16 EXPANSION OF ANALYTIC FUNCTIONS IN
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FIBONACCI NUMBERS

Paul F. Byrd
1. Introduction, A problem which has long been of funda.

mental interest in classical analysis is the expansion of a
given function f(x) in a series of the form

(1.1) fx) = Tb_P_(x)
n= O

where { P (x) } is a prescribed sequence of polynomials,
and where the coefficients b are numbers related to f, In
particular, the inn.umerableninvestigations on expansions
of "arbitrary' functions in orthogonal polynomials have led
to many important convergence and summability theorems,
and to various interesting results in the theory of approxi-
mation, (See, for example, Alexits [ 1], Szegd [2],
Rainville[ 3], and Jackson [4] .) Numerous recent stud-
ies have also been made on the expansion of analytic func-
tions employing more general sets of polynomials (e.g,,
see Whittaker[ 5], or Boas and Buck [ 6] )., There is thus
already in existence a great wealth of theory which may be
applied when a particular set of polynomials is introduced
to accomplish a certain purpose,

In the present article, we shall apply some avail-
able results in order to consider the expansion of analytic
functions in a series of a certain set of polynomials which
can be associated with the famous numbers of Fibonacci,
Our primary objective is to illustrate a simple, general
technique that may be used to obtain expansions of a given
class of functions in terms involving Fibonacci numbers,
Some important broad questions and problems concerning
convergence and the representability of our polynomial ex-
pansions in general will not be discussed, however,

2. Fibonacci Polynomials, By 'Fibonacci polynomials'
we shall mean the sequence of polynomials { (pk(x)} R
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(k =0,1,.00000) satisfying the recurrence :t'ela’cion1

(2.1) (pk+2(x) -2x ¢k+1(x) - gpk(x) = 0, ~o <x<®

with initial conditions

(2.2) Py = 0, @) =L

In the special case when x = 1/2, equations (2.1) and (2. 2)
clearly reduce to the well-known relations [ 7] that fur-
nish the Fibonacci numbers 0,1,1,2,3,...., which we shall
denote by ggk(l/Z) or qu

A generating function defining the polynomials
(pk(x) is

S

LI}

(2.3)

e
1 -2xs - s K=

0

Now since the left member of (2.3) changes sign if x is re-
placed by (~x) and s by (~s), we have

(2.4) o - = (0o ()

thereby showing that CR (x) is an odd function of x for k
odd and an even function of x for k even, Upon expanding

the left side of (2,3) and equating coefficients in s, we ob-
tain the explicit formula

[k/2] ,. ,
(x) = T (K;?)(a@K'hn,(kiob

m=0

(2.3) Pral

1A related set of polynomials, which satisfies the re-
lati _ - - _ :
currence relationy, Z(:x;) XYy l(x) yk(x) 0, was

considered in 1883 by Catalan [ 8]. The name 'Fibonacci
polynomials' is also given to solutions of the relation

= + =
Ziy 2(x) Zk+l<X) x ZK(X)’ z (x) =0, zy

0
gated by Jacobsthal [9].

(x) =1, investi-
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where [k/2 ] is the greatest integer < k/2.

An alternative form for expressing the polynomi-
als ggk(x) may be found by introducing the exponential gen-
erating function defined by

(2. 6 Y(s,%) = T o (x) s
k=0 k!

This transforms the recurrence relation (2.1), and the ini-
tial conditions (2. 2), into the differential equation

2
. d
(2.7) .ZY—ZXj;[ -Y =0
ds
with conditions
dy | =1
(2.8) Y(O,X) = O, a—s—‘l s—0

1 sa sa

(2.9) Y(S,X): ——————-—r [e 1-e 2],
2/ (L+x")

where

(2.10) a; = X+vf(l+xz),azgx—/(1+xz).

If we now apply the inverse transform

k
d'Y

(2.11) gpk(x) = — s 0’ k= 0,1,2,....
ds -

(2.12) x = sinh @ , f(1+x2) = coshy

we obtain
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¢2k(x) = sinh 2kgy
h w
(2.13) cos (k =0,1,2,....)

¢2k+1(X) = cosh (2k+1) w
cosh w

3. Some Other Relations, We note, as can easily be shown
that the polynomials . (x) are related to Chebyshev's pol-

ynomials Um(x) of the second Kll’ld [37 by

(3.1) @y(x) =U (ix) =0, @___ (x) = (-)" U__ (ix),
i=/-,m> 0).

The Chebyshev polynomials themselves of course belong to
a larger family designated as 'ultraspherical polynomials'
or sometimes 'Gegenbauer polynomials' 2] . Unlike
those of Chebyshev or of Gegenbauer, however, our Fibon-
acci polynomials gom(x) are not orthogonal on any interval
of the real axis,

The sequence gak+l(x), (k =0,1,2,...) is a so~
called simple set, since the polynomials are of degree pre-
cisely k in x, as is seen from (2.5). Thus the linearly in=-
dependent set contains one polynomial of each degree, and
any polynomial P (x) of degree n can clearly be expressed
linearly in terms of the elements of the basic set; that is,
there always exist constants <k such that the finite sum

n

(3.2) P (x) = 2Z c o (x)
n k= 0 k Tk+1

is a unique representation of P_(x).
n

These polynomials of Chebyshev are not to be con=
fused with the Chebyshev polynomials T (x) of the first
kind, which are useful in optimal- interval interpolationf10 7,
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Before we seek the explicit expression for the
coefficients in the expansion of a given analytic function
f(x) in series of our basic set { ¢k+l(x)} , it is useful to

have x in a series of this set, Taking Fibonacci polynoms=
ials as defined by formula (2.5), we thus need the easily
established reciprocal relation(3),

[n/2]

¥ -2r +1
w2 ()2 e e,

which could also be re~arranged in the form

n
I
=0
that will then contain only even ¢'s when n is odd, and odd
¢©'s when n is even,

4. Expansion of Analytic Functions, We assume that our
arbitrarily given function f(x) can be represented by a pow~
er series

Ny
W
bt

(4.1) f(x) =

n=0

having a radius of convergence of £ > 1/2, with the coeffi-
cients a expressed by
(4.2) ) (n=0,1,...)

n!

Formal substitution of relation (3. 3) into (4.1) yields the de-

sired polynomial expansion
°0

(4.3) ) = £ o @, ),
k=0
{3) In view of (2.12) and (2.13) , this relation is an equiv=~
alent form for known expressions for powers of the hyper-~
bolic function sinh W,
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where the coefficients are finally determined from the for-
mula

0 (wl)ja. . 2j+k
(4.4) o = (k+1) X _ET_?_HEM :
j=0 2997 (G4 1) \ g

Convergence properties of the general basic ser-
ies (1.1) have been investigated by Whittaker [5] , by Boas
and Buck [ 6] , and by others. If Whittaker's results are
applied to our case, it can be shown that the expansion (4. 3)
will converge absolutely and uniformly to the function f(x)
in | x| < £ if the series

(4. 5) Zla | v ()

n= 0

converges, where Vn( £ ) is given by

(4. 6) V) =Ty dMce,
j=0
with
4.7 M. = Max |o. ,
(4.7) J(C ) lxizg @J+1(X)‘
and with 7y being the coefficients in (3.3) after they have

i
been re-arrJanged in the form (3. 4).

Now, we may also introduce a parameter 24
such that l 20 xf < ¢ , and may thus start with the form

n

[ee] o0
(4.8) f(2ox)= % (Znanan)x =2 A x"
n= 0 n=0
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where
n

(4.9) A =1 d f(ZaX)IX:O

nt n
dx

The expansion (4, 3) in terms of Fibonacci polynomials then
becomes

Z R O

(4.10) f(2a x) =
k=0

with the coefficients Bk now being determined by the equa~
tion

j _2j+k .

: (-1) « 2j+k

4 =
(4.10) B (o) = (k1) T === 250k |

j= 0

For our purposes, the form (4.10) is often more convenient
than that of (4. 3).

If we take x = 1/2, the polynomials ggk(x) become

the numbers of Fibonacci, go,k(l/Z) = Fk’ so that the series

=]

(4.12) fla) = T B (@), (1/2) = T B (F,

k=0 k=0

furnishes a formal expansion of the function f{®} in terms
involving Fibonacci numbers, One apparent use of the ser-
les expansion {4.12) is for the case in which it is desired to
make a given analytic function f serve as a generating funce-
tion of the Fibonacci-number sequence,

5. Examples, We first consider the function

2
(5.1) fx) = ™%, (0< |a|<=),
where

(5. 2) a = 2 a/nt,
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The coefficients ¢, in (4.4) are then given by the formula

k
e j_ 2j+k 2j + k

' (-1)) o ( | )
5.3 = (k+1 e ——
(5.3) < <+)j=zo ST OTERT i
or finally by
(5.4) c. = k+1

k o Jk+1(2a)’ (k- = 091: 24, ----- )

where J is Bessel's function [11 ] of order k +1, The

k+1
polynomial expansion (4. 3) therefore yields formally

(5. 5) eZax

I

(o) ()

(1/a) f“,, (k+1) Jk+1

k=20

[==)

W) B3, (20) @09

We note that

(5.6) Lim (m+1) Jm+l(2a) ¢m+1(x)

m —&®

mJ (ea) ¢ (x)

= Lim (x +\/l+x2) a = 0,

m —= ® m

so that the series (5,5) is convergent for all finite values of
x if the parameter o« remains also finite.

From (5.5), with the relations

2Q -2
cosh 2ax = (e T ioe OLX)/Z,
(5.7)

20 - 20
sinh 20 x = (e“% % . e¢ /2,



24 EXPANSION OF ANALYTIC FUNCTI ONS

we immediately obtain the two expansions

(5.8) cosh2axs= (o) I (2m-1)J, (2e)¢, ()
m=1

and o

(5.9) sinh 2 x = (/o) Z 2m sz(Za) QZm(X)

m:l
Similarly, we have
] i +1

(5.10) cos 2ax =(l/a)Z (-1™ (zm-11, (20)e, {x)
m=1

and o

_ +1
(5.11) sin 2ax = (1/a) 2{—1)m (2m) I, ()@, ()
m=

where Ik is the modified Bessel function [11] of the first

kind of order k.

To produce expansions involving the Fibonacci
numbers F . we simply set x =1/2. Hence from (5.5),

(5.8), (5.9), (5.10) and (5.11), it is seen for 0 < | o | <
that

e — (/o) Zm J_(2a) F_
m:].
(5.12)
-]
cosha =(1l/a) Z (2m-1) sz_l(Za) Fer—l
m=1 '
sinha = (1/a) T (2m) sz(Za) FZm

1

m
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(5.12)
= m=+1
os o= (1 -1 2m-
c ( /Oér)n? 1( ) (2m l)IZm_I(Zoz) FZm-

sinoa = (/a) Z (-1)

m=1

m+ 1
(2m) I, (2a) F,

As a-—» 0, the right-hand sides of (5.12) all become inde-

terminate forms, but the correct result is obtained in the

limit. The particular series expansions (5.5), (5.8), (5.9)
(5.10), (5.11) and (5.12) are apparently not found in the lit-
erature in the specific form we have presented for our pur-
poses; they could be related, however, to some expansiont
due to Gegenbauer [11, page 369] .

Many higher transcendental functions can also be
explicitly developed along similar lines. For instance,
without difficulty we may derive the series expansions

c 2
Il(a) = (2/a) T mJ_ (a)F
m
m=1

(5.13) -
m#l 2
(Z/O()rn}_;,l(—l) mIm(a) FZm

2m

-

H/‘\
Q
1]

for the Bessel functions I, and Ji'

1

The coefficients in the above examples all in-
volve Bessel's functions, but this indeed would not be the
case in general, For instance, for

| 2ax| <1

we can show from (4.10) and (4.11) that

(5.14) In (1 + 20 x) = —[rZ/Z + Inr/a ] (pl(x)

+ 3 (_1)]*('}‘1 & [1/k + rz/(k+ )1 o, ()
k:l
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where 5
J(+ 4a) - 1 .

20

(5.15) ro=

With x =1/2, we then have, for | « | <1,

(5.16) In(l+a) (r/a) = -(r2/2) F
2 k1 Kk
+ T (-)) [1/k +r2/(k+2)] F
O k1

6. Another Approach.4 The coefficients Bk in our basic

series expansion (4.10) or (4.12) may be obtained by an al-
ternative procedure which is based on relations (3.1) and
certain known properties of the orthogonal polynomials
Uk(X)' (A good reference giving many properties of Uk is

[127).

If our prescribed function f(2ax) can be expand-
ed in the formal series

(6.1) f(Zax)-Z;bU (x), |x| <1, |2ax|< ¢
k=

k
0 k+

the coefficients b, are given by

k

(x) dx, (k=0,1...).

(6.2) b = (z/n)f f2axN(1 x2)U

k+1

With the relations

(6. 3) X = COX V, Uk(x) = (sin kv)/f(l—xz)

4
We could also apply the tools employed in [ 6]
but have written this paper without assuming knowledge of
complex-variable methods,
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the expression (6.2) becomes

(6. 4) "
bk(a) =1 f f(2¢c cosv) [cos kv - cos(k+2)v ] dv.
"
0

In view of relations (3.1, (4. IC) and (6.1), we then have
formally,

Kk T
1

6. = .
(6.5) -Bk(a) o f f(-2¢ icosv) [cos v=cos(k+2)v] dv
as an equation for Bk in integral form.

In the special case when

(6. 6) f2 %) = %%

we find T

k -2¢q icosv
(6.7) ﬁk(a) =i e [cos kv -cos(k+ 2)v] dv
™ 0

= Jk(za) + J 2.0(),

ra2lfe) = KL T
o

which is the same result obtained in example (5.5). Usual-

ly, however, the integrals (6. 5) involving a given function

f are not available, so that the expression (4.1l) is more

often the better procedure for determining the coefficients
B

The particular expansions (5.12) and (5.13), or
(4.12) in general, turn out to have little use as a means of
obtaining efficient approximations for computational pur-
poses, Independent of numerical or physical applications,
however, the introduction of Fibonacci numbers into vari-
ous expressions involving classical functions has a certain
interest and fascination in itself,
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PROBLEM DEPARTMENT

P-1. Verify that the polynomials I 1(x) satisfy the differ-
ential equation

3 :
1 +x)y" + 3xy' -k(k+2)y = 0 (k=0,1,2,...)

P-2. Derive the series expansion



