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1. INTRODUCTION

Most of the special sequences, which appear in The Fibonacci Quarterly,

satisfy a type of equation called a recurrence relation i.e., a difference equation
whose independent variable is restricted to integral values. Although there arc
several good textbooks (e.g., see [1], [2], [3] or [4]) which present various
methods of solution for many such equations, the beginner may not be acquainted
with any of them, and in fact is likely to have more knowledge of the theory of dif-
ferential equations than of that of recurrence relations.

The purpose of this series of articles is to introduce the beginner to the sub-
ject, and to derive explicit expressions for the solution of certain general, linear
recurrence relations by applying a generating function transformation. The par-
ticular generating function chosen is seldom used in the treatment of recurrence
relations, but for the purpose of developing general formulas it has the advantage
of immediately transforming the problem to a more familiar one involving dif-
ferential equations, for which there is already available a great wealth of special
formulas and techniques.

2, DEFINITIONS

A linear recurrence relation of order k is an equation of the form

k
(2.1) Z aj,ny]nJrj = bn ’
=0
where aO,n’ al,n’ ese , ak,n and b][1 are given functions of the independent vari-

able n over the set of consecutive non-negative integers S, and 29 n?%k n # 0
3 2

on §. If bn = 0, the relation is called homogeneous, otherwise it is said to be

non-homogeneous. We may introduce the translation operator Em, defined by

2.2) EYy =y, @=0,1, -, k),
and thus we can write (2.1) as
(2.3) Ly ®y, =b,
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where the linear operator Lk (E) is

_ j
(2.4) L, (E) = Zaj’n}z

A sequence whose terms are Va is a solution to the recurrence relation on
the set S if the substitution Yo = Vp reduces relation (2.3) to an identity on S.

If a set of k successive initial values y,, yq,ee* is given arbitrarily,

» k-1
equation (2.1) or (2.3) enables us to extend this set to k+ 1 successive values.
Using mathematical induction, it can be easily established that the recurrence re-
lation (2.3) over the set S of consecutive non-negative integers has one and only

one solution for which the k values are prescribed.

3. A SERIES TRANSFORM

For the sequence {yn}, n = 0,1, 2+, we introduce the exponential gen-

erating function defined by tne infinite series

n
3.1) v = ) oy Lo,

which we suppose is convergent for some positive value of t. From (3.1) we find

the derived series

: j ' - &
(3.2) X = yW = z :ynﬂ- o (=01, k).
at’ n=0 '

These series of course have the same radius of convergence as (3.1), and are seen
as the generating functions of the sequences {yn+j}’ j=0,1,+¢,k.  Now from (3.1),

we have the inverse transform

n
(3.3) v, = Y(n)(o) = —qﬁ— Y (t) n=0,1,2,"+-,k) .

dt =0
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The relations (3.2) and (3.3) follow from known properties of Taylor series.

4, EXPLICIT SOLUTION OF A LINEAR RECURRENCE RELATION
We shall now derive the formula for the general solution to the linear homo-

geneous recurrence relation

k

(4.1) Z ajyn+j = Lk(E)yn =0
=0

with constant coefficients., (Discussion of the non-homogeneous case will appear in
the next issue of this journal.) The derivation is based on the application of the ex-
ponential generating function (3.1) which transforms the recurrence relation into a
more familiar differential equation,

Multiplying both sides of (4.1) by tn/nl and summing over n from 0 to o,

we thus obtain the transformed equation

k
4.2) 3 an(j)(t) = LMY =0, (D
§=0

It

A

)

which is an ordinary linear differential equation of order k. Now it is well known!

that, if r,, ry...., r, are k distinct roots of the characteristic equation

k
(4.3) Lyr) = 0,

then the general solution of (4.2) is given by

K
(4.4) Y =9 cel
i=1

where c; are k arbitrary constants. Application of the inverse transform (3.

then yields immediately the explicit formula

iSee for example, almost any texthook on ordinary differential equations.
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4,5 » = z n
(4.5) Y Ty

k
i=1

for the general solution of the recurrence relation (4.1).

In the case where the characteristic equations Lk(r) = 0 possesses m dis-
tinct roots ry, Ty, +se, T and each root r, being of multiplicity m, (i=1, **<, m),
with

m
(4.6) Zmi -k,

the differential equation (4, 2) is known to have the general solution

m m,~1
rit = j
(4.7) Y(t) = z e E bﬁt ,
i=1 j=0

where Ioij are k arbitrary constants. Applying the inverse transform (3.3), we

then obtain the general solution

m.-1
: m i
(4.8) v, = z v} z | bﬁnJ
i=1 =0

to the recurrence relation (4.1).

In Part II of this article, we shall not only derive an explicit formula for the
general solution of the non-homogeneous linear recurrence relation with constant
coefficients, but shall also show how the method employing the exponential gen-

erating function may solve certain recurrence relations having variable coefficients, -
5 EXAMPLE

The Fibonacci numbers satisfy the second-order recurrence relation

5.1 - - = = =
.1) Forg = Fpep - By 0 Fo =0, Fy =1
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or

(5.2) LyE)F =0 ,
where

(5.3) LyE) = E° - E - 1.

The characteristic equation L.(r) = 0 has the distinct roots
(5.4) ry = @+ V5)/2, R, = (1 - \B)y/2

so that the formula (4.5) immediately yields

- _ n n
(5.5) F,o Sy, =ciry + cyry

Now since Fy; = 0, Fy = 1, we obtain ¢y = -¢c; = 1/~/5 ; hence the general solu-

tion for the Fibonacci sequence is expressed by
=

We note from (4.2) that the transformed equation for (5.1) isthe second-order

differential equation
(5.7) YY" -Y'-Y =0, Y@ =0, Y0 =1

Hence the exponential generating function for the Fibonacci sequence is

rit rot ~ e
(5.8) Yit) = |e -e V5 = E F oo ,
n=0

while the well-known ordinary generating function for this sequence is
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(5.9) W(t) = ——— :Z F "

The two generating functions W(t) and Y(t) are related by the expression
(5.10) W(t) = [e'z Y (tz) dz

0
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PROBLEM DEPARTMENT

P-1. The recurrence relation for the sequence of Lucas numbers is
Ln+2—Ln+l—Ln=0w1th Ly =1, Ly = 3
Find the transformed equation, the exponential generating function, and the
general solution,
P-2. Find the general solution and the exponential generating function for the re-
currence relation
Yn+g ~ 5yn+2 * 8yn+1 - 4yn =0,
with Yo=0, y1 =0, yp = -1
REQUEST
Maxey Brooke would like any references suitable for a Lucas bibliography.
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