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1. INTRODUCTION 

Most of the special sequences , which appear in The Fibonacci Quar ter ly , 
satisfy a type of equation called a r e cu r r en ce relat ion i . e . , a difference equation 
whose independent var iable i s r e s t r i c t ed to integral values. Although there a r c 
severa l good textbooks (e. g. , see [1] , [2] , [3] or [4]) which p resen t var ious 
methods of solution for many such equations, the beginner may not be acquainted 
with any of them, and in fact is likely to have more knowledge of the theory of dif-
ferential equations than of that of r e c u r r e n c e re la t ions . 

The purpose of this s e r i e s of a r t ic les is to introduce the beginner to the sub-
ject , and to derive explicit express ions for the solution of cer ta in genera l , l inear 
r e c u r r e n c e re la t ions by applying a generating function t ransformation. The p a r -
t icular generat ing function chosen i s seldom used in the t rea tment of r e c u r r e n c e 
re la t ions , but for the purpose of developing general formulas it has the advantage 
of immediately t ransforming the problem to a more famil iar one involving dif-
ferential equations, for which there is already available a grea t wealth of special 
formulas and techniques. 

2. DEFINITIONS 

A l inear r e c u r r e n c e relat ion of order k i s an equation of the form 

k 

I2-1) Saj,nVj = b n > 
j=0 

where a^ , a, . « . . . a, and b a re given functions of the independent v a r i -0 ,n ' l , n ' k, n n to ^ 
able n over the se t of consecutive non-negative in tegers S, and a 0 a, ^ 0 
on S. If b = 0 , the relat ion i s called homogeneous, otherwise it is said to be 
non-homogeneous. We may introduce the t ranslat ion operator E , defined by 

(2.2) E m y = y (m = 0, 1, • • • , k ) , x ' ' J n J n + m v ' ' ' ' ' 

and thus we can wri te (2.1) as 

(2.3) L k ( E ) y n = b n , 
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where the l inear operator L, (E) is 

(2.4) L k (E) 

j=0 

A sequence whose t e r m s are v is a solution to the r ecu r r ence relat ion on 
the set S if the substitution y = v reduces relat ion (2.3) to an identity on S. 

If a set of k success ive initial values y0s y1}-»-, y, _-, i s given a rb i t r a r i ly , 
equation (2.1) or (2.3) enables us to extend this se t to k + 1. successive values. 
Using mathematical induction, it can be easily established that the r ecu r rence r e -
lation (2.3) over the set S of consecutive non-negative integers has one and only 
one solution for which the k values are prescr ibed . 

3. A SERIES TRANSFORM 

we introduce the exponential gen-For the sequence {y }, n = 0, 1, 2,#-v 
erat ing function defined by tne infinite s e r i e s 

(3.1) Y(t) Vy £ 
jLjyn n.f 
n=0 

which we suppose is convergent for some positive value of t. F rom (3.1) we find 
the derived s e r i e s 

(3.2) dJY __ v ( j ) , , x V * ^ 
a x n=0 

0 = 0 , 1 , - . - , k). 

These s e r i e s of course have the same radius of convergence as (3.1), and are seen 

as the generating functions of the sequences {y . } , j = 0 , l , - -* ,k . Now from (3.1), 

we have the inverse t ransform 

(3.3) yn = ^\o) — Y(t) 
n dt 

( n = 0 , l , 2 , - - - , k ) . 

t=0 
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The relat ions (3.2) and (3.3) follow from known proper t i e s of Taylor s e r i e s . 

4. EXPLICIT SOLUTION OF A LINEAR RECURRENCE RELATION 

We shall now derive the formula for the general solution to the l inear homo-

geneous r e cu r r e n c e relat ion 

k 

(4.1) E a j y n + j s L k ( E ^ n = 0 

3=0 

with constant coefficients. (Discussion of the non-homogeneous case will appear in 
the next i ssue of this journa l . ) The derivation i s based on the application of the ex-
ponential generat ing function (3.1) which t rans forms the r e cu r r e n ce relat ion into a 
more famil iar differential equation. 

Multiplying both sides of (4.1) by t /n.T and summing over n from 0 to °o} 

we thus obtain the t ransformed equation 

k 

( 4 ' 2> Z aj Y d ) ( t ) = L k ( D ) Y = ° ' (D S dt ) ' 
J=0 

which is an ordinary l inear differential equation of o rder k. Now it is well known1 

that, if r l 5 r 2 ; ••• . r, a r e k distinct roots of the charac te r i s t i c equation 

(4.3) Lk(r) = 0, 

then the general solution of (4.2) is given by 

k 

(4.4) Y(t) = 2^ c . e 1 

i=l 

where c. a re k a rb i t r a ry constants . Application of the inverse t ransform (3, 

then yields immediately the explicit formula 

^ e e for example, a lmost any textbook on ordinary differential equations. 
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(4.5) yn-Eci4 
i=l 

for the general solution of the r e c u r r enc e relat ion (4.1). 

In the case where the charac te r i s t i c equations LjJr) = 0 pos se s se s m d i s -
tinct roots rl9 r2 , ••• , r and each root r . being of multiplicity m. ( i = l , ••% m), 
with 

(4.6). y^m, = k , 
1=1 

the differential equation (4. 2) is known to have the general solution 

m . - l m , I 

<4-7> Y(t) =2e l S bijtJ ' 
1=1 j=0 

where b . . a r e k a rb i t r a ry constants , Applying the inverse t r ans form (3.3), we 
then obtain the general solution 

m . - l m l 

i=l 3=0 

to the r e c u r r e n c e rela t ion (4.1). 
In P a r t II of this a r t i c le , we shall not only derive an explicit formula for the 

general solution of the non-homogeneous l inear r e c u r r e n c e relat ion with constant 

coefficients, but shall also show how the method employing the exponential gen-

erat ing function may solve cer ta in r e cu r r en ce re la t ions having variable coefficients. 

5 EXAMPLE 

The Fibonacci numbers satisfy the second-order r e c u r r enc e relat ion 

( 5 a ) F n + 2 " F n + 1 " F n = °> F» = °> F i = 1 
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(5.2) 

where 

(5.3) 

L2(E)F^ = 0 , 

L2(E) = E ' - E - 1. 

The cha rac te r i s t i c equation L2(r) = 0 has the distinct roots 

(5.4) i-i = (1 + V5)/2, R2 = (1 - N/5) /2 , 

so that the formula (4.5) immediately yields 

(5.5) ^ _ n n 
F n = y n = c i r i + c 2 r 2 

Now since F0 = 0, Fj = 1, we obtain ct - - c 2 = l / \ / 5 ; hence the general solu-
tion for the Fibonacci sequence is expressed by 

(5.6) 1 
^5 

i + V"5\n ^ 5 \ n 

We note from (4.2) that the t ransformed equation for (5,1) i s the second-order 

differential equation 

(5.7) yn - Y' - Y = 0, Y(0) = 0, Yf(0) = 1 

Hence the exponential generat ing function for the Fibonacci sequence is 

(5.8) 

OO 

Y(t) = [e^ - er2tJ/V5 = ^ F n g 
n=0 

while the well-known ordinary generating function for this sequence is 
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(5.9) W(t) = ~ g =^2 F n t n ' 
1 - t - t ~ n=0 

The two generating functions W(t) and Y(t) a re re la ted by the express ion 

OO 

(5.10) W(t) = I e"Z Y(tz)dz . 

o . 
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PROBLEM DEPARTMENT 

P - l . The r e c u r r e n c e relat ion for the sequence of Lucas numbers is 

L l 0 - L ,., - L = 0 with LH == 1, L2 = 3 . n+2 n+1 n x ' L 

Find the t ransformed equation, the exponential generating function, and the 
general solution. 

P -2 . Find the general solution and the exponential generating function for the r e -
cu r rence relat ion 

y n + 3 - 5 y n + 2 + 8 V l " 4 y n = °. • 

with y0 = 0, y t = 0, y2 = - 1 . 

REQUEST 
Maxey Brooke would like any re fe rences suitable for a Lucas bibliography, 

His address i s 912 Old Ocean A v e . , Sweeny, Tex. 


