$$
\begin{equation*}
\mathrm{W}(\mathrm{t})=\frac{\mathrm{t}}{1-\mathrm{t}-\mathrm{t}^{2}}=\sum_{\mathrm{n}=0}^{\infty} \mathrm{F}_{\mathrm{n}} \mathrm{t}^{\mathrm{n}} \tag{5.9}
\end{equation*}
$$

The two generating functions $\mathrm{W}(\mathrm{t})$ and $\mathrm{Y}(\mathrm{t})$ are related by the expression

$$
\begin{equation*}
W(t)=\int_{0}^{\infty} e^{-z} Y(t z) d z \tag{5.10}
\end{equation*}
$$

REFERENCES

1. L. M. Milne-Thompson, The Calculus of Finite Differences, London, 1933.
2. C. Jordan, Calculus of Finite Differences, New York, 2nd Ed. , 1947.
3. S. Goldberg, Introduction to Difference Equations, New York, 1958.
4. G. Boole, Calculus of Finite Differences, New York, 4th Ed. , 1926.

PROBLEM DEPARTMENT

P-1. The recurrence relation for the sequence of Lucas numbers is

$$
L_{n+2}-L_{n+1}-L_{n}=0 \text { with } L_{1}=1, L_{2}=3
$$

Find the transformed equation, the exponential generating function, and the general solution.
$\mathrm{P}-2$. Find the general solution and the exponential generating function for the recurrence relation

$$
y_{n+3}-5 y_{n+2}+8 y_{n+1}-4 y_{n}=0,
$$

with

$$
\mathrm{y}_{0}=0, \mathrm{y}_{1}=0, \mathrm{y}_{2}=-1
$$

REQUEST
Maxey Brooke would like any references suitable for a Lucas bibliography. His address is 912 Old Ocean Ave., Sweeny, Tex.

