

holds for each x ≥ 0 if and only if α ∈ [1, c]. What is the value of c?

H-619 Proposed by Jayantibhai M. Patel, Ahmedabad, India
For any positive integer n ≥ 2, prove that the value of the following determinant

∣∣∣∣∣∣∣∣∣
−(6F 2

n−1 − L2
n) 2Fn+1Fn+2 2FnFn+2 2Fn−1Fn+2 2Fn−2Fn+2

2Fn+2Fn+1 −(2F 2
n−1 + 5F 2

n) 2FnFn+1 2Fn−1Fn+1 2Fn−2Fn+1

2Fn+2Fn 2Fn+1Fn −(4F 2
n + L2

n) 2Fn−1Fn 2Fn−2Fn
2Fn+2Fn−1 2Fn+1Fn−1 2FnFn−1 −(5F 2

n + 2F 2
n+1) 2Fn−2Fn−1

2Fn+2Fn−2 2Fn+1Fn−2 2FnFn−2 2Fn−1Fn+2 −(6F 2
n+1 − F 2

n)

∣∣∣∣∣∣∣∣∣
is (6F 2

n + L2
n)5.

H-620 Proposed by José Luis Dı́az-Barrero, Barcelona, Spain and Óscar Ciaurri
Ramı́rez, Logroño, Spain

Let ABC be a triangle. Prove that the following inequality holds for α ∈ [0, π/2):

√
Fn+1Fn+2 cos(C − α) +

√
Fn+2Fn cos(B − α) +

√
FnFn+1 cos(A− α) ≤ 2Fn+2 cos

(π
3
− α

)
.

H-621 Proposed by Mario Catalani, Torino, Italy
Let Ln(x, y) be the bivariate Lucas polynomials, defined by Ln(x, y) = xLn−1(x, y) +

yLn−2(x, y), L0(x, y) = 2, L1(x, y) = x. Assume x2 + 4y 6= 0. Prove the following identity

n∑
k=0

(
n+ k

k

)
(−y)kx−(k+1)Ln+1−k(x, y) = xn.
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SOLUTIONS

A product of Pell and Fibonacci

H-605 Proposed by José Luis Dı́az-Barrero and Juan José Egozcue, Spain
(Vol. 41, no. 5, November 2003)

Find the smallest integer k for which λ0an+λ1an+1 + · · ·+λkan+k = 0 holds for all n ≥ 1
with some integers λ0, . . . , λk not all zero, where {an}n≥1 is the integer sequence defined by

an =
(b(n−1)/2c∑

`=0

(
n

2`+ 1

)
2`
)(b(n−1)/2c∑

`=0

1
2n−1

(
n

2`+ 1

)
5`
)
.

Solution by H.-J. Seiffert, Berlin, Germany

It is well-known that

b(n−1)/2c∑
`=0

(
n

2`+ 1

)
2` = Pn and

b(n−1)/2c∑
`=0

1
2n−1

(
n

2`+ 1

)
5` = Fn,

where {Pn}n≥0 is the sequence of Pell numbers defined recursively by Pn+2 = 2Pn+1 + Pn for
n ≥ 0, P0 = 0, and P1 = 1. Thus, we have an = PnFn for all n ≥ 1. From [1], we know that

an − 2an+1 − 7an+2 − 2an+3 + an+4 = 0 for all n ≥ 1. (1)

Using the values a1 = 1, a2 = 2, a3 = 10, a4 = 36, a5 = 145, a6 = 560 and a7 = 2197,
it is easily checked that for k = 0, 1, 2, and 3, respectively, the determinant of the matrix
(ai+j−1)i,j=1,...,k+1 has the values 1, 6, 14 and 9, respectively, so that, by Cramer’s rule, the
only solution of the system of linear equations

λ0an + λ1an+1 + · · ·+ λkan+k = 0, for n = 1, . . . , k + 1,

is λ0 = λ1 = · · · = λk = 0 for such k. Hence, by (1), k = 4 is the smallest nonnegative integer
asked for.
[1] “Problem B-625”, The Fibonacci Quarterly 27.4 (1989): 376.

Also solved by V. Mathe the proposers.
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Another binomial identity

H-606 Proposed by Mario Catalani, University of Torino, Italy
(Vol. 42, no. 1, February 2004)

Let us consider, for a nonnegative integer n, the following sum

Sn =
bn

2 c∑
k=0

(
n− k
2bk2 c

)
−
bn

2 c−1∑
k=0

(
n− 1− k
2bk2 c+ 1

)
.

A summation with a negative upper limit is taken to be equal to zero. Express Sn both in
closed form and as a recurrence.
Solution by H.-J. Seiffert, Berlin, Germany

It is known (see [1]) that, for all nonnegative integers n,

Tn =
b(n−1)/2c∑

r=0

(−1)r
(
n− 1− r

r

)
=

2√
3

sin
(nπ

3

)
.

Considering the cases in which the index k is even and odd, we then have

Sn =
∑

0≤2j≤bn/2c

(
n− 2j

2j

)
+

∑
0≤2j+1≤bn/2c

(
n− 2j − 1

2j

)

−
∑

0≤2j≤bn/2c−1

(
n− 1− 2j

2j + 1

)
−

∑
0≤2j+1≤bn/2c−1

(
n− 2j − 2

2j + 1

)

=
∑

0≤r≤bn/2c

(−1)r
(
n− r
r

)
+

∑
0≤r≤bn/2c−1

(−1)r
(
n− 1− r

r

)

= Tn+1 + Tn −
1
2

(−1)bn/2c(1− (−1)n).

¿From known trigonometric relations, one finds

Un = Tn+1 + Tn = 2 sin
( (2n+ 1)π

6

)
,
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so that the closed form expression

Sn = 2 sin
( (2n+ 1)π

6

)
− 1

2
(−1)bn/2c(1 + (−1)n)

holds. Again, by known trigonomeric relations, Un+2 = Un+1 − Un. Now, it is easily verified
that the recurrence

Sn+2 = Sn+1 − Sn +
1
2

(−1)b(n+1)/2c(1 + (−1)n)

holds.
Editor’s comment. Each solver submitted a different looking, yet mathematically equivalent,
closed form for Sn. For example,

S2n+1 = (−1)b(2n+1)/3c − (−1)b(2n+1)/2c +
1
2

(
(−1)b2n/3c + (−1)b(2n+2)/3c

)
(proposer),

Sn = − sin
(nπ

2

)
+ 2 cos

( (n− 1)π
3

)
(Bruckman).

Also, the proposer proved the recurrence

S2n+1 = −2S2(n−1)+1 − 2S2(n−2)+1 − S2(n−3)+1 for all n ≥ 3,

and a similar type of recurrence for (S2n)n≥3.

[1] “Solution to Problem B-828”, The Fibonacci Quarterly 36.1 (1998): 87–88.

Also solved by Paul Bruckman and the proposer.

Dividing differences

H-607 Proposed by José Luis Dı́az-Barrero, Barcelona, Spain
Let n be a positive integer greater than or equal to 3. Evaluate the sum

n∑
i=1

[(Fi+1 − Fi−1

F 2
i+2 − F 2

i−2

)n−2 ∏
j=1
j 6=i

(
1− Fj+2 − Fj−2

Fi+2 − Fi−2

)−1]
.
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Solution by Paul Bruckman, Sointula, Canada

We employ the following identities

Fi+1 − Fi−1 = Fi, Fi+2 − Fi−2 = Li and Fi+2 + Fi−2 = 3Fi.

Denote the given expression by Sn. Then,

Sn =
n∑
i=1

( Fi
3FiLi

)n−2 n∏
j=1
j 6=i

(
1− Lj

Li

)−1

.

After simplification, we get

Sn =
1

3n−2

n∑
i=1

Li

n∏
j=1
j 6=i

( 1
Li − Lj

)
.

Thus,

Sn =
1

3n−2
∆(n−1)(z)[L1, . . . , Ln],

where ∆(n−1)(z)[L1, . . . , Ln] is the divided difference of order n− 1 of the polynomial function
z evaluated at the points L1, . . . , Ln. Since n ≥ 3, it follows that Sn = 0.

Also solved by Ovidiu Furdui, H.-J. Seiffert and the proposer.

Pell does it again

H-608 Proposed by Mario Catalani, University of Torino, Italy
(Vol. 42, no. 1, February 2004)

Let Pn denote the Pell numbers

Pn = 2Pn−1 + Pn−2, P0 = 0, P1 = 1.

Find

lim
n→∞

n∏
k=1

(
1 +

1√
2P 2

2k + 1

)
.
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Solution by Kenneth B. Davenport, Frackville, PA, USA

Since

Pn =
αn − βn

2
√

2
, where α = 1 +

√
2, β = 1−

√
2,

the given product may be expressed as

n∏
k=1

(
1 +

1√
2(α2k−β2k )2

(2
√

2)2
+ 1

)
=

n∏
k=1

(
1 +

1√
(α2k−β2k )2+4

4

)

=
n∏
k=1

(
1 +

2√
α2k+1 + β2k+1 + 2

)
=

n∏
k=1

(
1 +

2
α2k + β2k

)
.

Since αβ = −1, this last product can be rewritten as

(
1 +

2β2

β4 + 1

)(
1 +

2β4

β8 + 1

)
. . .
(

1 +
2β2n

β2n+1 + 1

)
.

The product can now be expressed as

(β2 + 1)2

(β4 + 1)
· (β4 + 1)2

(β8 + 1)
. . .

(β2n

+ 1)2

(β2n+1 + 1)

= (β2 + 1)2(β4 + 1) . . . (β2n

+ 1)(β2n+1
+ 1)−1

=
(β2 + 1)(1− β2n+1

)
(1− β2)(1 + β2n+1)

.

Since |β| < 1, we deduce easily that the desired product converges to

1 + β2

1− β2
=
√

2.

Editor’s Comment. Both W. Janous and H.-J. Seiffert proved appropriate generalizations
of this problem when the sequence 2P 2

2k + 1 is replaced by a quadratic expression in (x2k)k≥1,
where (xk)k≥0 is a nondegenerate binary recurrent sequence with x0 = 0 whose characteristic
roots are real quadratic units.

Also solved by Paul Bruckman, Ovidiu Furdui, W. Janous, H.-J. Seiffert and the
proposer.
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